

Reinforced Concrete Shear Wall Analysis and Design (ACI 318-19)

Reinforced Concrete Shear Wall Analysis and Design (ACI 318-19)

A structural reinforced concrete shear wall in a 5-story building provides lateral and gravity load resistance for the applied load as shown in the figure below. Shear wall section and assumed reinforcement is investigated after analysis to verify suitability for the applied loads. The results of hand calculations are then compared with the reference results and numerical analysis results obtained from the [spWall](#) engineering software program by [StructurePoint](#).

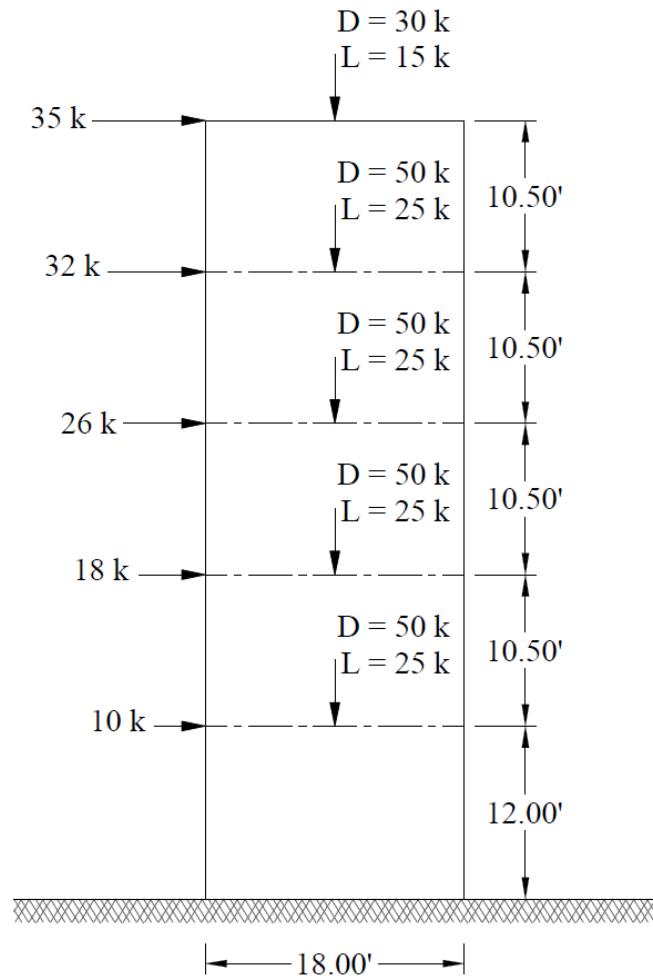


Figure 1 – Reinforced Concrete Shear Wall Geometry and Loading

Contents

1. Notations	2
2. Minimum Reinforcement Requirements (Reinforcement Percentage and Spacing)	4
2.1. Horizontal Reinforcement Check	4
2.2. Vertical Reinforcement Check	4
3. Neutral Axis Depth Determination	5
4. Moment Capacity Check	6
5. Shear Capacity Check	7
6. Shear Wall Analysis and Design – spWall Software	8
7. Design Results Comparison and Conclusions	34
8. Appendix – Commentary on Reinforcement Arrangement Impact on Wall Capacity	35
8.1. Discussion	35
8.2. Conclusions and Observations	43

Code

Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19)

References

- Reinforced Concrete Mechanics and Design, 8th Edition, 2021, James Wight, Pearson, Example 18-2
- [spWall Engineering Software Program Manual v10.50, STRUCTUREPOINT](#), 2026
- [spColumn Engineering Software Program Manual v10.20, STRUCTUREPOINT](#), 2025
- Contact Support@StructurePoint.org to obtain supplementary materials (spWall model: DE-Shear-Wall-ACI-19.walx)

Design Data

f'_c = 4,000 psi normal weight concrete

f_y = 60,000 psi

Slab thickness = 7.00 in.

Wall thickness = 10.00 in.

Wall length = 18.00 ft

Vertical reinforcement: #5 bars at 18.00 in. on centers in each face ($A_{s, vertical} = \#5 @ 18.00$ in.)

Horizontal reinforcement: #4 bars at 16.00 in. on centers in each face ($A_{s, horizontal} = \#4 @ 16.00$ in.)

1. Notations

This section (based on ACI 318-19 provisions) defines notation and terminology used in this design example:

A_s = area of nonprestressed longitudinal tension reinforcement, in.²

A_{cv} = gross area of concrete section bounded by web thickness and length of section in the direction of shear force considered in the case of walls, and gross area of concrete section in the case of walls, and gross area of concrete section in the case of diaphragms. Gross area is total area of the defined section minus area of any openings, in.²

A_{st} = total area of nonprestressed longitudinal reinforcement including bars or steel shapes, and excluding prestressing reinforcement, in.²

A_v = area of shear reinforcement within spacing s , in.²

c = distance from extreme compression fiber to neutral axis, in.

d = distance from extreme compression fiber to centroid of longitudinal tension reinforcement, in.

f'_c = specified compressive strength of concrete, psi

f_y = specified yield strength for nonprestressed reinforcement, psi

f_{yt} = specified yield strength of transverse reinforcement, psi

h = overall thickness, height, or depth of member, in.

h_w = height of entire wall from base to top, or clear height of wall segment or wall pier considered, in.

l_w = length of entire wall, or length of wall segment or wall pier considered in direction of shear force, in.

M_n = nominal flexural strength at section, in.-lb

M_u = factored moment at section, in.-lb

N_u = factored axial force normal to cross section occurring simultaneously with V_u or T_u ; to be taken as positive for compression and negative for tension, lb

P_n = nominal axial compressive strength of member, lb

P_u = factored axial force; to be taken as positive for compression and negative for tension, lb

s = center-to-center spacing of items, such as longitudinal reinforcement, transverse reinforcement, tendons, or anchors, in.

s_2 = center-to-center spacing of longitudinal shear or torsional reinforcement, in.

V_c = nominal shear strength provided by concrete, lb

V_s = nominal shear strength provided by shear reinforcement, lb

V_u = factored shear force at section, lb

α_c = coefficient defining the relative contribution of concrete strength to nominal wall shear strength

β_l = factor relating depth of equivalent rectangular compressive stress block to depth of neutral axis

ε_t = net tensile strain in extreme layer of longitudinal tension reinforcement at nominal strength, excluding strains due to effective prestress, creep, shrinkage, and temperature

ε_{ty} = value of net tensile strain in the extreme layer of longitudinal tension reinforcement used to define a compression-controlled section

λ = modification factor to reflect the reduced mechanical properties of lightweight concrete relative to normal weight concrete of the same compressive strength

ρ_l = ratio of area of distributed longitudinal reinforcement to gross concrete area perpendicular to that reinforcement

ρ_t = ratio of area of distributed transverse reinforcement to gross concrete area perpendicular to that reinforcement

ϕ = strength reduction factor

2. Minimum Reinforcement Requirements (Reinforcement Percentage and Spacing)

2.1. Horizontal Reinforcement Check

$$\rho_t = \frac{A_{v, \text{horizontal}}}{h \times s_2} = \frac{2 \times 0.2}{10 \times 16} = 0.0025 \quad \text{ACI 318-19 (2.2)}$$

$$\rho_t = 0.0025 \geq \rho_{t,\min} = 0.0025 \text{ (o.k.)} \quad \text{ACI 318-19 (11.6.2(b))}$$

$$s_{t,\max} = \text{smallest of } \begin{cases} 3 \times h \\ 18 \text{ in.} \\ l_w / 5 \end{cases} = \text{smallest of } \begin{cases} 3 \times 10 \\ 18 \text{ in.} \\ 18 / 5 \end{cases} = \text{smallest of } \begin{cases} 30 \text{ in.} \\ 18 \text{ in.} \\ 43.2 \text{ in.} \end{cases} = 18.00 \text{ in.} \quad \text{ACI 318-19 (11.7.3.1)}$$

$$s_{t, \text{provided}} = 16.00 \text{ in.} < s_{t,\max} = 18.00 \text{ in. (o.k.)}$$

2.2. Vertical Reinforcement Check

$$\rho_l = \frac{A_{v, \text{vertical}}}{h \times s_1} = \frac{2 \times 0.31}{10 \times 18} = 0.00344 \quad \text{ACI 318-19 (2.2)}$$

$$\rho_{l,\min} = \text{greater of } \begin{cases} 0.0025 + 0.5 \left(2.5 - \frac{h_w}{l_w} \right) (\rho_l - 0.0025) \\ 0.0025 \end{cases} \quad \text{ACI 318-19 (11.6.2(a))}$$

$$\rho_{l,\min} = \text{greater of } \begin{cases} 0.0025 + 0.5 \left(2.5 - \frac{10}{18 \times 12} \right) (0.0025 - 0.0025) \\ 0.0025 \end{cases} = \text{greater of } \begin{cases} 0.0025 \\ 0.0025 \end{cases} = 0.0025$$

$$\rho_l = 0.00344 \geq \rho_{l,\min} = 0.0025 \text{ (o.k.)} \quad \text{ACI 318-19 (11.6.2(a))}$$

$$s_{l,\max} = \text{smallest of } \begin{cases} 3 \times h \\ 18 \text{ in.} \\ l_w / 3 \end{cases} = \text{smallest of } \begin{cases} 3 \times 10 \\ 18 \text{ in.} \\ 18 / 3 \end{cases} = \text{smallest of } \begin{cases} 30 \text{ in.} \\ 18 \text{ in.} \\ 72 \text{ in.} \end{cases} = 18.00 \text{ in.} \quad \text{ACI 318-19 (11.7.2.1)}$$

$$s_{l, \text{provided}} = 18.00 \text{ in.} \leq s_{l,\max} = 18.00 \text{ in. (o.k.)}$$

3. Neutral Axis Depth Determination

$$M_{base} = 35 \times 54.00 + 32 \times 43.50 + 26 \times 33.00 + 18 \times 22.50 + 10 \times 12.00 = 4,665.00 \text{ kip-ft}$$

The load factor for strength-level wind force = 1.0

$$M_{u,base} = 1.0 \times 4,665.00 = 4,665.00 \text{ kip-ft}$$

$$N_u = 0.9 \times N_D = 0.9 \times (30 + 50 + 50 + 50 + 50) = 207.00 \text{ kips}$$

ACI 318-19 (Eq.5.3.1f)

$$\beta_1 = 0.85 - \frac{0.05 \times (f'_c - 4,000)}{1,000} = 0.85 - \frac{0.05 \times (4,000 - 4,000)}{1,000} = 0.85$$

ACI 318-19 (Table 22.2.2.4.3)

$$\omega = \rho_l \frac{f_y}{f'_c} = 0.00344 \times \frac{60}{4} = 0.0517$$

$$\alpha = \frac{N_u}{h \times l_w \times f'_c} = \frac{207.00}{10.00 \times 216 \times 4} = 0.0240$$

$$c = \left(\frac{\alpha + \omega}{0.85\beta_1 + 2\omega} \right) l_w = \left(\frac{0.0240 + 0.0517}{0.85 \times 0.85 + 2 \times 0.0517} \right) \times 216 = 19.78 \text{ in.}$$

Assume the effective flexural depth (d) is approximately equal to $0.8l_w = 172.80$ in.

ACI 318-19 (11.5.4.2)

$$\varepsilon_{ly} = \frac{f_y}{E_s} = \frac{60}{29,000} = 0.00207$$

ACI 318-19 (21.2.2.1)

$$\varepsilon_t = \left(\frac{0.003}{c} \right) \times d_t - 0.003 = \left(\frac{0.003}{19.78} \right) \times 172.80 - 0.003 = 0.0232 > 0.003 + \varepsilon_{ly} = 0.00507$$

Therefore, section is tension controlled

ACI 318-19 (Table 21.2.2)

$$\therefore \phi = 0.90$$

ACI 318-19 (Table 21.2.2)

4. Moment Capacity Check

$$A_{st} = A_{v,vertical} \frac{l_w}{s_{l,provided}} = 2 \times 0.31 \times \frac{216.00}{18.00} = 7.44 \text{ in.}^4$$

$$T = A_{st} \times f_y \left(\frac{l_w - c}{l_w} \right) = 7.44 \times 60 \times \left(\frac{216.00 - 19.78}{216.00} \right) = 405.52 \text{ kips}$$

Taking into account the applied axial force and summing force moments about the compression force (C), the moment capacity can be computed as follows:

$$M_n = T \left(\frac{l_w}{2} \right) + N_u \left(\frac{l_w - c}{2} \right) = 405.52 \left(\frac{216.00}{2} \right) + 207.00 \left(\frac{216.00 - 19.78}{2} \right) = 64,105.07 \text{ kips-in.} = 5,342.09 \text{ kips-ft}$$

$$\phi M_n = 0.9 \times 5,342.09 = 4,807.88 \text{ kips-ft} > M_u = 4,665.00 \text{ kips-ft}$$

Since ϕM_n is greater than M_u , the wall has adequate flexural strength.

To further confirm the moment capacity is adequate with detailed consideration for the axial compression, an interaction diagram using [spColumn](#) can be created easily as shown below for the wall section. The location of the neutral axis, maximum tensile strain, and the ϕ factor can all be also verified from the [spColumn](#) model results output parameters. As can be seen from the interaction diagram a comprehensive view of the wall behavior for any combination of axial force and applied moment.

For a factored axial and moment of 207.00 kips and 4,665.00 kip-ft the interaction diagram shows a capacity factor of 1.140 ($\phi M_n = 5,320$ kip-ft for $\phi P_n = P_u$), see [Figure 12](#) and [Figure 13](#).

5. Shear Capacity Check

The factored shear at the base of the wall is:

$$V_u = 35 + 32 + 26 + 18 + 10 = 121.00 \text{ kips}$$

The nominal shear strength of the wall is:

$$\phi V_n = \phi V_c + \phi V_s = \phi \alpha_c \lambda \sqrt{f'_c} A_{cv} + \phi \rho_t f_{yt} A_{cv} \quad \underline{ACI 318-19 (11.5.4.3)}$$

$$\phi V_c = \phi \alpha_c \lambda \sqrt{f'_c} A_{cv} = 0.75 \times 2 \times 1 \times \sqrt{4,000} \times 10.00 \times 216.00 = 0.75 \times 273.22 = 204.92 \text{ kips}$$

$$\phi V_s = \phi \rho_t f_{yt} A_{cv} = 0.75 \times 0.0025 \times 60,000 \times 10.00 \times 216.00 = 0.75 \times 324.00 = 243.00 \text{ kips}$$

$$\phi V_n = \phi V_c + \phi V_s = 204.92 + 243.00 = 447.92 \text{ kips}$$

Where:

$$\alpha_c = 2 \text{ for } \frac{h_w}{l_w} = \frac{54.00}{18.00} = 3 \geq 2.0 \quad \underline{ACI 318-19 (11.5.4.3)}$$

$$\lambda = 1 \text{ for normal weight concrete} \quad \underline{ACI 318-19 (19.2.4.1)}$$

$$\phi = 0.75 \text{ for shear} \quad \underline{ACI 318-19 (Table 21.2.1)}$$

$$\phi V_n = 447.92 \text{ kips} > V_u = 121.00 \text{ kips}$$

Thus, it is not required to calculate the additional shear strength provided by the horizontal reinforcement (V_s)

$$0.5 \times \phi V_c = 102.46 \text{ kips} < V_u = 121.00 \text{ kips}$$

Since $V_u \geq 0.5 \phi \alpha_c \lambda \sqrt{f'_c} A_{cv}$, ρ_t shall be at least the greater of Equation 11.6.2 in the Code and 0.0025 but need not to exceed ρ_t required by Equation 11.5.4.3 and ρ_t shall be at least 0.0025. ACI 318-19 (11.6.2)

(Those requirements were checked in [Step 2](#)).

$$V_u = 121.00 \text{ kips} \geq 0.5 \phi \alpha_c \lambda \sqrt{f'_c} A_{cv} = 0.5 \times 0.75 \times 2 \times 1 \times \sqrt{4,000} \times 10.00 \times 216.00 = 102.46 \text{ kips} \quad \underline{ACI 318-19 (11.6.2)}$$

6. Shear Wall Analysis and Design – spWall Software

[spWall](#) is a program for the analysis and design of reinforced concrete shear walls, tilt-up walls, precast walls and Insulate Concrete Form (ICF) walls. It uses a graphical interface that enables the user to easily generate complex wall models. Graphical user interface is provided for:

- Wall geometry (including any number of openings and stiffeners)
- Material properties including cracking coefficients
- Wall loads (point, line, and area loads)
- Support conditions (including translational and rotational spring supports)

[spWall](#) uses the Finite Element Method for the structural modeling, analysis, and design of slender and non-slender reinforced concrete walls subject to static loading conditions. The wall is idealized as a mesh of rectangular plate elements and straight-line stiffener elements. Walls of irregular geometry are idealized to conform to geometry with rectangular boundaries. Plate and stiffener properties can vary from one element to another but are assumed by the program to be uniform within each element.

Six degrees of freedom exist at each node: three translations and three rotations relating to the three Cartesian axes. An external load can exist in the direction of each of the degrees of freedom. Sufficient number of nodal degrees of freedom should be restrained in order to achieve stability of the model. The program assembles the global stiffness matrix and load vectors for the finite element model. Then, it solves the equilibrium equations to obtain deflections and rotations at each node. Finally, the program calculates the internal forces and internal moments in each element. At the user's option, the program can perform second order analysis. In this case, the program takes into account the effect of in-plane forces on the out-of-plane deflection with any number of openings and stiffeners.

After the Finite Element Analysis (FEA) is completed in [spWall](#), the required flexural reinforcement is computed based on the selected design standard (ACI 318-19 is used in this example), and the user can specify one or two layers of shear wall reinforcement. In stiffeners and boundary elements, [spWall](#) calculates the required shear and torsion steel reinforcement. Shear wall concrete strength (in-plane and out-of-plane) is calculated for the applied loads and compared with the code permissible shear capacity.

For illustration and comparison purposes, the following figures provide a sample of the input modules and the FEA results obtained from an [spWall](#) model created for the reinforced concrete shear wall in this example.

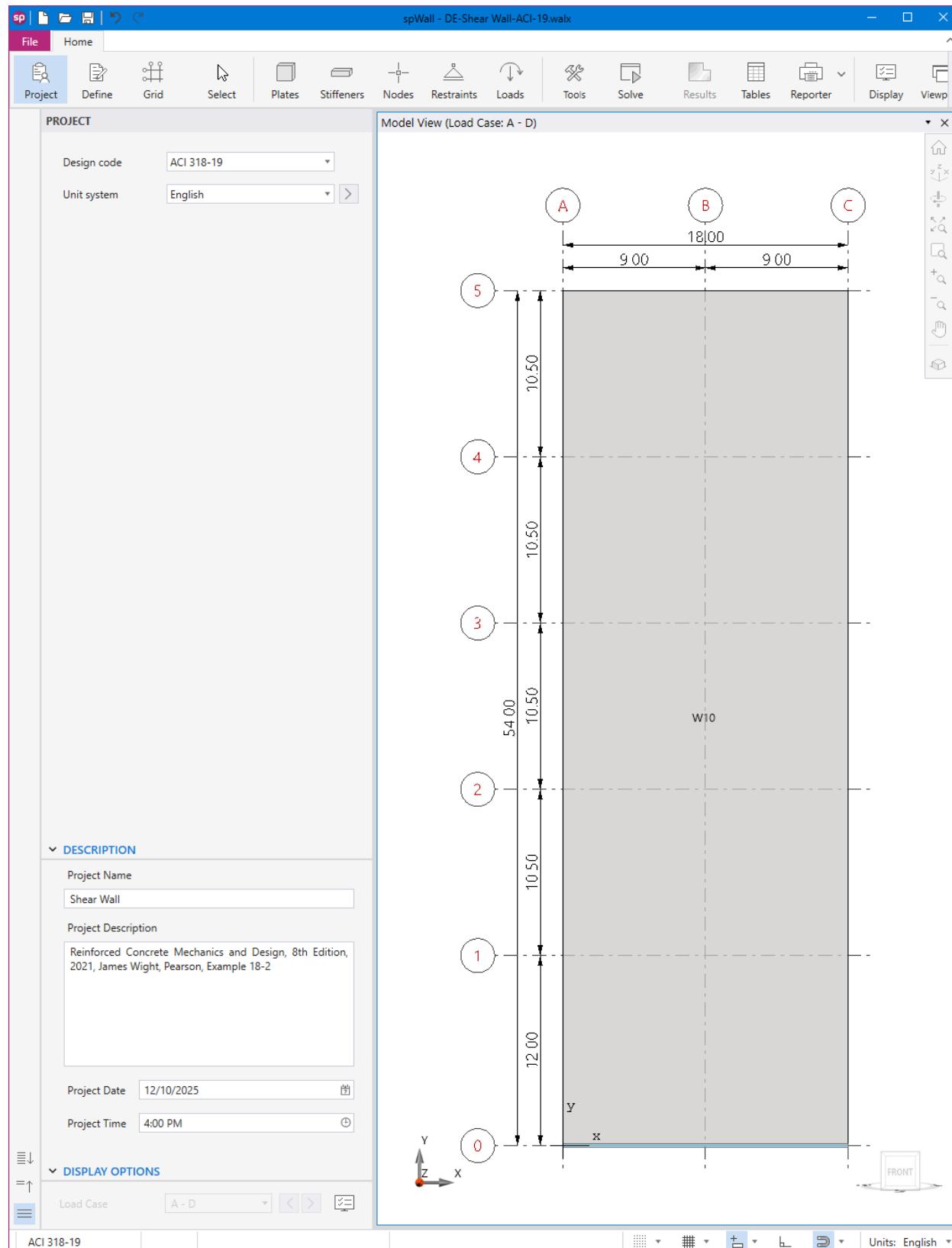


Figure 2 – spWall Interface

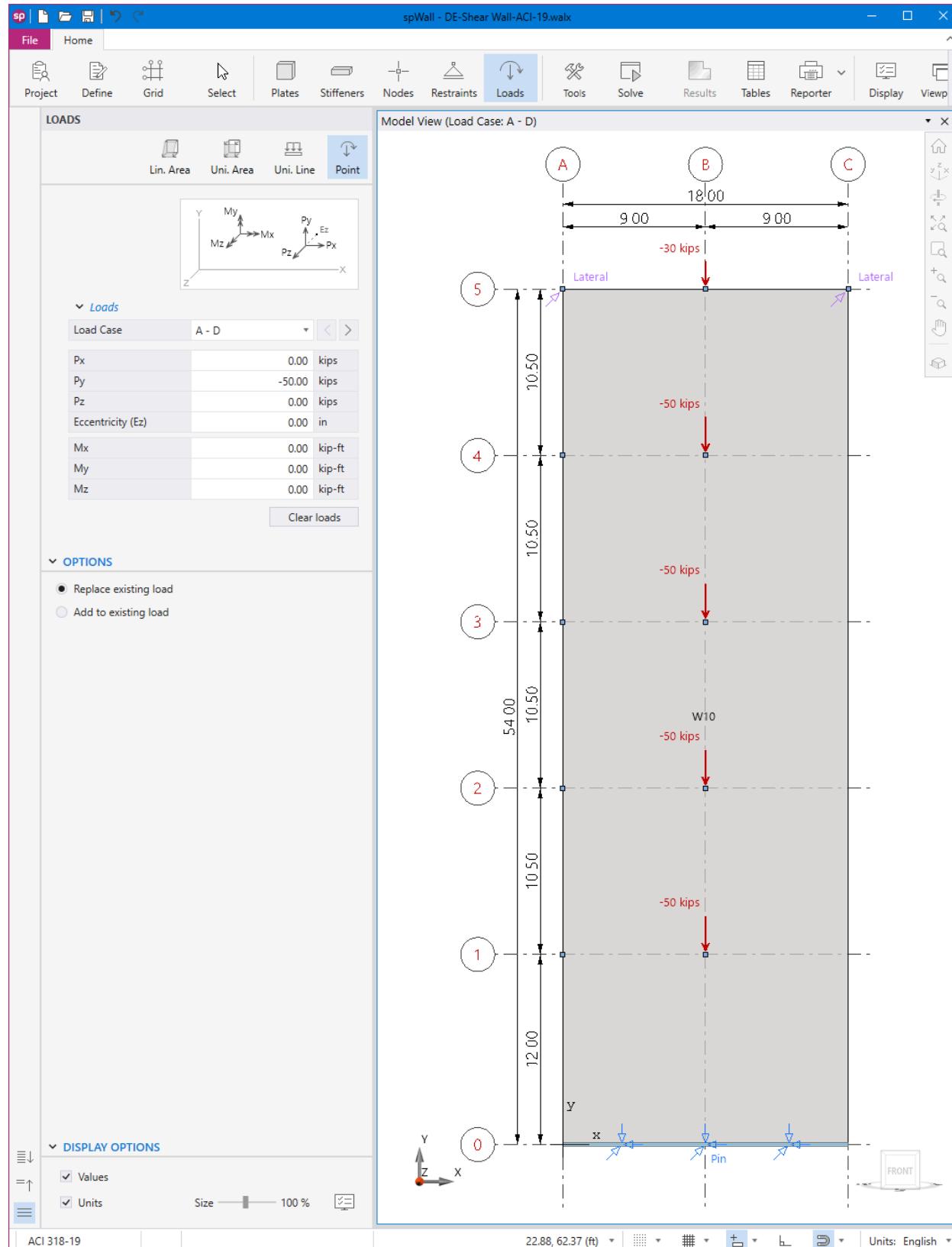


Figure 3 – Assigning Dead Loads for Shear Wall (spWall)

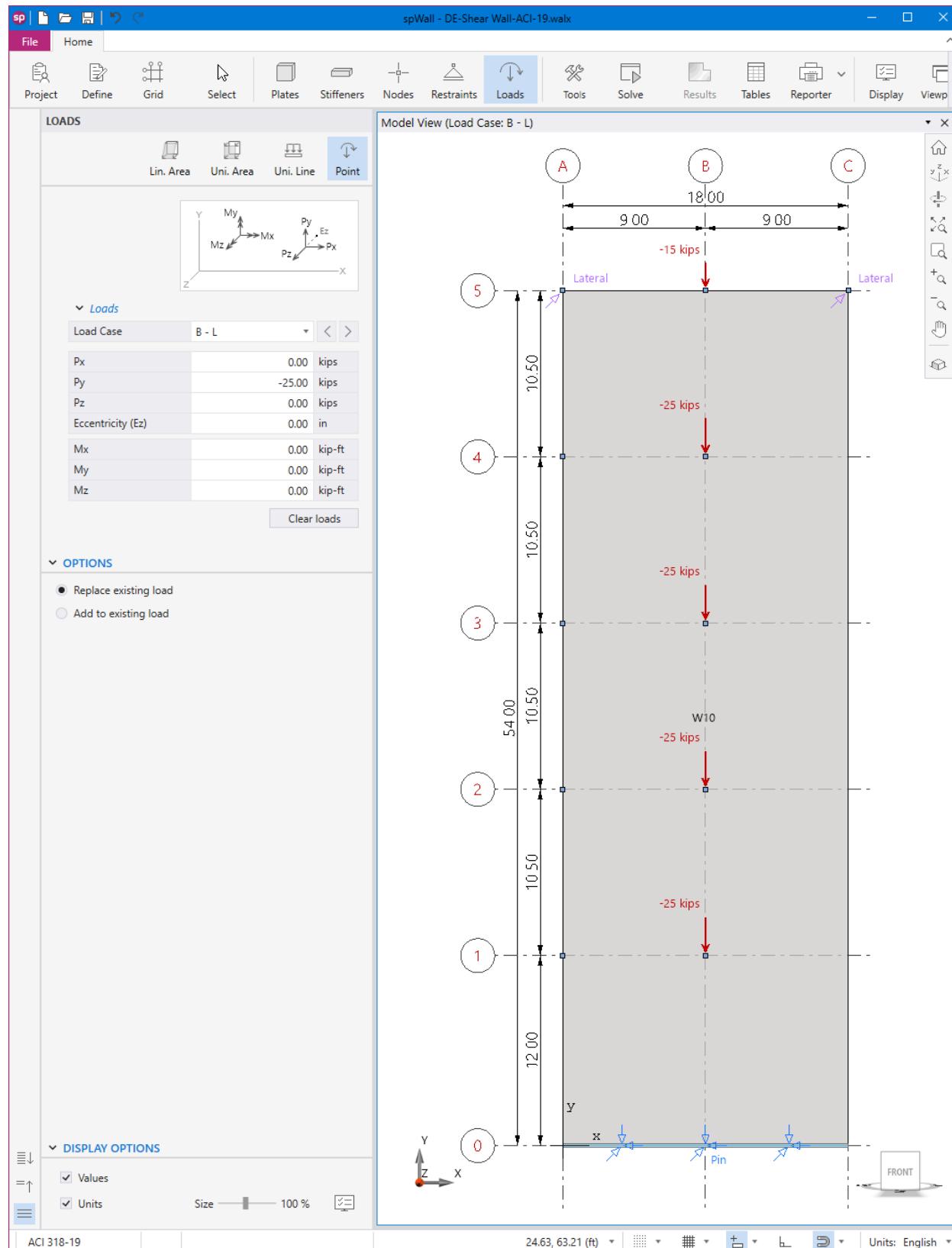


Figure 4 – Assigning Live Loads for Shear Wall (spWall)

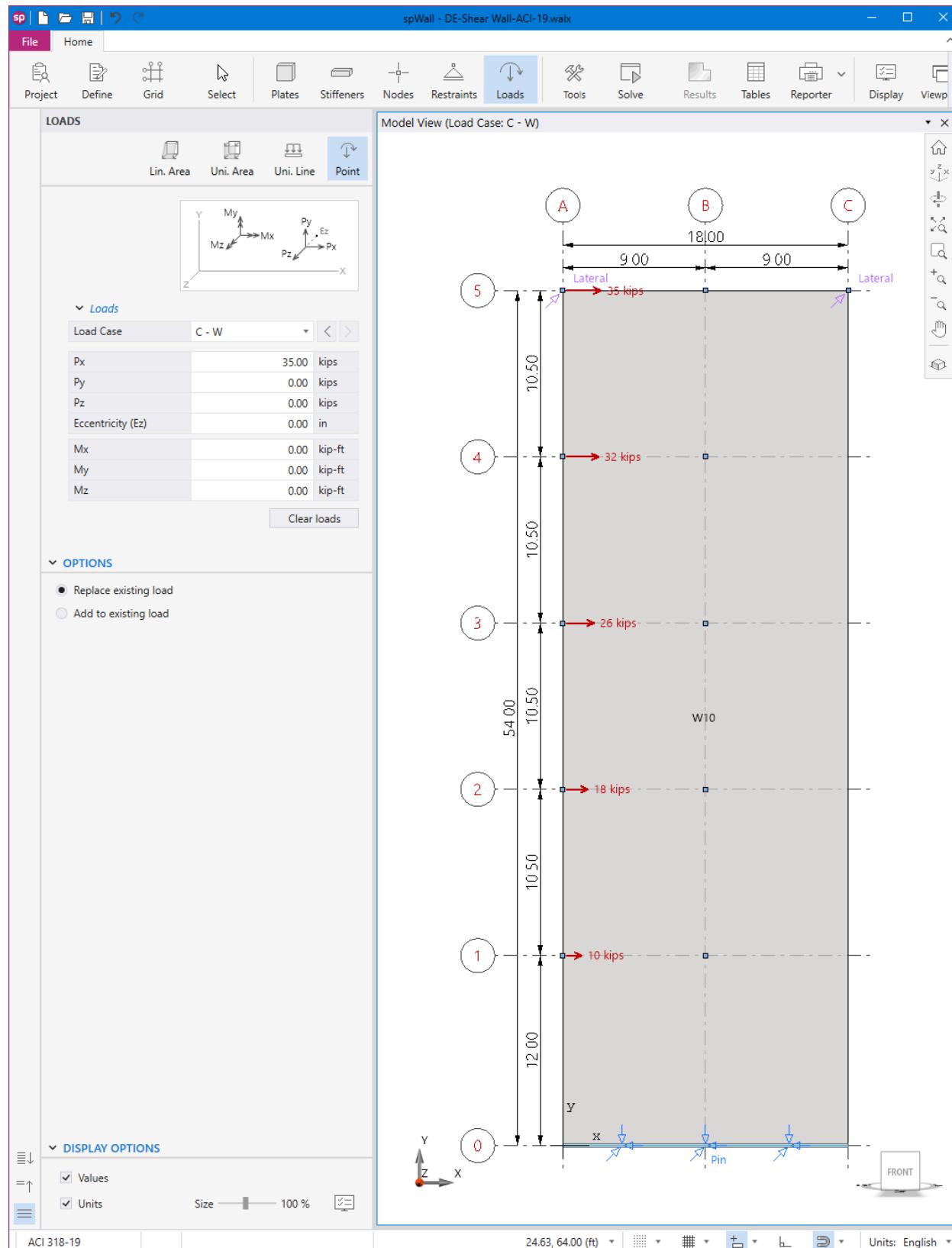


Figure 5 – Assigning Wind Loads for Shear Wall (spWall)

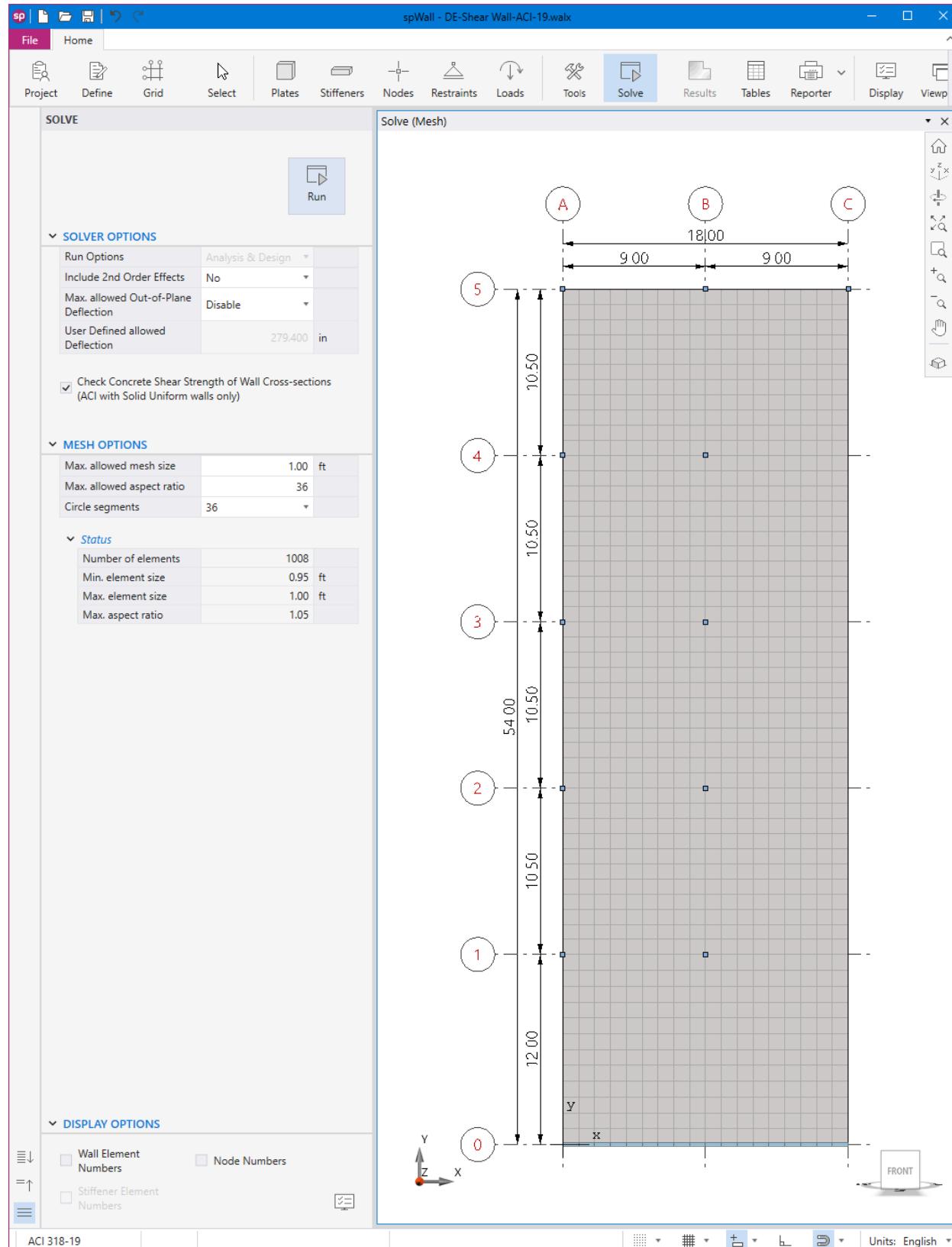


Figure 6 – Solve and Mesh Options (spWall)

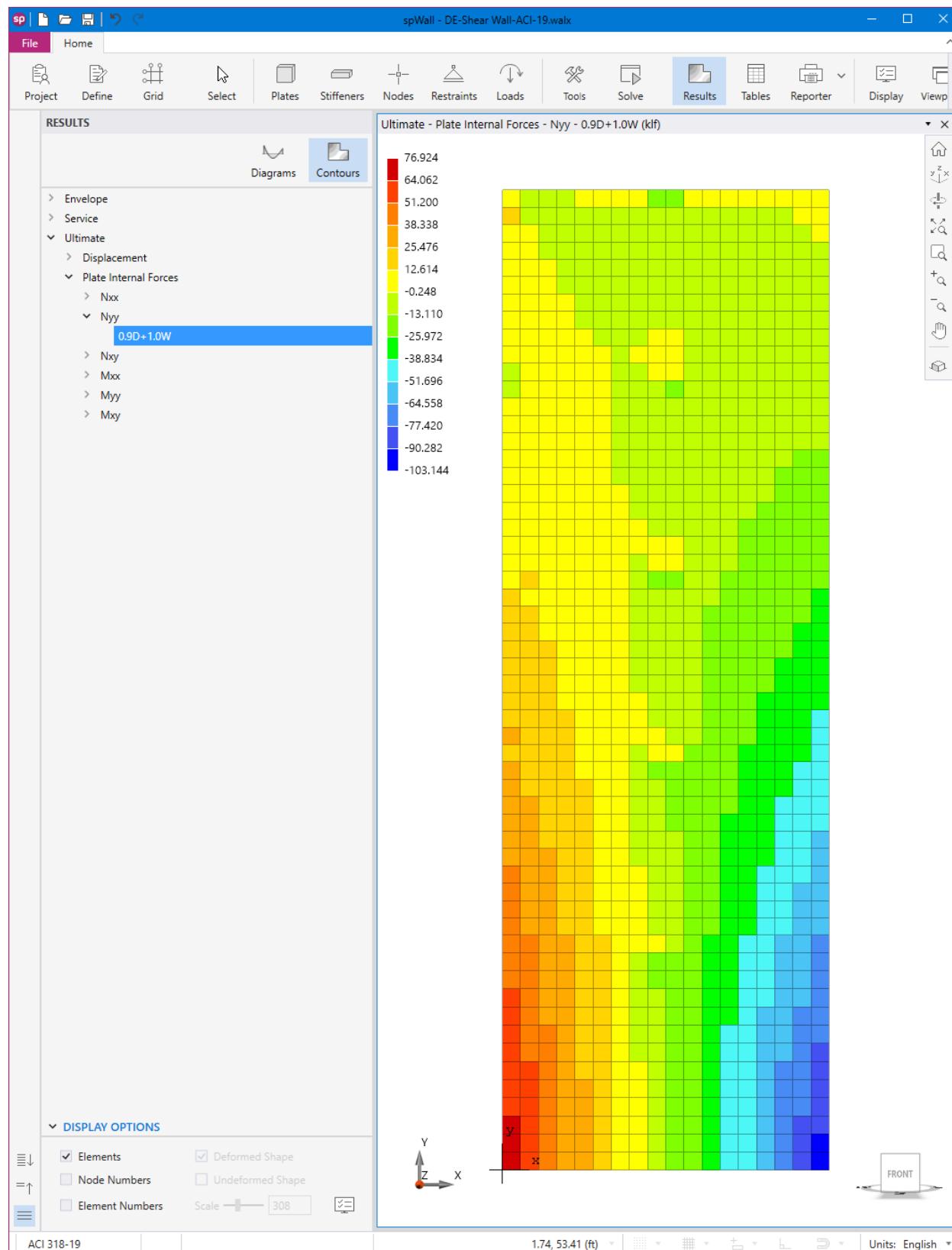


Figure 7 – Factored Axial Forces Contour Normal to Shear Wall Cross-Section ([spWall](#))

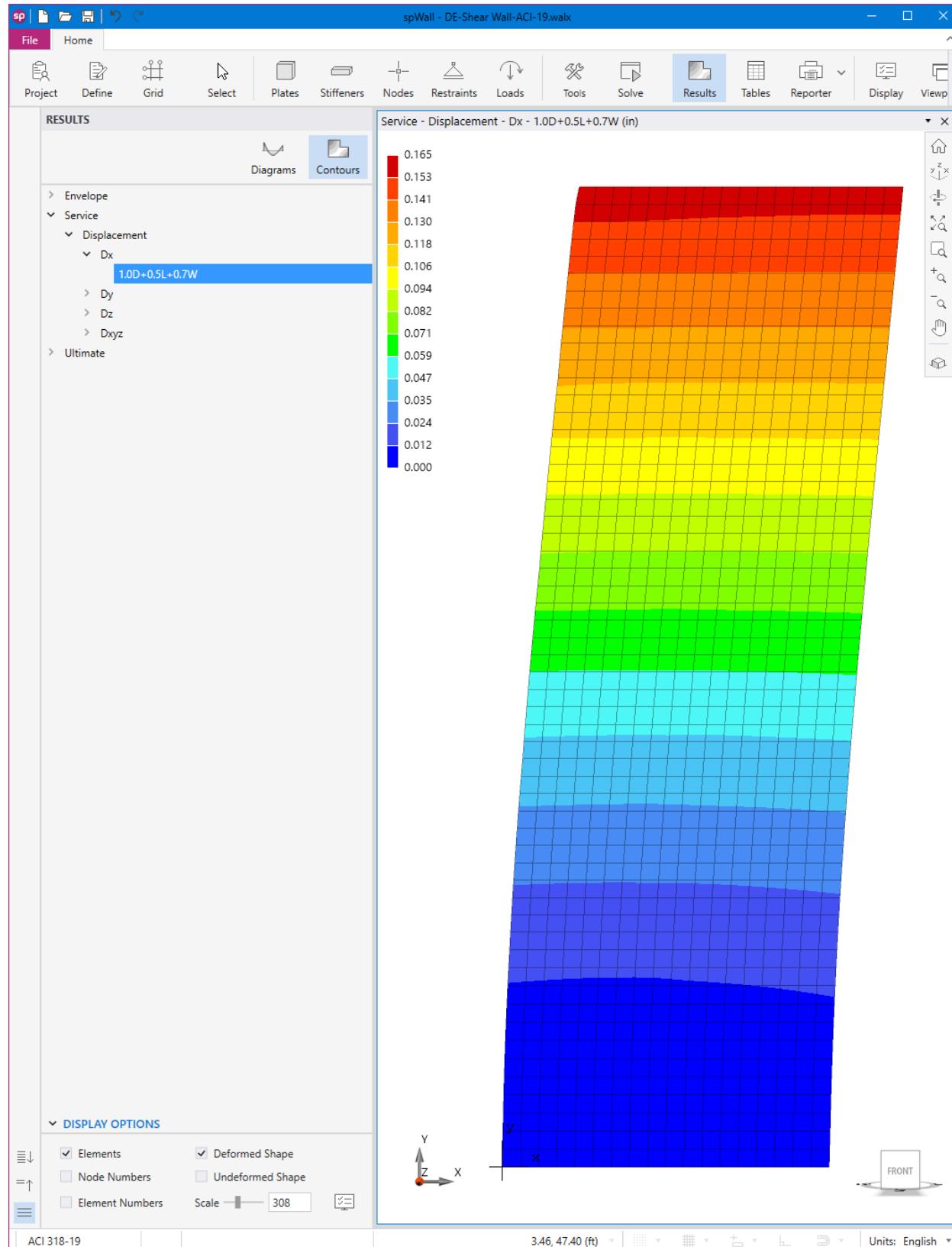


Figure 8 – Shear Wall Lateral Displacement Contour ([spWall](#))

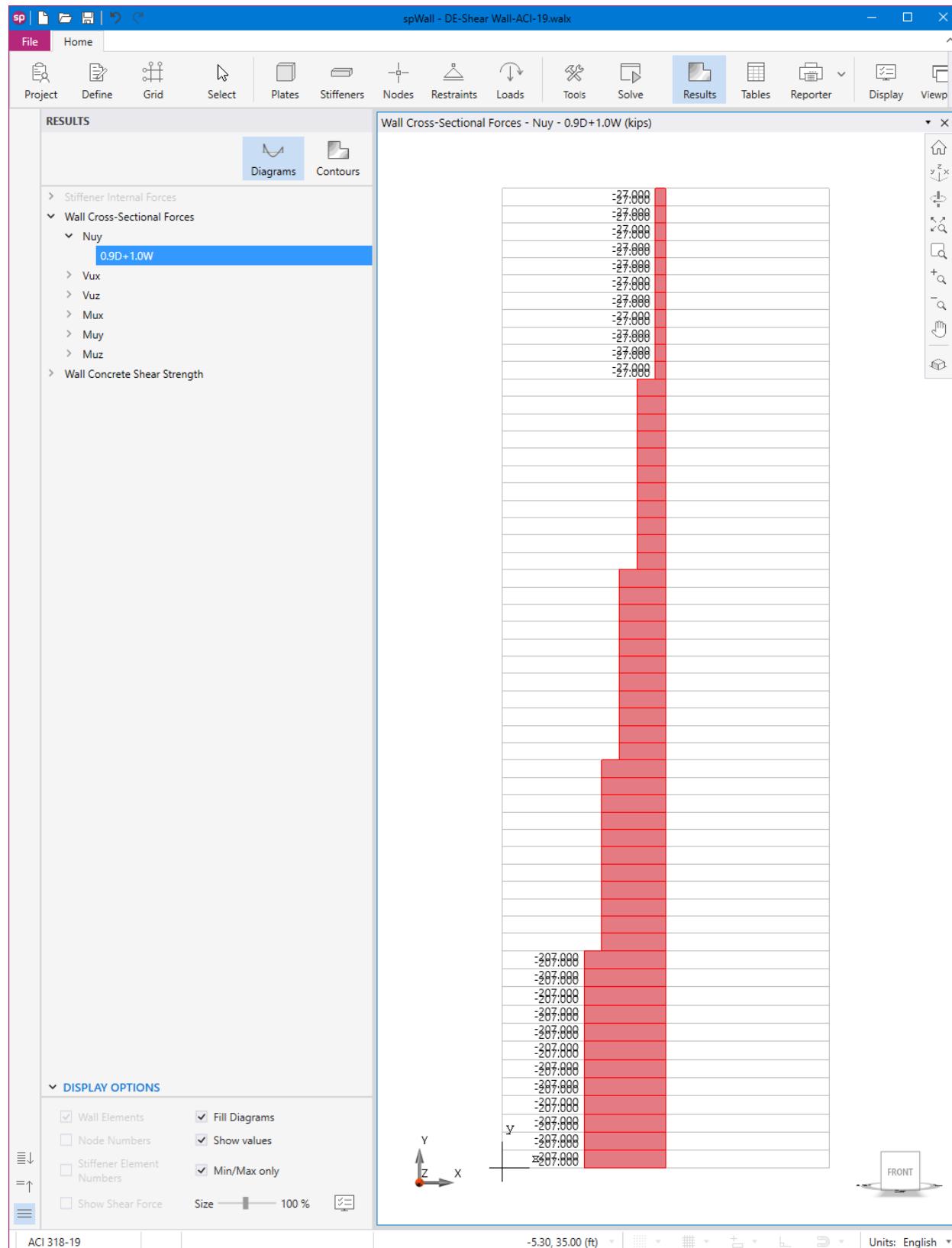


Figure 9 – Shear Wall Axial Load Diagram (spWall)

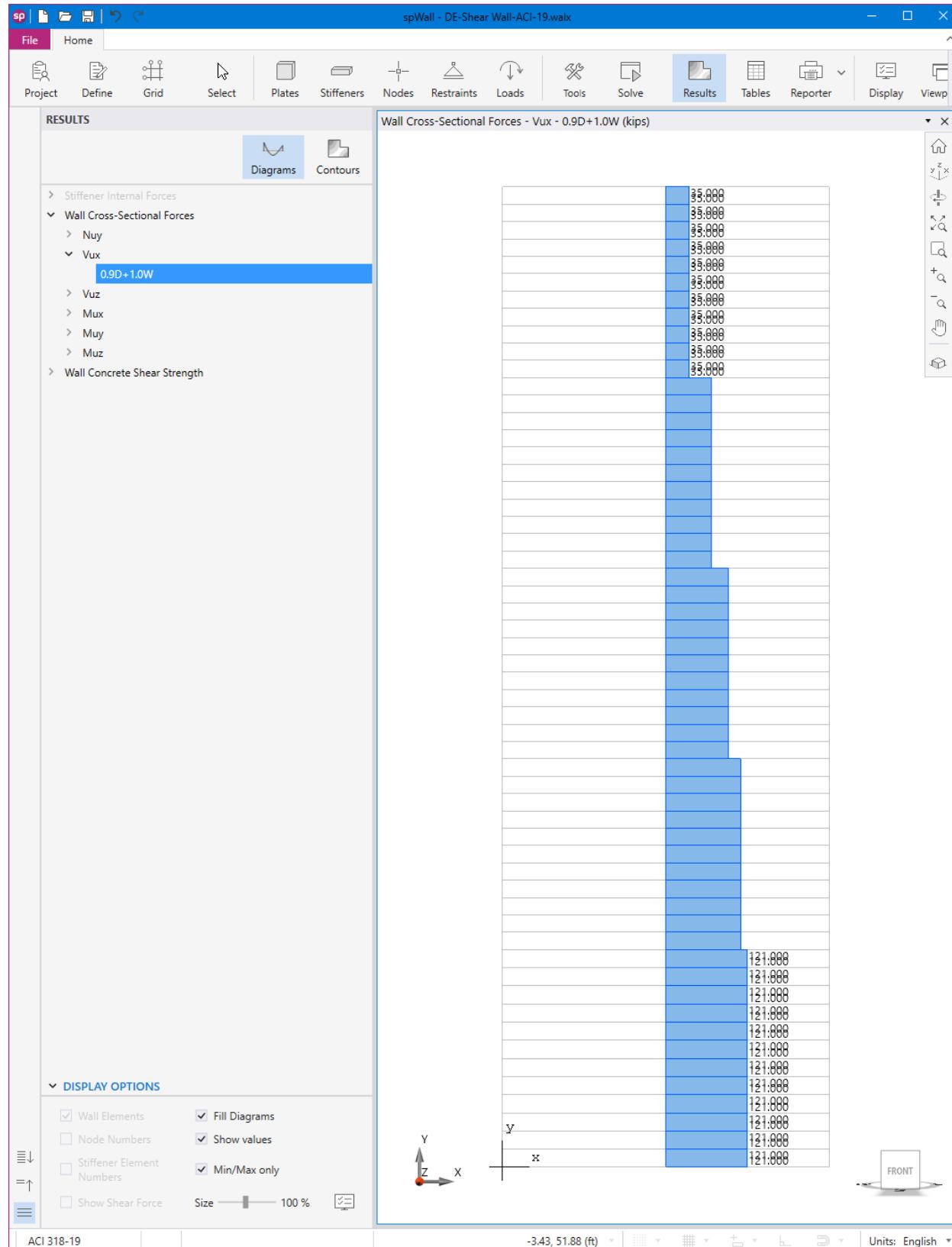
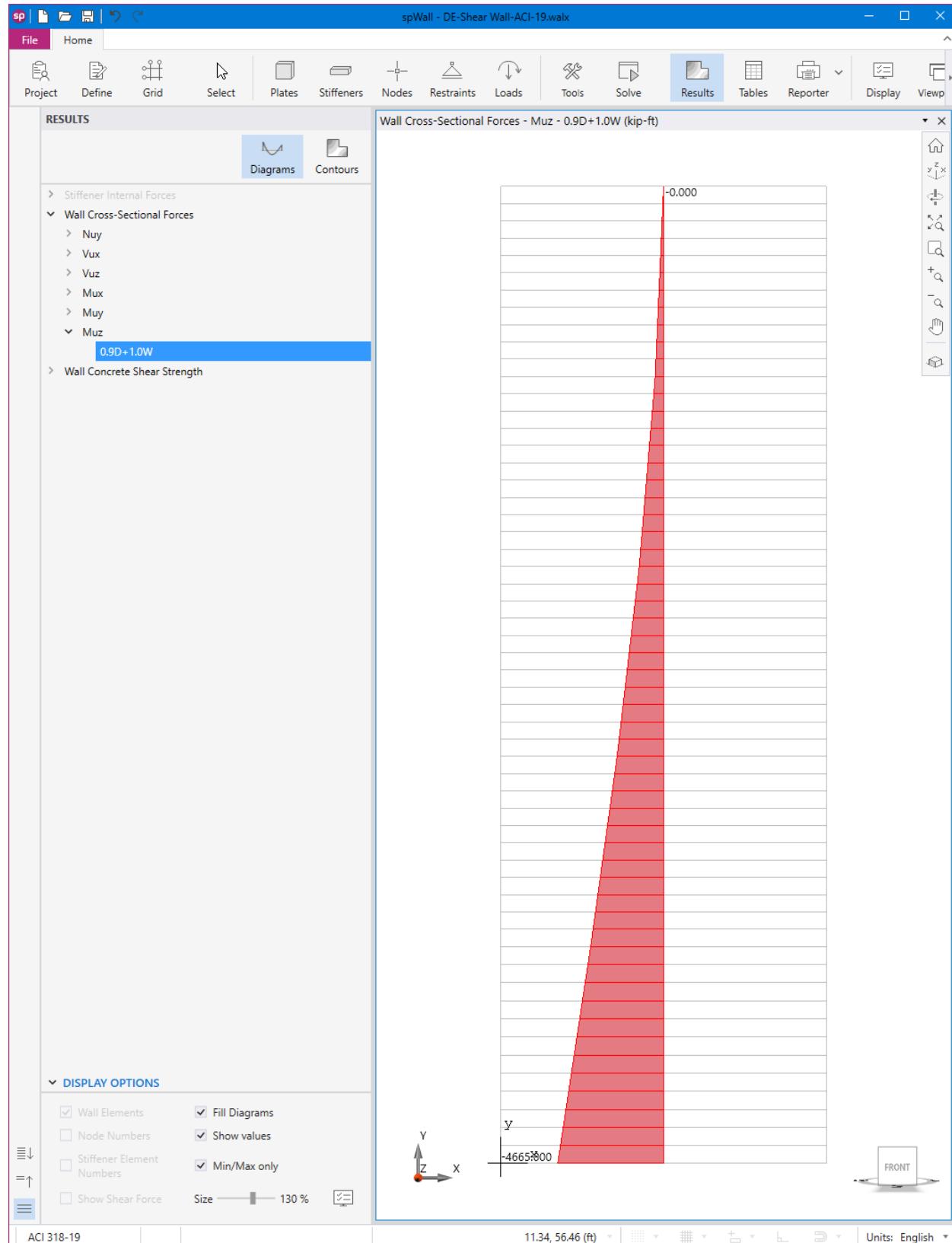
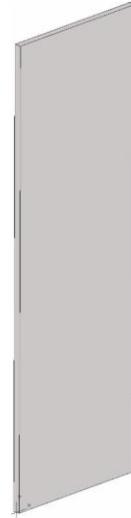


Figure 10 – In-plane Shear Diagram ([spWall](#))




Figure 11 – Shear Wall Moment Diagram ([spWall](#))

spWall v10.50 (TM) - Alpha 1
A Computer Program for Analysis and Design of Reinforced Concrete, Precast, and Tilt-up Walls
Copyright © 1988-2025, STRUCTUREPOINT, LLC.
All rights reserved

StructurePoint

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spWall computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spWall program. Although STRUCTUREPOINT has endeavored to produce spWall error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spWall program. Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-2B1B4-2B1B4

Contents

1. Project.....	3
1.1. General Information.....	3
1.2. Solver Options.....	3
2. Definitions	3
2.1. Grid Lines	3
2.1.1. Vertical	3
2.1.2. Horizontal.....	3
2.2. Objects	3
2.2.1. Plates	3
2.3. Properties	3
2.3.1. Concrete	3
2.3.2. Reinforcement.....	4
2.3.3. Plate Cracking Coefficients.....	4
2.3.4. Plate Design Criteria	4
2.4. Restraints	4
2.4.1. Supports.....	4
2.5. Load Case/Combo.	4
2.5.1. Load Cases	4
2.5.2. Load Combinations	4
3. Assignments	4
3.1. Nodes	4
3.2. Plates	5
3.3. Stiffeners	5
3.4. Point Loads	5
4. Results	5
4.1. Envelope	5
4.1.1. Plate Reinforcement	5
4.1.2. Wall Concrete Shear Strength	6
4.1.2.1. In-Plane Shear.....	6
5. Screenshots.....	9
5.1. Extrude 3D view	9
5.2. Plates & Stiffeners ID	10
5.3. Nodes ID	11
5.4. Restraints	12
5.5. Loads - Case A - D	13
5.6. Loads - Case B - L	14
5.7. Loads - Case C - W	15

STRUCTUREPOINT - spWall v10.50 (TM) - Alpha 1
Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-2B1B4-2B1B4
F:\StructurePoint\spWall\DE-Shear Wall-ACI-19.walk

Page | 3
12/10/2025
5:05 PM

1. Project

1.1. General Information

File Name	DE-Shear Wall-ACI-19.walk
Project	Shear Wall
Code	ACI 318-19
Units	English
Date	12/10/2025
Time	4:00 PM

1.2. Solver Options

Include 2nd order effects	No
Check out-of-plane service deflections	No
Maximum permissible out-of-plane deflections	---
Check concrete shear strength of wall crosssection	Yes

2. Definitions

2.1. Grid Lines

2.1.1. Vertical

Label	Coordinate-X ft	Spacing ft
A	0.00	0.00
B	9.00	9.00
C	18.00	9.00

2.1.2. Horizontal

Label	Coordinate-Y ft	Spacing ft
0	0.00	0.00
1	12.00	12.00
2	22.50	10.50
3	33.00	10.50
4	43.50	10.50
5	54.00	10.50

2.2. Objects

2.2.1. Plates

Label	Thickness in	Concrete	Reinforcement	Design Criteria	Cracking Coeff.	Used
W10	10.00	C4	Gr60	2C_Ct	PCC1	Yes

2.3. Properties

2.3.1. Concrete

Label	f _c ksi	W _c pcf	E _c ksi	v -	Precast	Used
C4	4.0000	150.00	3834.3	0.20	No	Yes

2.3.2. Reinforcement

Label	f_y ksi	E_s ksi	Used	Label	f_y ksi	E_s ksi	Used
Gr60	60.0000	29000.0	Yes				

2.3.3. Plate Cracking Coefficients

Label	Service Combinations		Ultimate Combinations		Used
	In-plane	Out-of-plane	In-plane	Out-of-plane	
PCC1	1	0.7	1	0.35	Yes

2.3.4. Plate Design Criteria

NOTE: Bar centroid location measured from Z-ve face for Back Curtain and Z+ve face for Front Curtain

Label	Curtains	Flags	Reinforcement Ratio				Reinforcement Location				Used
			Rmin (Hor) %	Rmax (Hor) %	Rmin (Ver) %	Rmax (Ver) %	Back H. (BH) in	Back V. (BV) in	Front H. (FH) in	Front V. (FV) in	
2C_Ct	2		0.20	8.00	0.12	8.00	1.00	1.56	1.00	1.56	Yes

2.4. Restraints

2.4.1. Supports

Label	Translations			Rotations			Used
	Dx	Dy	Dz	Rx	Ry	Rz	
Pin	Fixed	Fixed	Fixed	Free	Free	Free	Yes
Lateral	Free	Free	Fixed	Free	Free	Free	Yes

2.5. Load Case/Combo.

2.5.1. Load Cases

NOTE: Self weight is not included under Case A.

Case	Type	Case Label	Load Defined?
A	Dead	D	Yes
B	Live	L	Yes
C	Wind	W	Yes

2.5.2. Load Combinations

Combo./Case	A	B	C	D	E	F	G	H	I	Combo Type
Type	Dead	Live	Wind							
Combo./Label	D	L	W							
1.0D+0.5L...	1.000	0.500	0.700	-	-	-	-	-	-	Ser.
0.9D+1.0W	0.900	0.000	1.000	-	-	-	-	-	-	Ult.

3. Assignments

3.1. Nodes

ID	X Coord. ft	Y Coord. ft	Rigid Support	Spring Support
N1	0.00	12.00		
N2	9.00	12.00		
N3	0.00	22.50		
N4	9.00	22.50		

ID	X Coord. ft	Y Coord. ft	Rigid Support	Spring Support
N5	0.00	33.00		
N6	9.00	33.00		
N7	0.00	43.50		
N8	9.00	43.50		
N9	0.00	54.00	Lateral	
N10	9.00	54.00	Lateral	
N11	18.00	54.00	Lateral	

3.2. Plates

ID	Label	Shape	Top Left/Center X ft	Top Left/Center Y ft	Width (B) ft	Height (H)/Dia. (D) ft
P1	W10	Polygonal	0.00	54.00	18.00	54.00

3.3. Stiffeners

ID	Label	Direction	Start X ft	End X ft	Start Y ft	End Y ft	Length ft	Rigid Support
S1	- Null -	Horizontal	0.00	18.00	0.00	0.00	18.00	Pin

3.4. Point Loads

Nodes ID	Load Case	Fx	Fy	Fz	Mx	My	Mz	Ecc.
		kips	kips	kips	kip-ft	kip-ft	kip-ft	in
N1	C	10.00	0.00	0.00	0.00	0.00	0.00	0.00
N2	A	0.00	-50.00	0.00	0.00	0.00	0.00	0.00
	B	0.00	-25.00	0.00	0.00	0.00	0.00	0.00
N3	C	18.00	0.00	0.00	0.00	0.00	0.00	0.00
N4	A	0.00	-50.00	0.00	0.00	0.00	0.00	0.00
	B	0.00	-25.00	0.00	0.00	0.00	0.00	0.00
N5	C	26.00	0.00	0.00	0.00	0.00	0.00	0.00
N6	A	0.00	-50.00	0.00	0.00	0.00	0.00	0.00
	B	0.00	-25.00	0.00	0.00	0.00	0.00	0.00
N7	C	32.00	0.00	0.00	0.00	0.00	0.00	0.00
N8	A	0.00	-50.00	0.00	0.00	0.00	0.00	0.00
	B	0.00	-25.00	0.00	0.00	0.00	0.00	0.00
N9	C	35.00	0.00	0.00	0.00	0.00	0.00	0.00
N10	A	0.00	-30.00	0.00	0.00	0.00	0.00	0.00
	B	0.00	-15.00	0.00	0.00	0.00	0.00	0.00

4. Results

4.1. Envelope

4.1.1. Plate Reinforcement

Coordinate System: Global

Element	Curtains	Direction	Mu (x/y) kip-ft/ft	Nu (x/y) klf	Ld Comb.	ϵ_t	ϕ	As (x/y) in ² /ft	Rho Tie %
1	2	Horizontal	0.00	25.55	0.9D+1.0W	0.6500	0.90	0.478	0.40
		Vertical	0.00	83.56	0.9D+1.0W	0.1842	0.90	1.563	1.30
	2	Horizontal	0.00	16.59	0.9D+1.0W	1.0029	0.90	0.310	0.26
		Vertical	0.00	67.83	0.9D+1.0W	0.2276	0.90	1.269	1.06
3	2	Horizontal	0.00	14.51	0.9D+1.0W	1.1467	0.90	0.271	0.23
		Vertical	0.00	53.61	0.9D+1.0W	0.2888	0.90	1.003	0.84
4	2	Horizontal	0.00	12.18	0.9D+1.0W	1.0814	0.90	0.240	0.20

Elements along the wall base

Element	Curtains	Direction	Mu (x/y) kip-ft/ft	Nu (x/y) Ld Comb. klf	ϵ_t	ϕ	As (x/y) in ² /ft	Rho Tie %
5	2	Vertical	0.00	42.35 0.9D+1.0W	0.3664	0.90	0.792	0.66
		Horizontal	0.00	10.22 0.9D+1.0W	0.3042	0.90	0.240	0.20
6	2	Vertical	0.00	32.32 0.9D+1.0W	0.4811	0.90	0.604	0.50
		Horizontal	0.00	8.45 0.9D+1.0W	0.1838	0.90	0.240	0.20
7	2	Vertical	0.00	23.08 0.9D+1.0W	0.6747	0.90	0.432	0.36
		Horizontal	0.00	6.84 0.9D+1.0W	0.1347	0.90	0.240	0.20
8	2	Vertical	0.00	14.38 0.9D+1.0W	1.0851	0.90	0.269	0.22
		Horizontal	0.00	5.35 0.9D+1.0W	0.1078	0.90	0.240	0.20
9	2	Vertical	0.00	6.04 0.9D+1.0W	0.4511	0.90	0.144	0.12
		Horizontal	0.00	2.49 0.9D+1.0W	0.0775	0.90	0.240	0.20
10	2	Vertical	0.00	-12.47 0.9D+1.0W	0.0360	0.90	0.144	0.12
		Horizontal	0.00	-8.20 0.9D+1.0W	0.0392	0.90	0.240	0.20
11	2	Vertical	0.00	-20.86 0.9D+1.0W	0.0246	0.90	0.144	0.12
		Horizontal	0.00	-10.03 0.9D+1.0W	0.0370	0.90	0.240	0.20
12	2	Vertical	0.00	-29.33 0.9D+1.0W	0.0193	0.90	0.144	0.12
		Horizontal	0.00	-11.93 0.9D+1.0W	0.0349	0.90	0.240	0.20
13	2	Vertical	0.00	-37.99 0.9D+1.0W	0.0155	0.90	0.144	0.12
		Horizontal	0.00	-13.94 0.9D+1.0W	0.0329	0.90	0.240	0.20
14	2	Vertical	0.00	-46.98 0.9D+1.0W	0.0126	0.90	0.144	0.12
		Horizontal	0.00	-16.09 0.9D+1.0W	0.0308	0.90	0.240	0.20
15	2	Vertical	0.00	-56.51 0.9D+1.0W	0.0103	0.90	0.144	0.12
		Horizontal	0.00	-18.43 0.9D+1.0W	0.0287	0.90	0.240	0.20
16	2	Vertical	0.00	-66.96 0.9D+1.0W	0.0084	0.90	0.144	0.12
		Horizontal	0.00	-21.17 0.9D+1.0W	0.0265	0.90	0.240	0.20
17	2	Vertical	0.00	-78.90 0.9D+1.0W	0.0068	0.90	0.144	0.12
		Horizontal	0.00	-23.49 0.9D+1.0W	0.0248	0.90	0.240	0.20
18	2	Vertical	0.00	-94.65 0.9D+1.0W	0.0052	0.90	0.144	0.12
		Horizontal	0.00	-34.84 0.9D+1.0W	0.0182	0.90	0.240	0.20
		Vertical	0.00	-112.57 0.9D+1.0W	0.0021	0.65	0.144	0.12

4.1.2. Wall Concrete Shear Strength

Elements along the wall base

4.1.2.1. In-Plane Shear

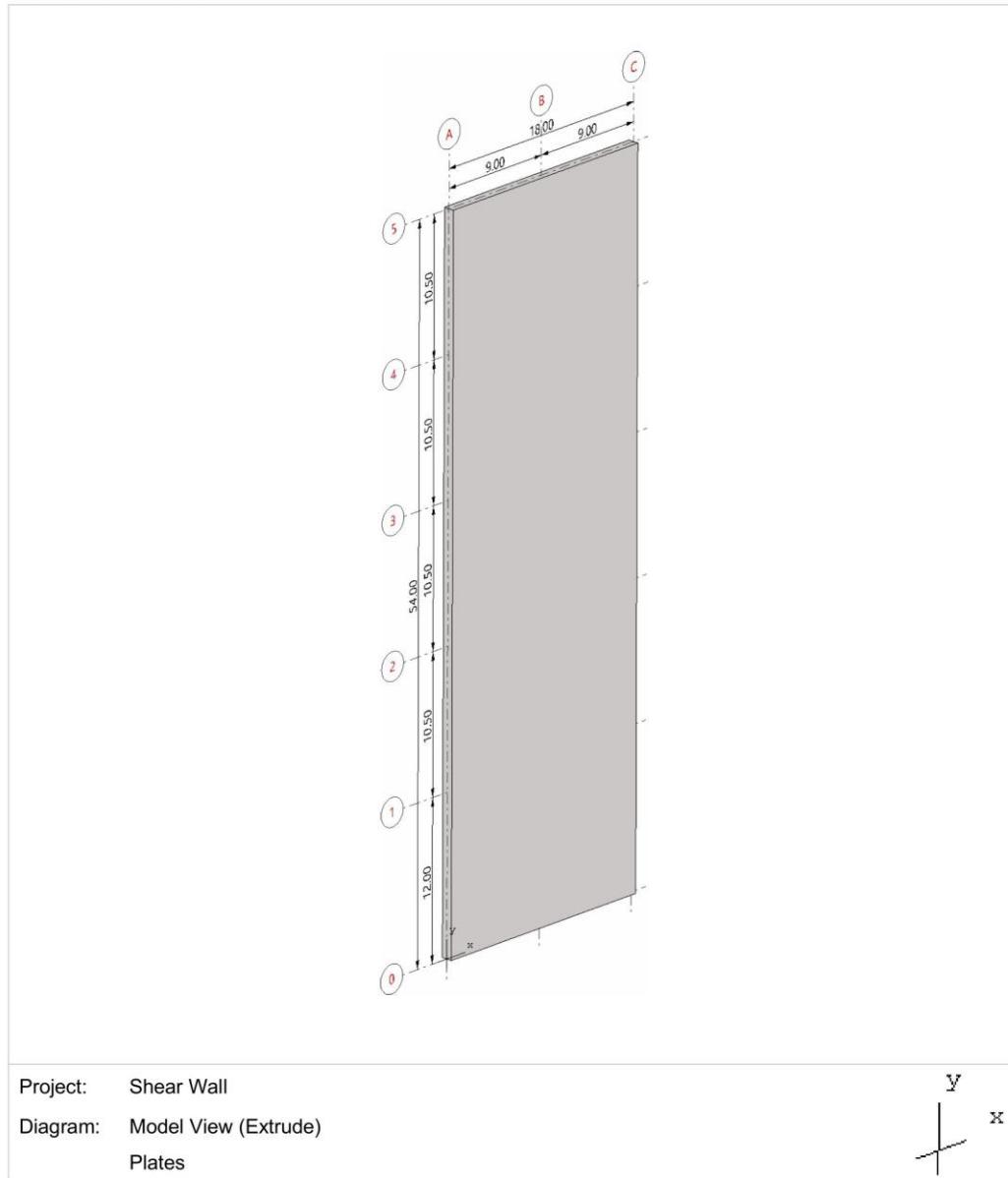
$$\sum A_{s,vertical} = 7.52 \text{ in.}^2$$

 NOTE: # - Shear force Vux exceeds half ϕVcx

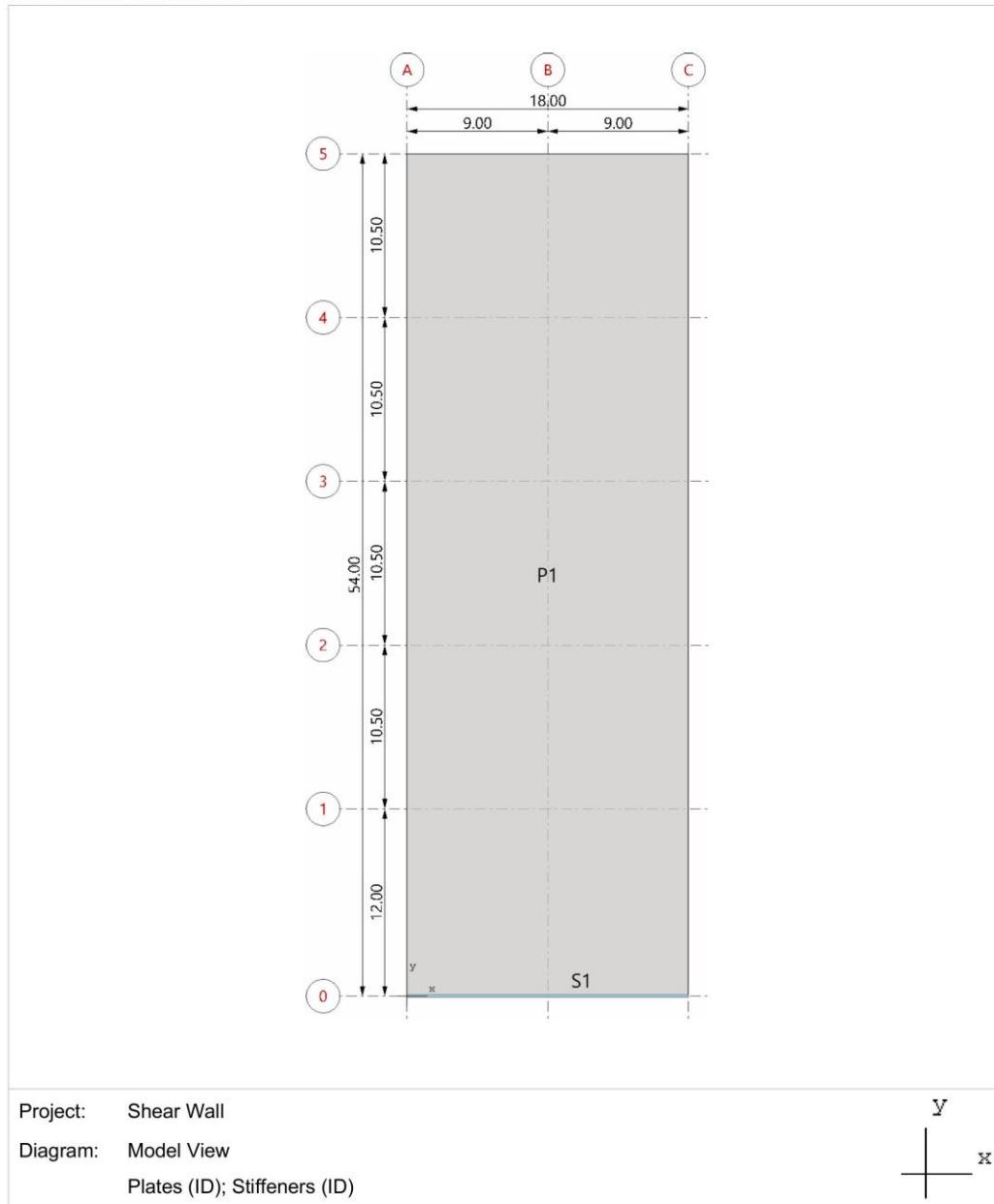
Coordinate System: Global

(+) Horizontal cross-section above Y-coordinate

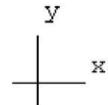
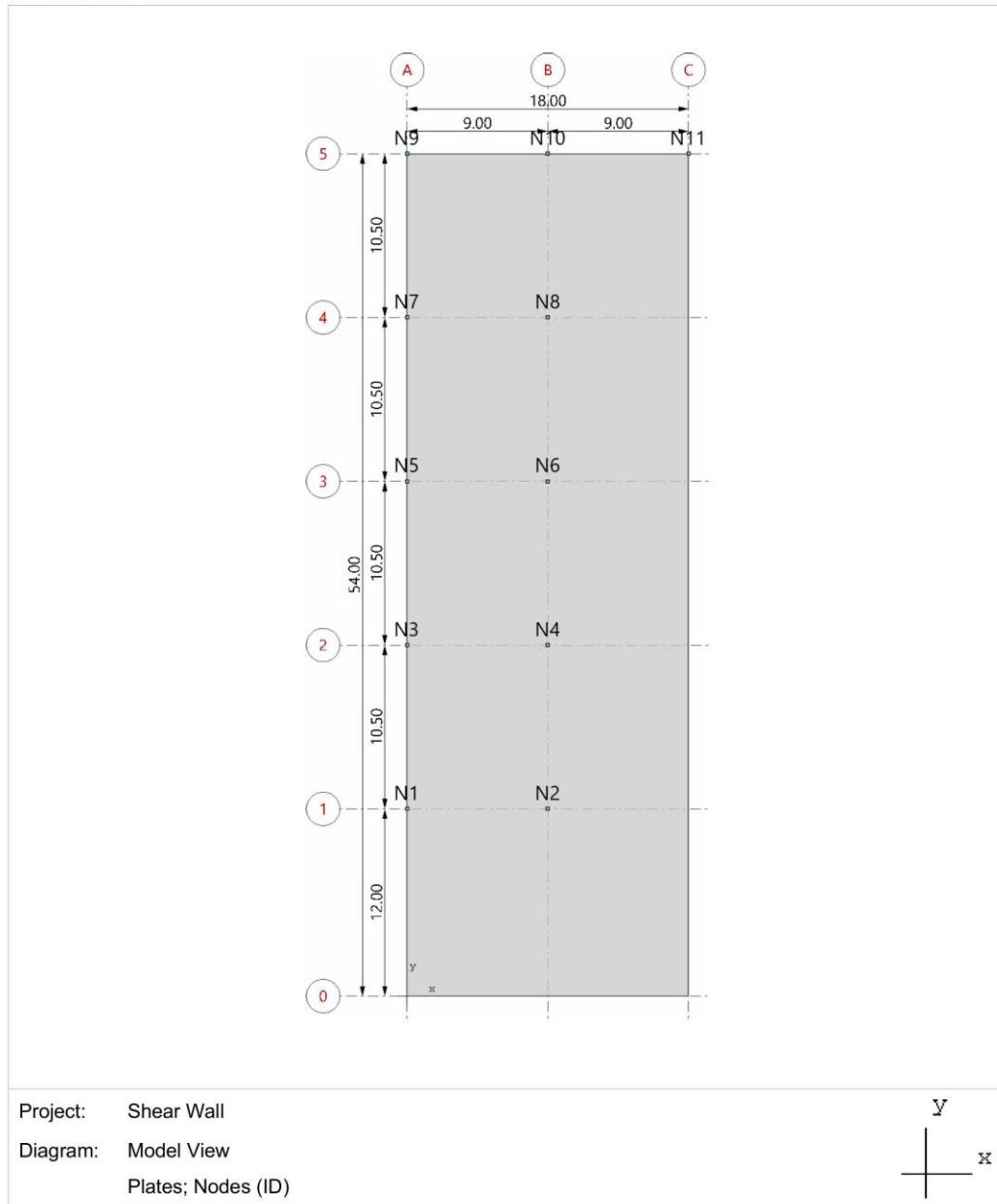
(-) Horizontal cross-section below Y-coordinate

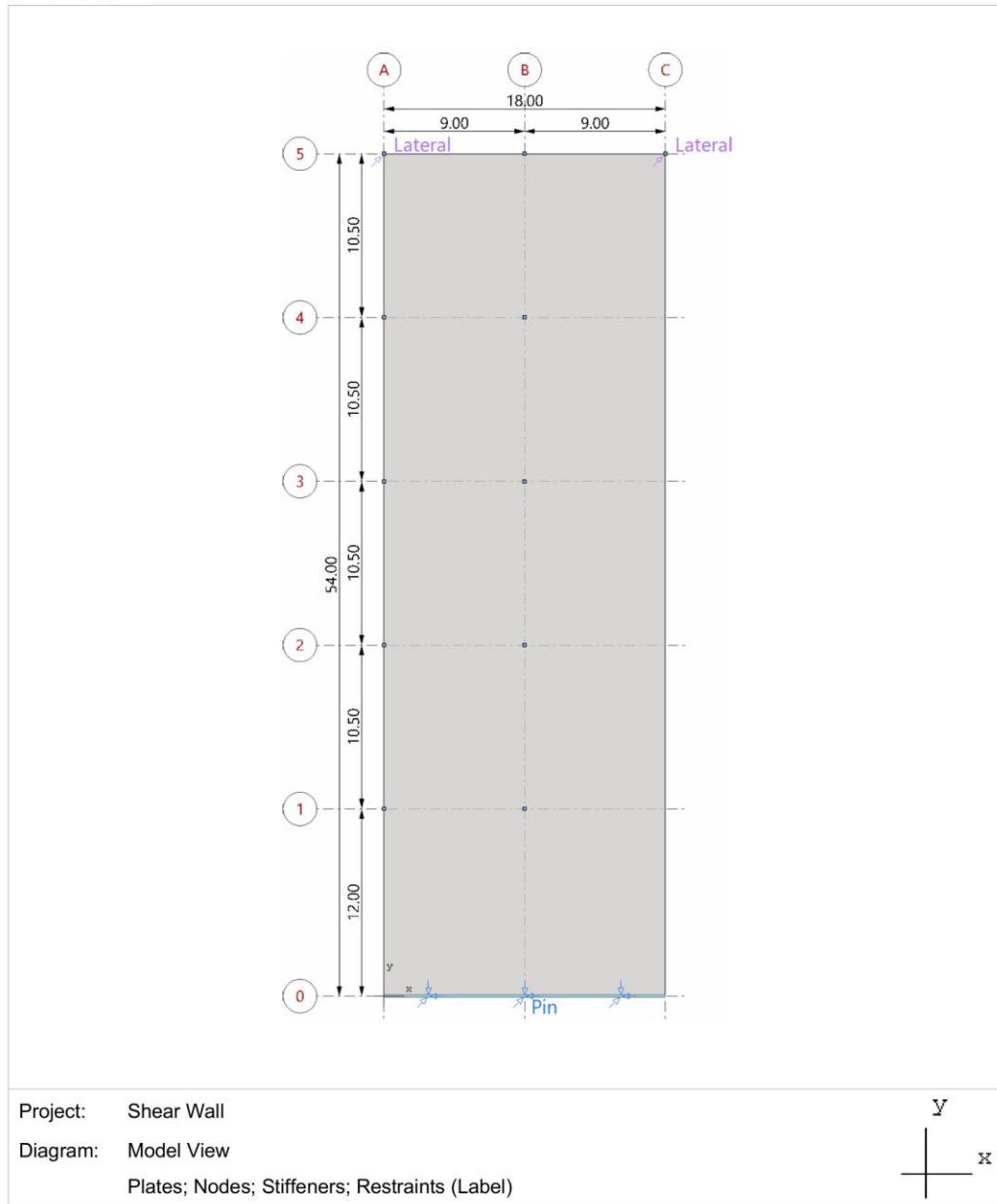

Cross-Section No.	Y Coord. ft	Ld Comb.	Cross-Sectional Forces			Strength ϕVcx kips
			Nuy kips	Muz kip-ft	Vux kips	
1+	0.00	0.9D+1.0W	-207.00	-4665.00	121.00	204.92 #
2-	1.00	0.9D+1.0W	-207.00	-4544.00	121.00	204.92 #
2+	1.00	0.9D+1.0W	-207.00	-4544.00	121.00	204.92 #
3-	2.00	0.9D+1.0W	-207.00	-4423.00	121.00	204.92 #
3+	2.00	0.9D+1.0W	-207.00	-4423.00	121.00	204.92 #
4-	3.00	0.9D+1.0W	-207.00	-4302.00	121.00	204.92 #
4+	3.00	0.9D+1.0W	-207.00	-4302.00	121.00	204.92 #
5-	4.00	0.9D+1.0W	-207.00	-4181.00	121.00	204.92 #
5+	4.00	0.9D+1.0W	-207.00	-4181.00	121.00	204.92 #
6-	5.00	0.9D+1.0W	-207.00	-4060.00	121.00	204.92 #
6+	5.00	0.9D+1.0W	-207.00	-4060.00	121.00	204.92 #
7-	6.00	0.9D+1.0W	-207.00	-3939.00	121.00	204.92 #
7+	6.00	0.9D+1.0W	-207.00	-3939.00	121.00	204.92 #
8-	7.00	0.9D+1.0W	-207.00	-3818.00	121.00	204.92 #

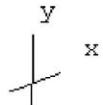
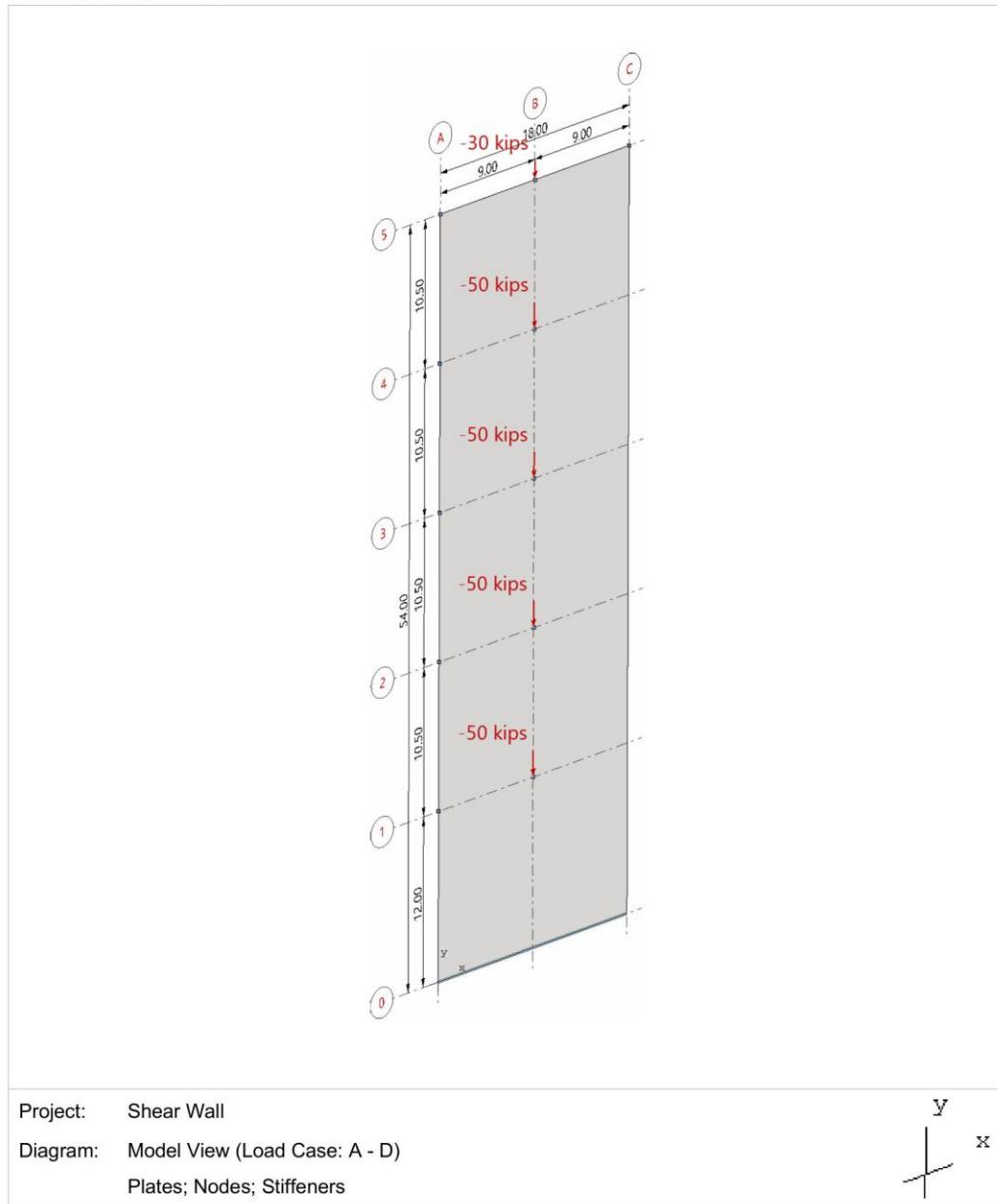
Cross-Section No.	Y Coord. ft	Ld Comb.	Cross-Sectional Forces			Strength Ø Vcx kips
			Nuy kips	Muz kip-ft	Vux kips	
8+	7.00	0.9D+1.0W	-207.00	-3818.00	121.00	204.92 #
9-	8.00	0.9D+1.0W	-207.00	-3697.00	121.00	204.92 #
9+	8.00	0.9D+1.0W	-207.00	-3697.00	121.00	204.92 #
10-	9.00	0.9D+1.0W	-207.00	-3576.00	121.00	204.92 #
10+	9.00	0.9D+1.0W	-207.00	-3576.00	121.00	204.92 #
11-	10.00	0.9D+1.0W	-207.00	-3455.00	121.00	204.92 #
11+	10.00	0.9D+1.0W	-207.00	-3455.00	121.00	204.92 #
12-	11.00	0.9D+1.0W	-207.00	-3334.00	121.00	204.92 #
12+	11.00	0.9D+1.0W	-207.00	-3334.00	121.00	204.92 #
13-	12.00	0.9D+1.0W	-207.00	-3213.00	121.00	204.92 #
13+	12.00	0.9D+1.0W	-162.00	-3213.00	111.00	204.92 #
14-	12.95	0.9D+1.0W	-162.00	-3107.05	111.00	204.92 #
14+	12.95	0.9D+1.0W	-162.00	-3107.05	111.00	204.92 #
15-	13.91	0.9D+1.0W	-162.00	-3001.09	111.00	204.92 #
15+	13.91	0.9D+1.0W	-162.00	-3001.09	111.00	204.92 #
16-	14.86	0.9D+1.0W	-162.00	-2895.14	111.00	204.92 #
16+	14.86	0.9D+1.0W	-162.00	-2895.14	111.00	204.92 #
17-	15.82	0.9D+1.0W	-162.00	-2789.18	111.00	204.92 #
17+	15.82	0.9D+1.0W	-162.00	-2789.18	111.00	204.92 #
18-	16.77	0.9D+1.0W	-162.00	-2683.23	111.00	204.92 #
18+	16.77	0.9D+1.0W	-162.00	-2683.23	111.00	204.92 #
19-	17.73	0.9D+1.0W	-162.00	-2577.27	111.00	204.92 #
19+	17.73	0.9D+1.0W	-162.00	-2577.27	111.00	204.92 #
20-	18.68	0.9D+1.0W	-162.00	-2471.32	111.00	204.92 #
20+	18.68	0.9D+1.0W	-162.00	-2471.32	111.00	204.92 #
21-	19.64	0.9D+1.0W	-162.00	-2365.36	111.00	204.92 #
21+	19.64	0.9D+1.0W	-162.00	-2365.36	111.00	204.92 #
22-	20.59	0.9D+1.0W	-162.00	-2259.41	111.00	204.92 #
22+	20.59	0.9D+1.0W	-162.00	-2259.41	111.00	204.92 #
23-	21.55	0.9D+1.0W	-162.00	-2153.45	111.00	204.92 #
23+	21.55	0.9D+1.0W	-162.00	-2153.45	111.00	204.92 #
24-	22.50	0.9D+1.0W	-162.00	-2047.50	111.00	204.92 #
24+	22.50	0.9D+1.0W	-117.00	-2047.50	93.00	204.92
25-	23.45	0.9D+1.0W	-117.00	-1958.73	93.00	204.92
25+	23.45	0.9D+1.0W	-117.00	-1958.73	93.00	204.92
26-	24.41	0.9D+1.0W	-117.00	-1869.95	93.00	204.92
26+	24.41	0.9D+1.0W	-117.00	-1869.95	93.00	204.92
27-	25.36	0.9D+1.0W	-117.00	-1781.18	93.00	204.92
27+	25.36	0.9D+1.0W	-117.00	-1781.18	93.00	204.92
28-	26.32	0.9D+1.0W	-117.00	-1692.41	93.00	204.92
28+	26.32	0.9D+1.0W	-117.00	-1692.41	93.00	204.92
29-	27.27	0.9D+1.0W	-117.00	-1603.64	93.00	204.92
29+	27.27	0.9D+1.0W	-117.00	-1603.64	93.00	204.92
30-	28.23	0.9D+1.0W	-117.00	-1514.86	93.00	204.92
30+	28.23	0.9D+1.0W	-117.00	-1514.86	93.00	204.92
31-	29.18	0.9D+1.0W	-117.00	-1426.09	93.00	204.92
31+	29.18	0.9D+1.0W	-117.00	-1426.09	93.00	204.92
32-	30.14	0.9D+1.0W	-117.00	-1337.32	93.00	204.92
32+	30.14	0.9D+1.0W	-117.00	-1337.32	93.00	204.92
33-	31.09	0.9D+1.0W	-117.00	-1248.55	93.00	204.92
33+	31.09	0.9D+1.0W	-117.00	-1248.55	93.00	204.92
34-	32.05	0.9D+1.0W	-117.00	-1159.77	93.00	204.92
34+	32.05	0.9D+1.0W	-117.00	-1159.77	93.00	204.92
35-	33.00	0.9D+1.0W	-117.00	-1071.00	93.00	204.92

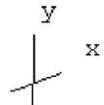
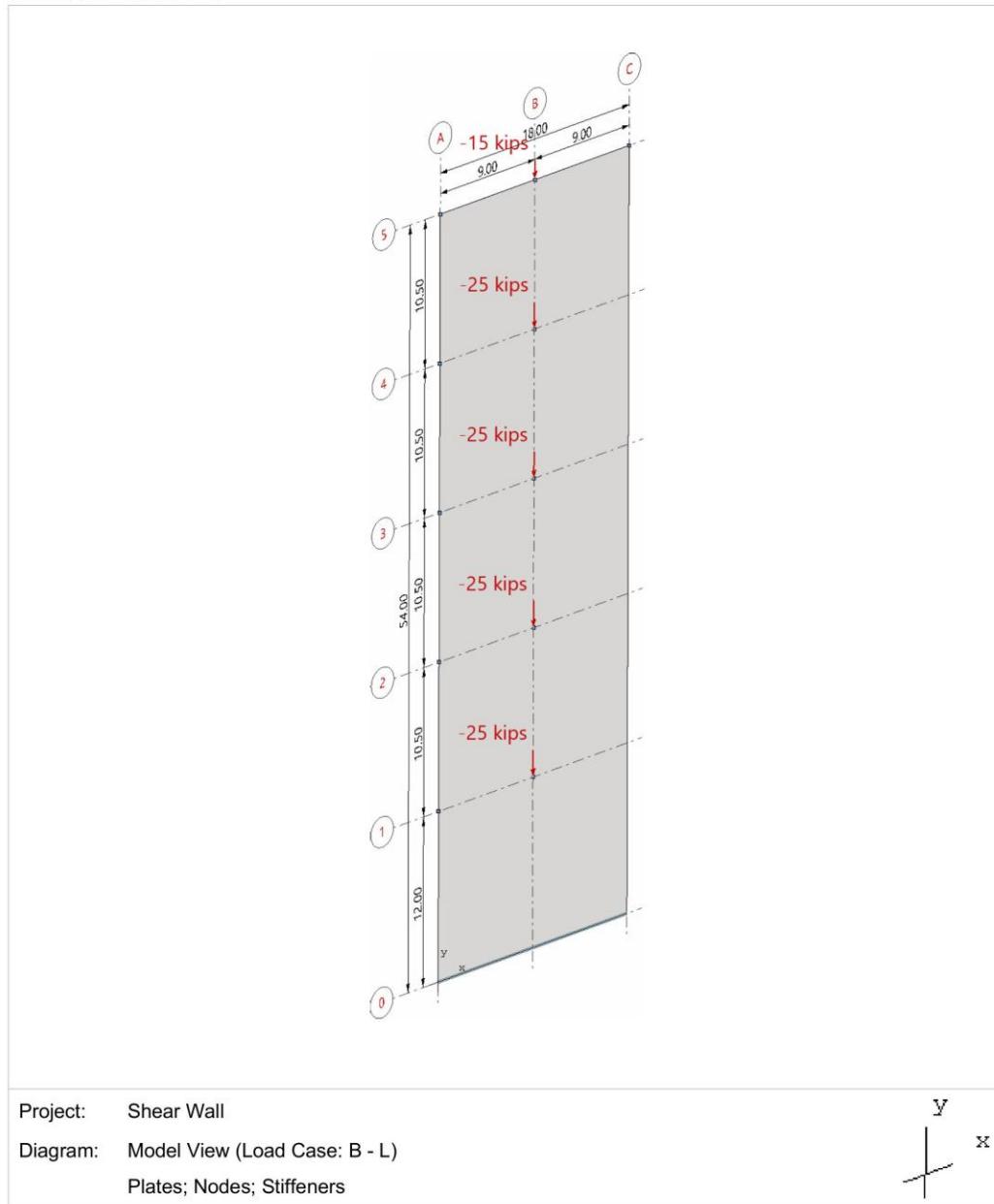

Cross-Section No.	Y Coord. ft	Ld Comb.	Cross-Sectional Forces			Strength Ø Vcx kips
			Nuy kips	Muz kip-ft	Vux kips	
35+	33.00	0.9D+1.0W	-72.00	-1071.00	67.00	204.92
36-	33.95	0.9D+1.0W	-72.00	-1007.05	67.00	204.92
36+	33.95	0.9D+1.0W	-72.00	-1007.05	67.00	204.92
37-	34.91	0.9D+1.0W	-72.00	-943.09	67.00	204.92
37+	34.91	0.9D+1.0W	-72.00	-943.09	67.00	204.92
38-	35.86	0.9D+1.0W	-72.00	-879.14	67.00	204.92
38+	35.86	0.9D+1.0W	-72.00	-879.14	67.00	204.92
39-	36.82	0.9D+1.0W	-72.00	-815.18	67.00	204.92
39+	36.82	0.9D+1.0W	-72.00	-815.18	67.00	204.92
40-	37.77	0.9D+1.0W	-72.00	-751.23	67.00	204.92
40+	37.77	0.9D+1.0W	-72.00	-751.23	67.00	204.92
41-	38.73	0.9D+1.0W	-72.00	-687.27	67.00	204.92
41+	38.73	0.9D+1.0W	-72.00	-687.27	67.00	204.92
42-	39.68	0.9D+1.0W	-72.00	-623.32	67.00	204.92
42+	39.68	0.9D+1.0W	-72.00	-623.32	67.00	204.92
43-	40.64	0.9D+1.0W	-72.00	-559.36	67.00	204.92
43+	40.64	0.9D+1.0W	-72.00	-559.36	67.00	204.92
44-	41.59	0.9D+1.0W	-72.00	-495.41	67.00	204.92
44+	41.59	0.9D+1.0W	-72.00	-495.41	67.00	204.92
45-	42.55	0.9D+1.0W	-72.00	-431.45	67.00	204.92
45+	42.55	0.9D+1.0W	-72.00	-431.45	67.00	204.92
46-	43.50	0.9D+1.0W	-72.00	-367.50	67.00	204.92
46+	43.50	0.9D+1.0W	-27.00	-367.50	35.00	204.92
47-	44.45	0.9D+1.0W	-27.00	-334.09	35.00	204.92
47+	44.45	0.9D+1.0W	-27.00	-334.09	35.00	204.92
48-	45.41	0.9D+1.0W	-27.00	-300.68	35.00	204.92
48+	45.41	0.9D+1.0W	-27.00	-300.68	35.00	204.92
49-	46.36	0.9D+1.0W	-27.00	-267.27	35.00	204.92
49+	46.36	0.9D+1.0W	-27.00	-267.27	35.00	204.92
50-	47.32	0.9D+1.0W	-27.00	-233.86	35.00	204.92
50+	47.32	0.9D+1.0W	-27.00	-233.86	35.00	204.92
51-	48.27	0.9D+1.0W	-27.00	-200.45	35.00	204.92
51+	48.27	0.9D+1.0W	-27.00	-200.45	35.00	204.92
52-	49.23	0.9D+1.0W	-27.00	-167.05	35.00	204.92
52+	49.23	0.9D+1.0W	-27.00	-167.05	35.00	204.92
53-	50.18	0.9D+1.0W	-27.00	-133.64	35.00	204.92
53+	50.18	0.9D+1.0W	-27.00	-133.64	35.00	204.92
54-	51.14	0.9D+1.0W	-27.00	-100.23	35.00	204.92
54+	51.14	0.9D+1.0W	-27.00	-100.23	35.00	204.92
55-	52.09	0.9D+1.0W	-27.00	-66.82	35.00	204.92
55+	52.09	0.9D+1.0W	-27.00	-66.82	35.00	204.92
56-	53.05	0.9D+1.0W	-27.00	-33.41	35.00	204.92
56+	53.05	0.9D+1.0W	-27.00	-33.41	35.00	204.92
57-	54.00	0.9D+1.0W	-27.00	0.00	35.00	204.92

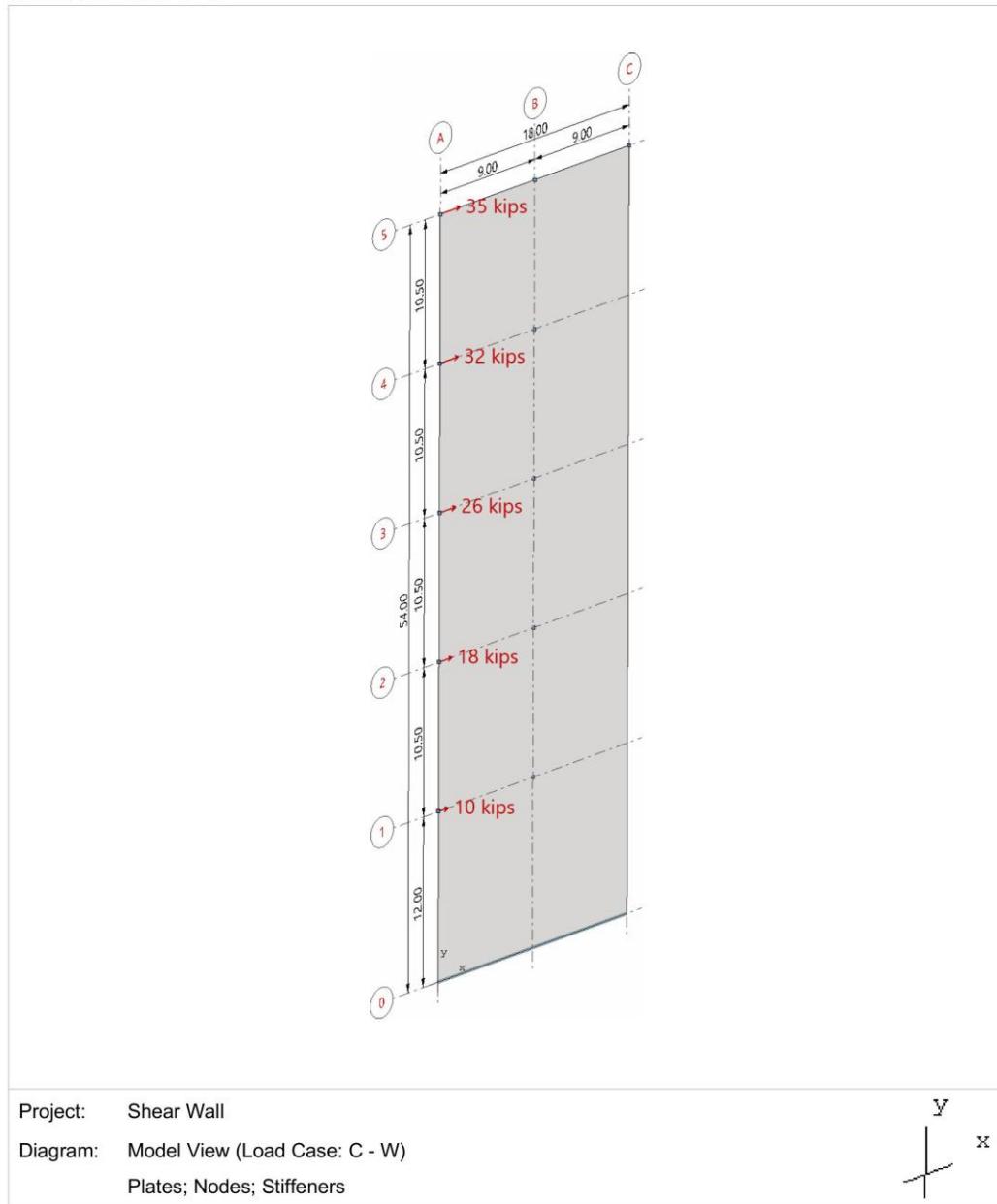
5. Screenshots



5.1. Extrude 3D view


5.2. Plates & Stiffeners ID



5.3. Nodes ID



5.4. Restraints


5.5. Loads - Case A - D

5.6. Loads - Case B - L

5.7. Loads - Case C - W

7. Design Results Comparison and Conclusions

Table 1 – Comparison of Shear Wall Analysis and Design Results						
Solution	Wall Cross-Sectional Forces			ϕV_c (kips)	$A_{s,vertical}$ (in. ²)	ϕM_n (kip-ft)
	M_u (kip-ft)	N_u (kips)	V_u (kips)			
Hand	4,665	207	121	204.92	7.44	4,808
Reference	4,670	207	121	204.92	7.44	4,800
spWall	4,665	207	121	204.92	7.52	4,663*

* Minimum required capacity

The results of all the hand calculations and the reference used illustrated above are in precise agreement with the automated results obtained from the [spWall](#) FEA. It is worth noting that the minimum area of steel is governed by the minimum reinforcement ratio stipulated by the code. The same can be seen in [spWall](#) output for elements 8 through 18.

To calculate the wall moment capacity, the design forces in each finite element can be employed to sum force moments about the center of the wall section as follows:

$$\phi M_n = \phi \times \sum_{i=1}^{18} (N_{u,i} \times d_i)$$

$$= 0.9 \times \left[(83.6 \times 8.5) + (67.8 \times 7.5) + (53.6 \times 6.5) + (42.3 \times 5.5) + (32.3 \times 4.5) + (23.1 \times 3.5) + (14.4 \times 2.5) \right. \\ \left. + (6.0 \times 1.5) + (-12.5 \times 0.5) + (-20.9 \times -0.5) + (-29.3 \times -1.5) + (-38.0 \times -2.5) + (-47.0 \times -3.5) \right. \\ \left. + (-56.5 \times -4.5) + (-67.0 \times -5.5) + (-78.9 \times -6.5) + (-94.7 \times -7.5) + (-112.6 \times -8.5) \right] = 4,663 \text{ kip-ft}$$

8. Appendix – Commentary on Reinforcement Arrangement Impact on Wall Capacity

8.1. Discussion

In the hand calculations and the reference, a simplified procedure to calculate the nominal flexural strength was used (A. E. Cardenas et al.). In this procedure, several broad assumptions are made to avoid tedious detailed calculations:

- All steel in the tension zone yields in tension.
- All steel in the compression zone yields in compression.
- The tension force acts at mid-depth of the tension zone.
- The total compression force (sum of steel and concrete contributions) acts at mid-depth of the compression zone.

To investigate the shear wall cross section capacity using the interaction diagram method, a model generated by [spColumn](#) is made. This approach considers the entire wall section and employs the provisions of the Strength Design Method and Unified Design Provisions with all conditions of strength satisfying the applicable conditions of equilibrium and strain compatibility.

For illustration and comparison purposes, following figures provide a sample of the input and output of the results obtained from an [spColumn](#) model created for the shear wall in this example. [spColumn](#) calculates the values of strain at each layer of steel (in tension and compression zones) with location of the total tension and compression forces leading to the value for nominal and design strengths (axial and flexural strengths).

STRUCTUREPOINT - spColumn v10.20 (TM)
 Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-2B1B4-2B1B4
 F:\StructurePoint\spColumn\Shear Wall.colx

Page | 1
 12/10/2025
 3:45 PM

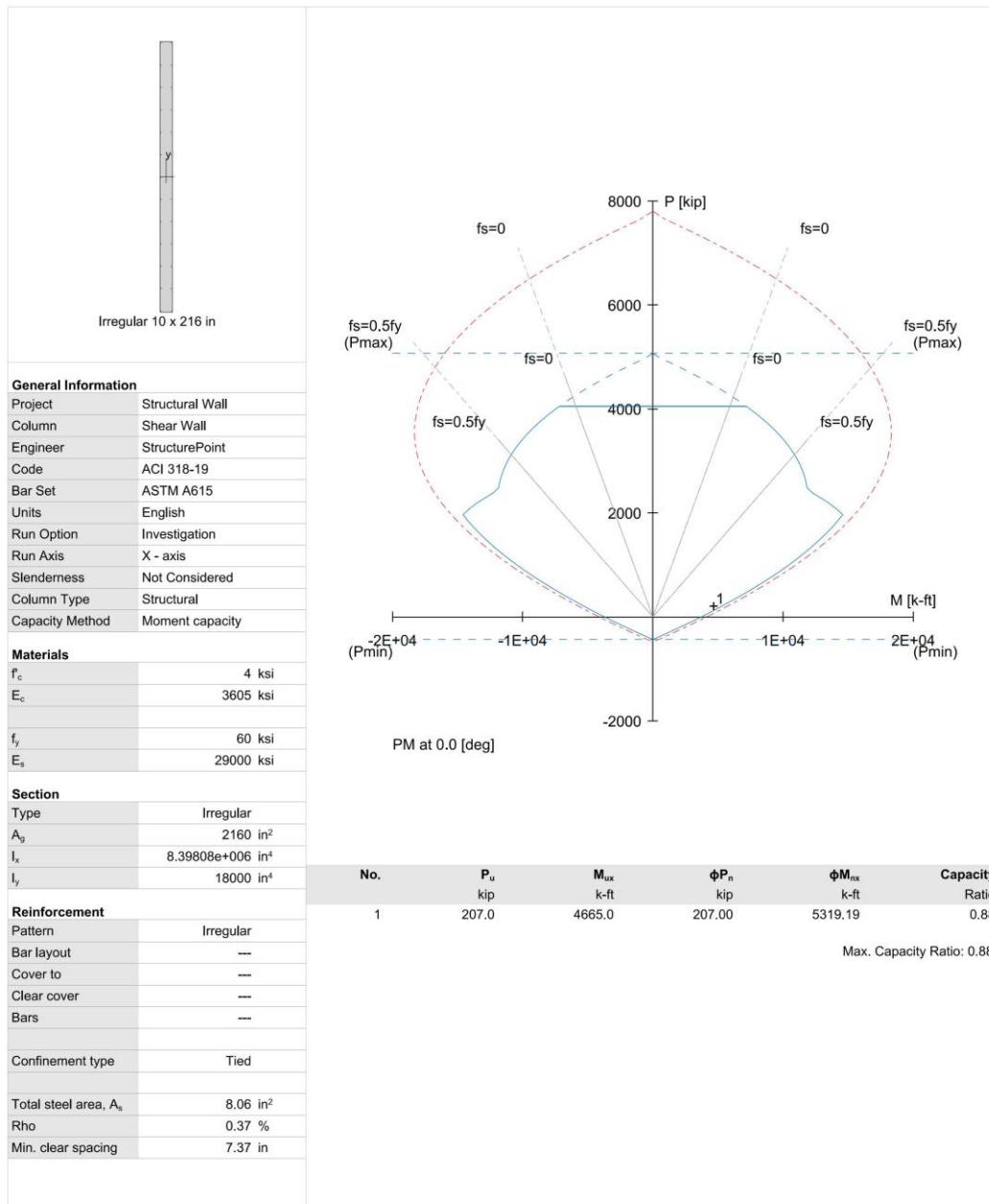


Figure 12 – Shear Wall Interaction Diagram (X-Axis, In-Plane) ([spColumn](#))

STRUCTUREPOINT - spColumn v10.20 (TM)
 Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-2B1B4-2B1B4
 F:\StructurePoint\spColumn\Shear Wall.colx

Page | 2
 12/10/2025
 3:47 PM

1. General Information

File Name	F:\StructurePoint\spColumn\Shear Wall.colx
Project	Structural Wall
Column	Shear Wall
Engineer	StructurePoint
Code	ACI 318-19
Bar Set	ASTM A615
Units	English
Run Option	Investigation
Run Axis	X - axis
Slenderness	Not Considered
Column Type	Structural
Capacity Method	Moment capacity

2. Material Properties

2.1. Concrete

Type	Standard
f_c	4 ksi
E_c	3605 ksi
f_c	3.4 ksi
ϵ_u	0.003 in/in
β_1	0.85

2.2. Steel

Type	Standard
f_y	60 ksi
E_s	29000 ksi
ϵ_{ly}	0.00206897 in/in

3. Section

3.1. Shape and Properties

Type	Irregular
A_g	2160 in ²
I_x	8.39808e+006 in ⁴
I_y	18000 in ⁴
r_x	62.3538 in
r_y	2.88675 in
X_o	0 in
Y_o	0 in

3.2. Solids

3.2.1. S1

Points	X in	Y in	Points	X in	Y in	Points	X in	Y in
1	-5.0	-108.0	2	5.0	-108.0	3	5.0	108.0
4	-5.0	108.0						

4. Reinforcement

4.1. Bar Set: ASTM A615

Bar	Diameter in	Area in ²	Bar	Diameter in	Area in ²	Bar	Diameter in	Area in ²
#3	0.38	0.11	#4	0.50	0.20	#5	0.63	0.31
#6	0.75	0.44	#7	0.88	0.60	#8	1.00	0.79
#9	1.13	1.00	#10	1.27	1.27	#11	1.41	1.56
#14	1.69	2.25	#18	2.26	4.00			

4.2. Confinement and Factors

Confinement type	Tied
For #10 bars or less	#3 ties
For larger bars	#4 ties
Capacity Reduction Factors	
Axial compression, (a)	0.8
Tension controlled ϕ , (b)	0.9
Compression controlled ϕ , (c)	0.65

4.3. Arrangement

Pattern	Irregular
Bar layout	---
Cover to	---
Clear cover	---
Bars	---
Total steel area, A_s	8.06 in ²
Rho	0.37 %
Minimum clear spacing	7.37 in

(Note: Rho < 0.50%)

4.4. Bars Provided

Area in ²	X in	Y in	Area in ²	X in	Y in	Area in ²	X in	Y in
0.31	-4.0	107.0	0.31	-4.0	-107.0	0.31	-4.0	-89.2
0.31	-4.0	-71.3	0.31	-4.0	-53.5	0.31	-4.0	-35.7
0.31	-4.0	-17.8	0.31	-4.0	0.0	0.31	-4.0	17.8
0.31	-4.0	35.7	0.31	-4.0	53.5	0.31	-4.0	71.3
0.31	-4.0	89.2	0.31	4.0	-107.0	0.31	4.0	-89.2
0.31	4.0	-71.3	0.31	4.0	-53.5	0.31	4.0	-35.7
0.31	4.0	-17.8	0.31	4.0	0.0	0.31	4.0	17.8
0.31	4.0	35.7	0.31	4.0	53.5	0.31	4.0	71.3
0.31	4.0	89.2	0.31	4.0	107.0			

5. Factored Loads and Moments with Corresponding Capacity Ratios

NOTE: Calculations are based on "Moment Capacity" Method.

No.	Demand		Capacity		Parameters at Capacity			Capacity Ratio
	P_u kip	M_{ux} k-ft	ϕP_n kip	ϕM_{nx} k-ft	NA Depth in	ϵ_t	ϕ	
1	207.00	4665.00	207.00	5319.19	20.73	0.02811	0.900	0.88

Figure 13 – Load & Moment Capacities Output from [spColumn](#)

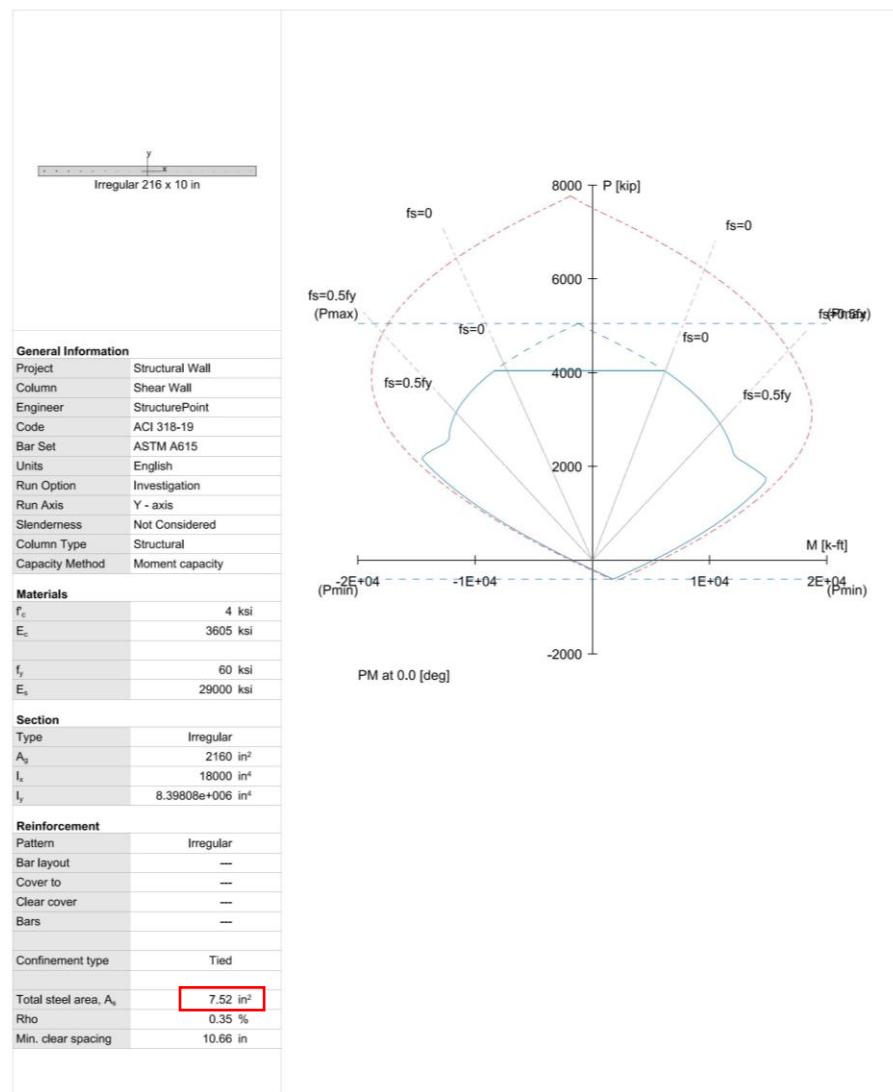
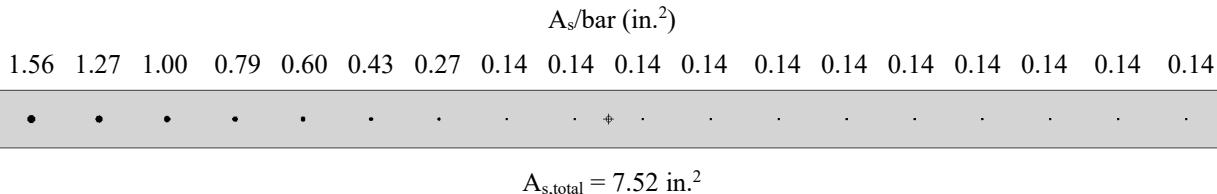
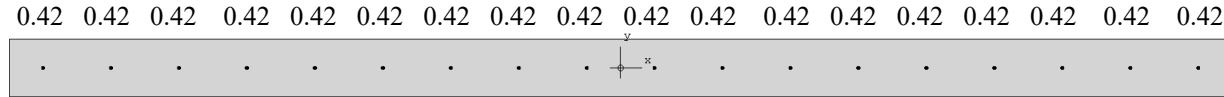


Using [spColumn](#), calculate the expected wall capacity based on various reinforcement distributions obtained from the FEA results from [spWall](#). Three reinforcement distributions are evaluated below.

Table 2 – Comparative capacity calculations (using spColumn) based on FEA suggested reinforcement distribution		
Reinforcement Distribution	c (in.)	ϕM_n (kip-ft)
Reference	20.73	$5,319 > 4,800^*$ (110.8%)
Non-Uniform	22.46	$6,803 > 4,800^*$ (141.7%)
Uniform	20.58	$5,049 > 4,800^*$ (105.2%)
Suggested	22.46	$6,726 > 4,800^*$ (140.1%)

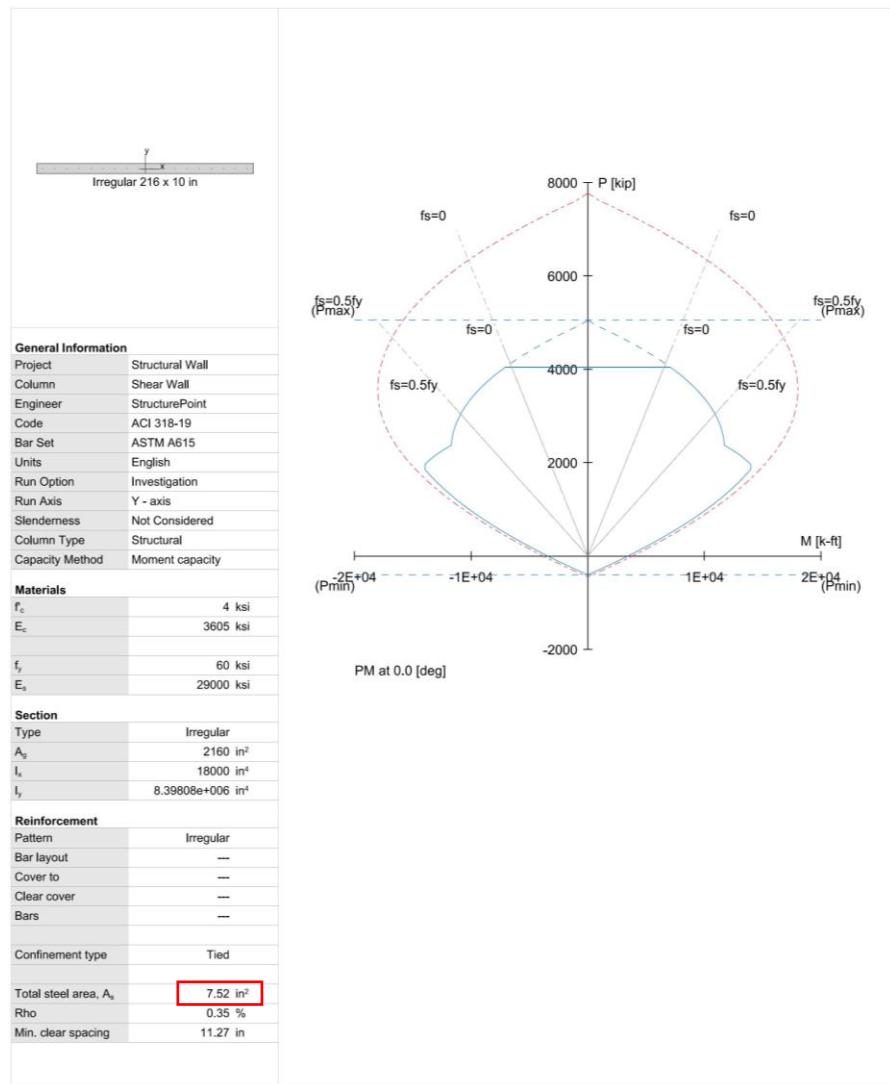
* Wall flexural capacity calculated using simplified reference method

Wall Capacity – Non-Uniform Reinforcement from FEA

Using the method of solution in [spColumn](#) where one section is used the finite element analysis model can be investigated as one section and not as individual finite elements as calculated by [spWall](#).


Axial Loads and Corresponding Moment Capacities

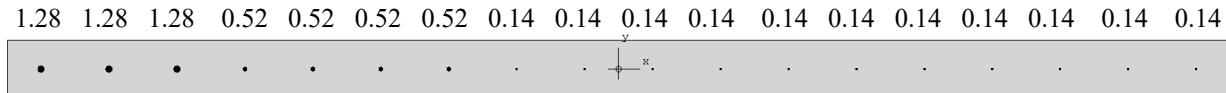
No	ϕP_n kip	ϕM_{n_y} k-ft	NA Depth in	dt Depth in	ε_t	ϕ
1	207.0	6803.19	22.460	210.000	0.02505	0.900
2	207.0	-3351.57	15.571	210.000	0.03746	0.900


Wall Capacity – Uniform Reinforcement from FEA

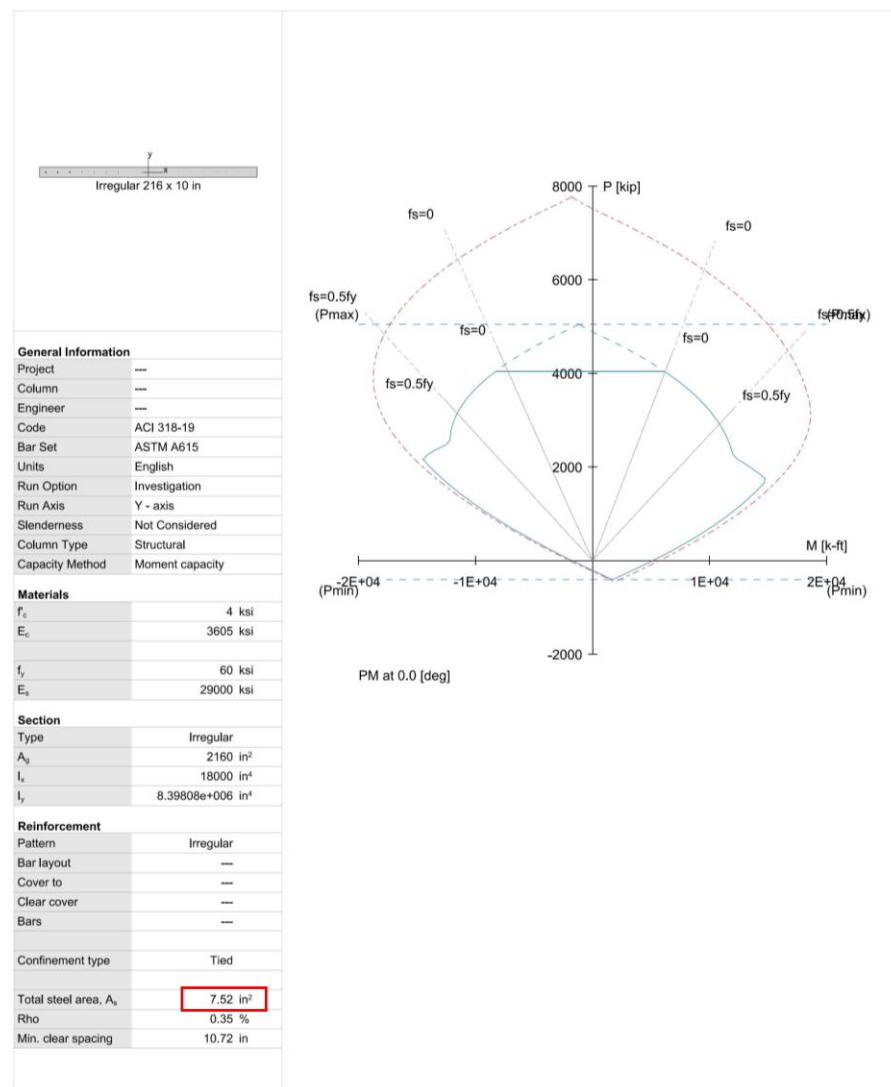
Taking the total area of non-uniform reinforcement obtained from FEA and redistributing it in a uniform bar pattern to represent a reinforcement arrangement very comparable to the reference example distribution, the wall capacity can be calculated and is expected to be very similar to the results obtained from the reinforcement configuration used by the reference.

$A_s/\text{bar (in.}^2\text{)}$

$A_{s,\text{total}} = 7.52 \text{ in.}^2$


Axial Loads and Corresponding Moment Capacities

No	ϕP_n kip	ϕM_{n_y} k-ft	NA Depth in	dt Depth in	ε_t	ϕ
1	207.0	5048.82	20.576	210.000	0.02762	0.900
2	207.0	-5048.82	20.576	210.000	0.02762	0.900


Wall Capacity – Suggested Reinforcement

Taking the total area of non-uniform reinforcement obtained from FEA and redistributing it in a banded approach where the suggested reinforcement is averaged over the first 3 elements and the following 4 elements resulting in the suggested bar pattern below to represent a practical reinforcement arrangement, a new wall capacity can be calculated.

$A_s/\text{bar (in.}^2\text{)}$

$$A_{s,\text{total}} = 7.52 \text{ in.}^2$$

Axial Loads and Corresponding Moment Capacities

No	ϕP_n kip	ϕM_{Ny} k-ft	NA Depth in	dt Depth in	ε_t	ϕ
1	207.0	6725.99	22.460	210.000	0.02505	0.900
2	207.0	-3410.15	16.356	210.000	0.03552	0.900

8.2. Conclusions and Observations

As can be seen from the three options above the engineers can evaluate several options when arriving at the reinforcing bar arrangement from an FEA model. The following conclusions and observations can be used to better understand designing and investigating shear walls using [spWall](#):

1. In finite element analysis, selecting mesh size has a crucial impact on the results accuracy (as an example the amount and distribution of reinforcement). The mesh size should be optimized in a way that changing the element size has slight effect on the results obtained. However, the optimum element size is dependent on multiple parameters in the model which makes it difficult to find a generalized procedure to select the optimum size. [Multiple studies](#) conducted by StructurePoint showed that the element length should not be greater than 10% of the total wall length and a coarser mesh should be used with caution and engineering judgement.
2. [spWall](#) calculates the required area of steel for each element along the section. This area of steel is selected in a way that it should be enough to satisfy the strength requirements under a specific sets of extreme design forces. This approach will lead to placing most of the reinforcement at wall section ends as was shown in this example leading to the highest possible flexural capacity that can be achieved for the section with the same amount of steel. In practice, having a uniform distribution of reinforcement along the wall section is more common and the flexural capacity of the concrete wall is usually calculated based on it.
3. Concrete Shear walls can be analyzed and designed using simplified structural analysis approaches as the one used in this example. However, as the level of complexity of the wall increases, analyzing and designing shear walls using hand solution become more challenging and less effective. Computer software utilizing FEA (e.g. [spWall](#)) is an efficient solution to analyze and design concrete shear walls regardless of the level of complexity. [spWall](#) selects the minimum required area of steel with the optimum reinforcement distribution for the wall section in which the highest bending capacity of the wall section is achieved. [spColumn](#) software can be also utilized to obtain the wall interaction diagram to help better understand the behavior of the section selected.