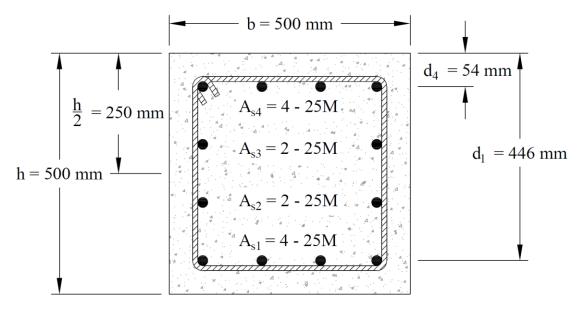


Slenderness Effects for Concrete Columns in Sway Frame – Moment Magnification Method (CSA A23.3-19)



Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method (CSA A23.3-19)

Evaluate slenderness effect for columns in a sway frame multistory reinforced concrete building by designing the first story exterior column. The clear height of the first story is 4.75 m, and is 2.75 m for all of the other stories. Lateral load effects on the building are governed by wind forces. Compare the calculated results with exact values from spColumn engineering software program from StructurePoint.

<u>Figure 1 – Slender Reinforced Concrete Column Cross-Section</u>

Version: July-31-2023

Contents

1.	Factored Axial Loads and Bending Moments	2
	1.1. Service loads	
	1.2. Load Combinations – Factored Loads	2
2.	Slenderness Effects and Sway or Nonsway Frame Designation	
	Determine Slenderness Effects	
	Moment Magnification at Ends of Compression Member	
	4.1. Gravity Load Combination #2 (Gravity Loads Only)	
	4.2. Lateral Load Combination #7 (Gravity Plus Wind Loads)	
5.	Moment Magnification along Length of Compression Member	
	5.1. Gravity Load Combination #2 (Gravity Loads Only)	
	5.2. Load Combination #7 (Gravity Plus Wind Loads)	
6.	Column Design	15
	6.1. c, <i>a</i> , and strains in the reinforcement	
	6.2. Forces in the concrete and steel.	
	6.3. P_r and M_r	
7.	Column Interaction Diagram - spColumn Software	
	Summary and Comparison of Design Results	
	Conclusions & Observations	26

Code

Design of Concrete Structures (CSA A23.3-19)

References

- Reinforced Concrete Mechanics and Design, 1st Canadian Edition, 2000, James MacGregor and Fred Michael Bartlett, Prentice Hall Canada Inc., Example 12-3, 4 and 5.
- spColumn Engineering Software Program Manual v10.10, STRUCTUREPOINT, 2023
- "Slenderness Effects for Columns in Non-Sway Frame Moment Magnification Method (CSA A23.3-19)" Design Example, STRUCTUREPOINT, 2023

Notes: Reference examples are based on CSA A23.3-94 This example is solved using CSA A23.3-19

Design Data

 f_c ' = 25 MPa

 $f_{y} = 400 \text{ MPa}$

Slab thickness = 180 mm

Exterior Columns = $500 \text{ mm} \times 500 \text{ mm}$

Interior Columns = $500 \text{ mm} \times 500 \text{ mm}$

Interior Beams = $450 \text{ mm} \times 750 \text{ mm} \times 9 \text{ m}$

Exterior Beams = $450 \text{ mm} \times 750 \text{ mm} \times 9.5 \text{ m}$

Total building loads in the first story from the reference:

	Table 1 – '	Total building factored loads	
CSA A23.3-19 Reference	No.	Load Combination	$\sum P_f$, kN
	1	1.4D	66,640
	2	1.25D + 1.5L	77,500
	3	1.25D + 1.5L + 0.4W	77,500
Annex C	4	1.25D + 1.5L - 0.4W	77,500
Aillex	5	0.9D + 1.5L + 0.4W	60,840
Table C.1a	6	0.9D + 1.5L - 0.4W	60,840
	7	1.25D + 0.5L + 1.4W	65,500
	8	1.25D + 0.5L - 1.4W	65,500
	9	0.9D + 0.5L + 1.4W	48,840
	10	0.9D + 0.5L - 1.4W	48,840

1. Factored Axial Loads and Bending Moments

1.1. <u>Service loads</u>

	Table 2 - Exterior column	n service loads		
Load Case	Axial Load,	Bending Moment, kN-m		
Load Case	Case kN Top Bottom	Bottom		
Dead, D	1,615.2	107.36	118.00	
Live, L	362.86	67.43	72.86	
Wind, W	0	90.19	105.33	

1.2. <u>Load Combinations – Factored Loads</u>

<u>CSA A23.3-19 (Annex C, Table C.1a)</u>

		Table 3	- Exterior	r column f	actored loa	ads			
CSA A23.3-19	No.	Load Combination	Axial Load,		Moment, -m	M _{Top,ns}	M _{Bottom,ns}	M _{Top,s}	M _{Bottom,s}
Reference			kN	Top	Bottom	kN-m	kN-m	kN-m	kN-m
	1	1.4D	2,261	150.3	165.2	150.3	165.2	0.0	0.0
	2	1.25D + 1.5L	2,563	235.3	256.8	235.3	256.8	0.0	0.0
	3	1.25D + 1.5L + 0.4W	2,563	271.4	298.9	235.3	256.8	36.1	42.1
A C	4	1.25D + 1.5L - 0.4W	2,563	199.3	214.7	235.3	256.8	-36.1	-42.1
Annex C	5	0.9D + 1.5L + 0.4W	1,998	233.8	257.6	197.8	215.5	36.1	42.1
Table C.1a	6	0.9D + 1.5L - 0.4W	1,998	161.7	173.4	197.8	215.5	-36.1	-42.1
	7	1.25D + 0.5L + 1.4W	2,200	294.2	331.4	167.9	183.9	126.3	147.5
	8	1.25D + 0.5L - 1.4W	2,200	41.6	36.5	167.9	183.9	-126.3	-147.5
	9	0.9D + 0.5L + 1.4W	1,635	256.6	290.1	130.3	142.6	126.3	147.5
	10	0.9D + 0.5L - 1.4W	1,635	4.1	-4.8	130.3	142.6	-126.3	-147.5

2. Slenderness Effects and Sway or Nonsway Frame Designation

Columns and stories in structures are considered as nonsway frames if the stability index for the story (Q) does not exceed 0.05.

CSA A23.3-19 (10.14.4)

 $\sum P_f$ is the total factored vertical load in the first story corresponding to the lateral loading case for which $\sum P_f$ is greatest (without the wind loads, which would cause compression in some columns and tension in others and thus would cancel out).

CSA A23.3-19 (10.14.4)

 V_f is the total factored shear in the first story corresponding to the wind loads, and Δ_o is the first-order relative deflection between the top and bottom of the first story due to V_f .

From Table 1, load combination (1.25D + 1.5L) provides the greatest value of $\sum P_f$.

$$\Sigma P_f = 1.25 \times D + 1.5 \times L = 77,500 \text{ kN}$$

CSA A23.3-19 (Table C.1a)

Note: Any structural analysis procedure can be performed to obtain the values of V_f and Δ_o (out of the scoop of this example).

 $V_f = 1,105 \text{ kN (given)}$

 $\Delta_{o} = 7.58 \text{ mm (given)}$

$$Q = \frac{\Sigma P_f \times \Delta_o}{V_f \times I_c} = \frac{77,500 \times 7.58}{1,105 \times 5,500} = 0.0967 > 0.05$$

CSA A23.3-19 (Eq. 10.15)

Thus, the frame at the first story level is considered sway.

3. Determine Slenderness Effects

$$I_{column} = 0.7 \times \frac{c^4}{12} = 0.7 \times \frac{500^4}{12} = 3.65 \times 10^9 \text{ mm}^4$$

CSA A23.3-19 (10.14.1.2)

$$E_c = (3,300 \times \sqrt{f_c'} + 6,900) \left(\frac{\gamma_c}{2,300}\right)^{1.5}$$

CSA A23.3-19 (Eq. 8.1)

$$E_c = (3,300 \times \sqrt{25} + 6,900) \left(\frac{2,400}{2,300}\right)^{1.5} = 24,942.6 \text{ MPa}$$

For the column below level 2:

$$\frac{E_c \times I_{column}}{I_c} = \frac{24,942.6 \times 3.65 \times 10^9}{5,500 - 750/2} = 1.77 \times 10^{10} \text{ N-mm}$$

For the column above level 2:

$$\frac{E_c \times I_{column}}{l_c} = \frac{24,942.6 \times 3.65 \times 10^9}{3,500} = 2.59 \times 10^{10} \text{ N-mm}$$

For beams framing into the columns:

$$\frac{E_b \times I_{beam}}{I_b} = \frac{24,942.6 \times 5.54 \times 10^9}{9,500} = 1.45 \times 10^{10} \text{ N-mm}$$

Where:

$$E_c = (3,300 \times \sqrt{f_c'} + 6,900) \left(\frac{\gamma_c}{2,300}\right)^{1.5}$$

CSA A23.3-19 (Eq. 8.1)

$$I_{beam} = 0.35 \times \frac{b \times h^3}{12} = 0.35 \times \frac{450 \times 750^3}{12} = 5.54 \times 10^9 \text{ mm}^4$$

CSA A23.3-19 (10.14.1.2)

$$\Psi_{A} = \frac{\left(\sum \frac{EI}{l_c}\right)_{columns}}{\left(\sum \frac{EI}{l}\right)_{beams}} = \frac{1.77 + 2.59}{1.45} = 3.008$$

 $\Psi_B = 0.0$ (Column considered fixed at the base)

Using the following figure $\rightarrow k = 1.378$ for the exterior column.

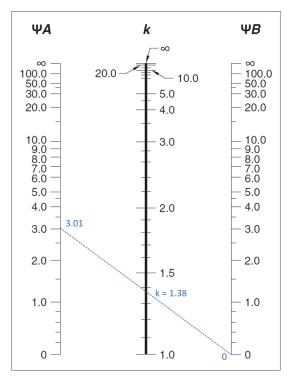


Figure 2 – Effective Length Factor (k) for Exterior Column (Sway Frame)

Note: CSA A23.3-19 (Cl. 10.15.2) allows to neglect the slenderness in a non-sway frame. However, there is no such clause in for sway frames. The CSA A23.3-19 committee intended that all columns in sway frames should be designed for slenderness.

4. Moment Magnification at Ends of Compression Member

A detailed calculation for load combinations 2 and 7 is shown below to illustrate the slender column moment magnification procedure. Table 4 summarizes the magnified moment computations for the exterior columns.

4.1. Gravity Load Combination #2 (Gravity Loads Only)

$$M_2 = M_{2ns} + \delta_s M_{2s}$$
 CSA A23.3-19 (Eq. 10.23)

Where:

$$M_{Top-s} = M_{Bottom-s} = M_{2-s} = 0 \text{ kN-m}$$

$$\therefore M_2 = M_{2ns}$$

$$M_{Top 2^{nd}} = M_{Top,ns} = 235.35 \text{ kN-m}$$

$$M_{Bottom 2^{nd}} = M_{Bottom,ns} = 256.79 \text{ kN-m}$$

$$M_{2_{-}2^{nd}} = max(M_{Top_{-}2^{nd}}, M_{Bottom_{-}2^{nd}}) = M_{Bottom_{-}2^{nd}} = 256.79 \text{ kN-m} \rightarrow M_{2_{-}1^{st}} = M_{Bottom_{-}1^{st}} = 256.79 \text{ kN-m}$$

$$M_{1_{-2}^{nd}} = min(M_{Top_{-2}^{nd}}, M_{Bottom_{-2}^{nd}}) = M_{Top_{-2}^{nd}} = 235.35 \text{ kN-m} \rightarrow M_{1_{-1}^{st}} = M_{Top_{-1}^{st}} = 235.35 \text{ kN-m}$$

$$P_f = 2,563.29 \text{ kN}$$

4.2. Lateral Load Combination #7 (Gravity Plus Wind Loads)

$$M_2 = M_{2ns} + \delta_s M_{2s}$$
 CSA A23.3-19 (Eq. 10.23)

Where:

$$\delta_{s} = \text{ moment magnifier} = \begin{cases} (1) \text{ Second-order analysis} \\ (2) \frac{1}{1 - \frac{\sum P_{f}}{\phi_{m} \sum P_{c}}} \\ (3) \frac{1}{1 - 1.2Q}, \text{ if } Q < 1/3 \end{cases}$$

There are three options for calculating δ_s . CSA A23.3-19 (10.16.3.2) will be used since it does not require a detailed structural analysis model results to proceed and is also used by the solver engine in <u>spColumn</u>.

 $\sum P_f$ is the summation of all the factored vertical loads in the first story, and $\sum P_c$ is the summation for all sway-resisting columns in the first story.

$$P_{c} = \frac{\pi^{2} (EI)_{eff}}{(kl_{u})^{2}}$$
 CSA A23.3-19 (Eq. 10.18)

Where:

$$(EI)_{eff} = \begin{cases} (a) \frac{0.2E_c I_g + E_s I_{st}}{1 + \beta_d} \\ (b) \frac{0.4E_c I_g}{1 + \beta_d} \end{cases}$$

$$(EI)_{eff} = \begin{cases} (a) \frac{0.2E_c I_g + E_s I_{st}}{1 + \beta_d} \\ (b) \frac{0.4E_c I_g}{1 + \beta_d} \end{cases}$$

There are two options for calculating the flexural stiffness of slender concrete columns (EI)_{eff}. The first equation provides accurate representation of the reinforcement in the section and will be used in this example and is also used by the solver in <u>spColumn</u>. Further comparison of the available options is provided in "<u>Effective Flexural Stiffness for Critical Buckling Load of Concrete Columns</u>" technical note.

$$E_c = \left(3,300 \times \sqrt{f_c'} + 6,900\right) \left(\frac{\gamma_c}{2,300}\right)^{1.5}$$
CSA A23.3-19 (Eq. 8.1)

 β_d in sway frames, is the ratio of maximum factored sustained shear within a story to the maximum factored shear in that story associated with the same load combination. The maximum factored sustained shear in this example is equal to zero leading to $\beta_d = 0$.

For exterior columns with one beam framing into them in the direction of analysis (14 columns):

With 12 - 25M reinforcement equally distributed on all sides $I_{st} = 1.62 \times 10^8$ mm ⁴

$$(EI)_{eff} = \frac{0.2E_cI_g + E_sI_{st}}{1 + \beta_d}$$

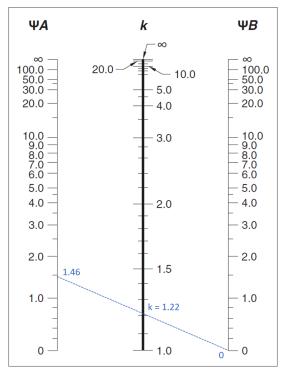
CSA A23.3-19 (Eq. 10.19)

$$(EI)_{eff} = \frac{0.2 \times 24,942.6 \times (5.21 \times 10^9) + 200,000 \times (1.62 \times 10^8)}{1+0} = 5.85 \times 10^{13} \text{ N-mm}^2$$

k = 1.378 (calculated previously).

$$P_{c1} = \frac{\pi^2 \times 5.85 \times 10^{13}}{(1.378 \times 4,750)^2} = 1.35 \times 10^7 \text{ N} = 13,465.98 \text{ kN}$$

For exterior columns with two beams framing into them in the direction of analysis (4 columns):


$$\Psi_{A} = \frac{\left(\sum \frac{EI}{l_{c}}\right)_{columns}}{\left(\sum \frac{EI}{l}\right)_{beams}} = \frac{1.77 + 2.59}{1.45 + 1.54} = 1.463$$

 $\Psi_B = 0$ (Column considered fixed at the base)

Using the following figure $\rightarrow k = 1.222$ for the exterior columns with two beams framing into them in the directions of analysis.

<u>Figure 3 – Effective Length Factor (k) for Exterior Columns with Two Beams Framing into them in the Direction of Analysis</u>

$$P_{c2} = \frac{\pi^2 \times 5.85 \times 10^{13}}{(1.222 \times 4,750)^2} = 1.71 \times 10^7 \text{ N} = 17,123.56 \text{ kN}$$

For interior columns (10 columns):

$$\Psi_{A} = \frac{\left(\sum \frac{EI}{l_{c}}\right)_{columns}}{\left(\sum \frac{EI}{l}\right)_{beams}} = \frac{1.77 + 2.59}{1.45 + 1.54} = 1.463$$

 $\Psi_B = 0.0$ (Column essentially fixed at base)

Using the following figure $\rightarrow k = 1.222$ for the interior columns.

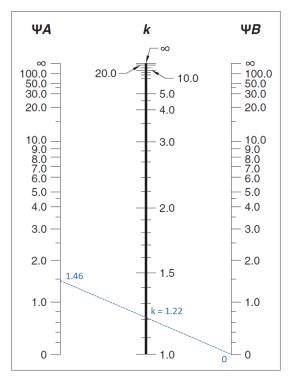


Figure 4 – Effective Length Factor (k) Calculations for Interior Columns

With 12 - 25M reinforcement equally distributed on all sides $I_{st} = 1.62 \times 10^8$ mm ⁴

$$(EI)_{eff} = \frac{0.2E_cI_g + E_sI_{st}}{1 + \beta_d}$$

CSA A23.3-19 (Eq. 10.19)

$$(EI)_{eff} = \frac{0.2 \times 24,942.6 \times (5.21 \times 10^9) + 200,000 \times (1.62 \times 10^8)}{1+0} = 5.85 \times 10^{13} \text{ N-mm}^2$$

$$P_{c3} = \frac{\pi^2 \times 5.85 \times 10^{13}}{(1.222 \times 4,750)^2} = 1.71 \times 10^7 \text{ N} = 17,123.56 \text{ kN}$$

$$\Sigma P_c = n_1 \times P_{c1} + n_2 \times P_{c2} + n_3 \times P_{c3}$$

$$\Sigma P_c = 10 \times 17,123.56 + 4 \times 17,123.56 + 14 \times 13,465.98 = 428,253.49 \text{ kN}$$

$$\Sigma P_f = 65,500 \text{ kN (Table 1)}$$

$$\delta_s = \frac{1}{1 - \frac{\sum P_f}{\phi_m \sum P_c}}$$

CSA A23.3-19 (Eq. 10.24)

$$\delta_s = \frac{1}{1 - \frac{65,500}{0.75 \times 428,253.49}} = 1.256$$

$$\delta_s M_{Top,s} = 1.256 \times 126.27 = 158.61 \text{ kN-m}$$

$$M_{Top_{-2}^{ud}} = M_{Top,ns} + \delta_s M_{Top,s} = 167.92 + 158.61 = 326.53 \text{ kN-m}$$

CSA A23.3-19 (10.16.2)

$$\delta_s M_{Bottom,s} = 1.256 \times 147.46 = 185.24 \text{ kN-m}$$

$$M_{Bottom 2^{nd}} = M_{Bottom,ns} + \delta_s M_{Bottom,s} = 183.93 + 185.24 = 369.17 \text{ kN-m}$$

CSA A23.3-19 (10.16.2)

$$M_{2_{-2}^{nd}} = max(M_{Top_{-2}^{nd}}, M_{Bottom_{-2}^{nd}}) = M_{Bottom_{-2}^{nd}} = 369.17 \text{ kN-m} \rightarrow M_{2_{-1}^{st}} = M_{Bottom_{-1}^{st}} = 331.39 \text{ kN-m}$$

$$M_{1_{-2}^{nd}} = min(M_{Top_{-2}^{nd}}, M_{Bottom_{-2}^{nd}}) = M_{Top_{-2}^{nd}} = 326.53 \text{ kN-m} \rightarrow M_{1_{-1}^{st}} = M_{Top_{-1}^{st}} = 294.18 \text{ kN-m}$$

$$P_f = 2,200.43 \text{ kN}$$

A summary of the moment magnification factors and magnified moments for the exterior column for all load combinations using equation CSA A23.3 (Eq. 10.24) to calculate δ_s is provided in the table below for illustration. Note: The designation of M_1 and M_2 is made based on the second-order (magnified) moments and not based on the first-order (unmagnified) moments.

	Table 4 - Factored Axial loads and Magnified	d Moments at	the Ends of	Exterior Colum	n
No.	Load Combination	Axial Load	Using CSA Eq. 10.24		
		kN	δ_{s}	M ₁ , kN-m	M ₂ , kN-m
1	1.4D	2,261.28		150.30	165.20
2	1.25D + 1.5L	2,563.29		235.35	256.79
3	1.25D + 1.5L + 0.4W	2,563.29	1.318	282.89	312.32
4	1.25D + 1.5L - 0.4W	2,563.29	1.318	187.80	201.26
5	0.9D + 1.5L + 0.4W	1,997.97	1.234	242.28	267.47
6	0.9D + 1.5L - 0.4W	1,997.97	1.234	153.26	163.51
7	1.25D + 0.5L + 1.4W	2,200.43	1.256	326.53	369.17
8	1.25D + 0.5L - 1.4W	2,200.43	1.256	-1.31	9.30
9	0.9D + 0.5L + 1.4W	1,635.11	1.179	279.25	316.54
10	0.9D + 0.5L - 1.4W	1,635.11	1.179	-18.57	-31.28

5. Moment Magnification along Length of Compression Member

In sway frames, if an individual compression member has:

$$\frac{l_u}{r} > \frac{35}{\sqrt{P_f/(f_c/A_g)}}$$
 CSA A23.3-19 (Eq. 10.26)

It shall be designed for the factored axial load, P_f and moment, M_c , computed using Clause 10.15.3 (Nonsway frame procedure), in which M_1 and M_2 are computed in accordance with Clause 10.16.2. *CSA A23.3-19 (10.16.4)*

$$M_{c} = \frac{C_{m}M_{2}}{1 - \frac{P_{f}}{\phi_{m}P_{c}}} \ge M_{2}$$

$$\underline{CSA\ A23.3-19\ (10.15.3.1)}$$

Where:

$$C_m = 0.6 + 0.4 \frac{M_1}{M_2} \ge 0.4$$
 $CSA \ A23.3-19 \ (10.15.3.2)$

 M_2 = the second-order factored moment (magnified sway moment)

And, the member resistance factor would be $\phi_m = 0.75$ CSA A23.3-19 (10.15.3.1)

$$P_{c} = \frac{\pi^{2} (EI)_{eff}}{(kl_{u})^{2}}$$
 CSA A23.3-19 (Eq. 10.18)

Where:

$$(EI)_{eff} = \begin{cases} (a) \frac{0.2E_c I_g + E_s I_{st}}{1 + \beta_d} \\ (b) \frac{0.4E_c I_g}{1 + \beta_d} \end{cases}$$

$$(EI)_{eff} = \begin{cases} (a) \frac{0.2E_c I_g + E_s I_{st}}{1 + \beta_d} \\ (b) \frac{0.4E_c I_g}{1 + \beta_d} \end{cases}$$

There are two options for calculating the effective flexural stiffness of slender concrete columns (*EI*)_{eff}. The first equation provides accurate representation of the reinforcement in the section and will be used in this example and is also used by the solver in <u>spColumn</u>. Further comparison of the available options is provided in "<u>Effective Flexural Stiffness for Critical Buckling Load of Concrete Columns</u>" technical note.

5.1. Gravity Load Combination #2 (Gravity Loads Only)

$$r = \sqrt{\frac{I_g}{A_g}} = \sqrt{\frac{500^4 / 12}{500^2}} = 144.34 \text{ mm}$$

 CSA A23.3-19 (10.14.2)

$$\frac{l_u}{r} = \frac{4,750}{144.34} = 32.91$$

$$\frac{35}{\sqrt{P_f / (f_c' A_g)}} = \frac{35}{\sqrt{\frac{2,563.29 \times 1,000}{25 \times 2.5 \times 10^5}}} = 54.65$$

$$\underline{CSA \ A23.3-19 \ (Eq. \ 10.26)}$$

Since 32.91 < 54.65, calculating the moments along the column length is not required.

Check minimum moment:

CSA A23.3-19 (10.15.3.1)

CSA A23.3-19 does not require to design columns in sway frames for a minimum moment. However, the reference decided conservatively to design the column for the larger of computed moments and the minimum value of M₂.

$$(M_2)_{\min} = P_f (15 + 0.03h)$$
 CSA A23.3-19 (3.2)

$$(M_2)_{\min} = 2,563.29 \times (15 + 0.03 \times 500) / 1,000 = 76.90 \text{ kN-m}$$

5.2. Load Combination #7 (Gravity Plus Wind Loads)

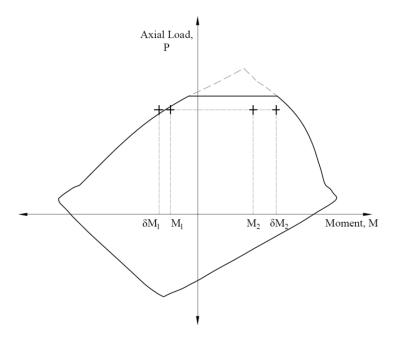
$$\frac{35}{\sqrt{P_f / (f_c' A_g)}} = \frac{35}{\sqrt{\frac{2,200.43 \times 1,000}{25 \times 2.5 \times 10^5}}} = 58.99$$

$$\underline{CSA \ A23.3-19 \ (Eq. \ 10.26)}$$

Since 32.91 < 58.99, calculating the moments along the column length is not required.

Check minimum moment:

CSA A23.3-19 (10.15.3.1)


$$(M_2)_{\min} = P_f (15 + 0.03h)$$
 CSA A23.3-19 (3.2)

$$(M_2)_{\min} = 2,200.43 \times (15 + 0.03 \times 500) / 1,000 = 66.01 \text{ kN-m}$$

 M_{c1} and M_{c2} will be considered separately to ensure proper comparison of resulting magnified moments against negative and positive moment capacities of unsymmetrical sections as can be seen in the following figure.

<u>Figure 5 – Column Interaction Diagram for Unsymmetrical Section</u>

A summary of the moment magnification factors and magnified moments for the exterior column for all load combinations using equation CSA A23.3 (Eq. 10.24) to calculate δ_s is provided in the table below for illustration.

	Table 5 - Factored Axial loads and Magnified Moments along Exterior Column Length							
No.	Load Combination	Axial Load,	Using CSA Eq.10.24					
INO.	Load Combination	kN	δ	M_{c1} , kN-m	M _{c2} , kN-m			
1	1.4D	2,261.28	1	150.30	165.20			
2	1.25D + 1.5L	2,563.29	1	235.35	256.79			
3	1.25D + 1.5L + 0.4W	2,563.29	1	282.89	312.32			
4	1.25D + 1.5L - 0.4W	2,563.29	1	187.80	201.26			
5	0.9D + 1.5L + 0.4W	1,997.97	1	242.28	267.47			
6	0.9D + 1.5L - 0.4W	1,997.97	1	153.26	163.51			
7	1.25D + 0.5L + 1.4W	2,200.43	1	326.53	369.17			
8	1.25D + 0.5L - 1.4W	2,200.43	1	-1.31	9.30			
9	0.9D + 0.5L + 1.4W	1,635.11	1	279.25	316.54			
10	0.9D + 0.5L - 1.4W	1,635.11	1	-18.57	-31.28			

For column design, CSA A23.3 requires that δ_s to be computed from Clause 10.16.3.2 using $\sum P_f$ and $\sum P_c$ under gravity load shall be positive and shall not exceed 2.5. β_d shall be taken as the ratio of the maximum factored sustained axial load to the maximum factored axial load associated with the same load combination. For values of δ_s above the limit, the frame would be very susceptible to variations in EI, foundation rotations and the like. If this value exceeds 2.5, the frame must be stiffened to reduce δ_s .

$$\beta_d = \frac{\text{Maximum factored sustained axial load}}{\text{Maximum factored axial load (same load combination)}}$$

CSA A23.3-19 (10.16.5)

$$\beta_d = \frac{66,640}{66,640} = 1$$

$$P_c = \frac{\pi^2 \left(\text{EI} \right)_{eff}}{\left(\text{kl}_u \right)^2}$$

CSA A23.3-19 (Eq. 10.18)

Where:

$$(EI)_{eff} = \frac{0.2E_cI_g + E_sI_{st}}{1 + \beta_d}$$

CSA A23.3-19 (Eq. 10.19)

$$(EI)_{eff} = \frac{0.2 \times 24,942.6 \times (5.21 \times 10^9) + 200,000 \times (1.62 \times 10^8)}{1+1} = 2.92 \times 10^{13} \text{ N-mm}^2$$

For exterior columns with two beams framing into them in the direction of analysis:

$$P_c = \frac{\pi^2 \times 2.92 \times 10^{13}}{(1.378 \times 4,750)^2} = 6,732.99 \text{ kN}$$

For interior columns and exterior columns with two beams framing into them in the direction of analysis:

$$P_c = \frac{\pi^2 \times 2.92 \times 10^{13}}{(1.222 \times 4,750)^2} = 8,561.78 \text{ kN}$$

$$\Sigma P_c = (10+4) \times 8,561.78 + 14 \times 6,732.99 = 214,126.74 \text{ kN}$$

Where the member resistance factor is $\phi_m = 0.75$

CSA A23.3-19 (10.15.3.1)

$$\delta_s = \frac{1}{1 - \frac{\Sigma P_f}{\phi_m \times \Sigma P_c}}$$

CSA A23.3-19 (Eq. 10.24)

$$\delta_s = \frac{1}{1 - \frac{66,640}{0.75 \times 214,126.74}} = 1.709 < 2.5$$

Thus, the frame is stable.

6. Column Design

Based on the factored axial loads and magnified moments considering slenderness effects, the capacity of the assumed column section ($500 \text{ mm} \times 500 \text{ mm}$ with 12 - 25 M bars distributed all sides equal) will be checked and confirmed to finalize the design. A column interaction diagram will be generated using strain compatibility analysis, the detailed procedure to develop column interaction diagram can be found in "Interaction Diagram - Tied Reinforced Concrete Column (CSA A23.3-19)" example.

The factored axial load resistance P_r for all load combinations will be set equals to P_f , then the factored moment resistance M_r associated to P_r will be compared with the magnified applied moment M_f . The design check for load combination #7 is shown below for illustration. The rest of the checks for the other load combinations are shown in the following Table.

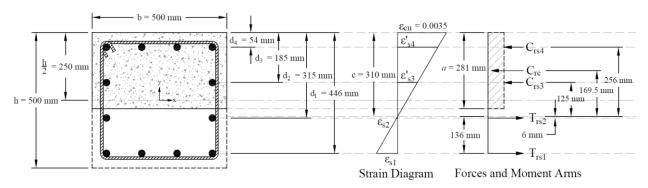


Figure 6 – Strains, Forces, and Moment Arms (Load Combination #7)

The following procedure is used to determine the nominal moment capacity by setting the factored axial load resistance, P_r , equal to the factored axial load, P_f and iterating on the location of the neutral axis.

6.1. c, a, and strains in the reinforcement

Try c = 309.66 mm

Where c is the distance from extreme compression fiber to the neutral axis.

CSA A23.3-19 (3.2)

$$a = \beta_1 \times c = 0.908 \times 309.66 = 281.01 \text{ mm}$$

CSA A23.3-19 (10.1.7a)

Where:

$$\beta_1 = 0.97 - 0.0025 f_c' = 0.908 \ge 0.67$$

CSA A23.3-19 (Eq. 10.2)

$$\varepsilon_{cu}=0.0035$$

CSA A23.3-19 (10.1.3)

$$\varepsilon_{y} = \frac{f_{y}}{E_{s}} = \frac{400}{200,000} = 0.00200$$

$$\varepsilon_s = (d_1 - c) \times \frac{0.0035}{c} = (446 - 309.66) \times \frac{0.0035}{309.66} = 0.00154 \text{ (Tension)} < \varepsilon_y$$

 \therefore tension reinforcement has not yielded

$$\phi_c = 0.65$$
 CSA A23.3-19 (8.4.2)

$$\phi_s = 0.85$$
 CSA A23.3-19 (8.4.3a)

$$\varepsilon'_{s4} = (c - d_4) \times \frac{0.0035}{c} = (309.66 - 54) \times \frac{0.0035}{309.66} = 0.00289 \text{ (Compression)} > \varepsilon_y$$

$$\varepsilon'_{s3} = (c - d_3) \times \frac{0.0035}{c} = (309.66 - 185) \times \frac{0.0035}{309.66} = 0.00141 \text{ (Compression)} < \varepsilon_y$$

$$\varepsilon_{s2} = (d_2 - c) \times \frac{0.0035}{c} = (315 - 309.66) \times \frac{0.0035}{309.66} = 0.00006 \text{ (Tension)} < \varepsilon_y$$

6.2. Forces in the concrete and steel

$$C_{rc} = \alpha_1 \times \phi_c \times f_c \times a \times b = 0.813 \times 0.65 \times 25 \times 281.01 \times 500 = 1,855.1 \text{ kN}$$
 CSA A23.3-19 (10.1.7a)

Where:

$$\alpha_1 = 0.85 - 0.0015 f_c' = 0.813 \ge 0.67$$
 CSA A23.3-19 (Eq. 10.1)

$$f_s = \varepsilon_s \times E_s = 0.00154 \times 200,000 = 308.44 \text{ MPa}$$

$$T_{rs1} = \phi_s \times f_s \times A_{s1} = 0.85 \times 308.44 \times (4 \times 500) = 524.3 \text{ kN}$$

Since $\varepsilon'_{s4} > \varepsilon_{v} \rightarrow$ compression reinforcement has yielded

$$f'_{s4} = f_{y} = 400 \text{ MPa}$$

Since $\mathcal{E}_{s3}' < \mathcal{E}_{v} \to \text{compression reinforcement has not yielded}$

$$f'_{s3} = \mathcal{E}'_{s3} \times E_s = 0.00141 \times 200,000 = 282.61 \text{ MPa}$$

Since $\varepsilon_{s2} < \varepsilon_{v} \rightarrow$ tension reinforcement has not yielded

$$f_{s2} = \varepsilon_{s2} \times E_s = 0.00006 \times 200,000 = 12.91 \text{ MPa}$$

The area of the reinforcement in third and fourth layers has been included in the area (*ab*) used to compute C_{rc} . As a result, it is necessary to subtract $\alpha_1 f_c$ ' from f_s ' before computing C_{rs} :

$$C_{rs4} = (\phi_s f'_{s4} - \alpha_1 \phi_c f'_c) \times A'_{s4} = (0.85 \times 400 - 0.813 \times 0.65 \times 25) \times (4 \times 500) / 1,000 = 653.6 \text{ kN}$$

$$C_{rs3} = (\phi_s f'_{s3} - \alpha_1 \phi_c f'_c) \times A'_{s3} = (0.85 \times 282.61 - 0.813 \times 0.65 \times 25) \times (2 \times 500) / 1,000 = 227.0 \text{ kN}$$

$$T_{rs2} = (\phi_s f_{s2}) \times A_{s2} = (0.85 \times 12.91) \times (2 \times 500) / 1,000 = 11.0 \text{ kN}$$

6.3. P_r and M_r

$$P_r = C_{rc} + C_{rs3} + C_{rs4} - T_{rs1} - T_{rs2} = 1855.1 + 227.0 + 653.6 - 524.3 - 11.0 = 2,200.43 \text{ kN}$$

$$P_r = 2,200.43 \text{ kN} \approx 2,200.43 \text{ kN} = P_f$$

The assumed value of c = 309.66 mm is correct.

$$\begin{split} M_r &= C_{rc} \times \left(\frac{h}{2} - \frac{a}{2}\right) + C_{rs4} \times \left(\frac{h}{2} - d_4\right) + C_{rs3} \times \left(\frac{h}{2} - d_3\right) + T_{rs2} \times \left(d_2 - \frac{h}{2}\right) + T_{rs1} \times \left(d_1 - \frac{h}{2}\right) \\ M_r &= 1,855.1 \times \left(\frac{500}{2} - \frac{281.01}{2}\right) + 653.6 \times \left(\frac{500}{2} - 54\right) + 227.0 \times \left(\frac{500}{2} - 185\right) + 11.0 \times \left(315 - \frac{500}{2}\right) \\ &+ 524.3 \times \left(446 - \frac{500}{2}\right) = 449,671 \text{ N-m} \end{split}$$

 $M_r = 449.67 \text{ kN-m} > M_f = 369.17 \text{ kN-m}$

	Tal	ble 6 – Exterior (Column Axial ar	nd Moment Capacit	ies	
No.	P _f , kN	$\begin{aligned} M_{\rm f} &= M_{2(2{\rm nd})}, \\ kN\text{-m} \end{aligned}$	c, mm	$\epsilon_t = \epsilon_s$	P _r , kN	M _r , kN-m
1	2,261.28	165.20	313.85	0.00147	2,261.28	444.13
2	2,563.29	256.79	335.65	0.00115	2,563.29	415.70
3	2,563.29	312.32	335.65	0.00115	2,563.29	415.70
4	2,563.29	201.26	335.65	0.00115	2,563.29	415.70
5	1,997.97	267.47	296.18	0.00177	1,997.97	467.73
6	1,997.97	163.51	296.18	0.00177	1,997.97	467.73
7	2,200.43	369.17	309.66	0.00154	2,200.43	449.67
8	2,200.43	9.30	309.66	0.00154	2,200.43	449.67
9	1,635.11	316.54	266.94	0.00235	1,635.11	485.80
10	1,635.11	-31.28	266.94	0.00235	1,635.11	485.80

Since $M_r > M_f$ for all $P_r = P_f$, use 500×500 mm column with 12 - 25M bars.

7. Column Interaction Diagram - spColumn Software

<u>spColumn</u> is a StructurePoint software program that performs the analysis and design of reinforced concrete sections subjected to axial force combined with uniaxial or biaxial bending. Using the provisions of the Strength Design Method and Unified Design Provisions, slenderness considerations are used for moment magnification due to second order effect (P-Delta) for sway and non-sway frames.

For this column section, investigation mode is used, service loads are defined, and slenderness effects are considered using CSA A23.3-19 provisions. The model input parameters, results, and report (for load combination #7) are shown below.

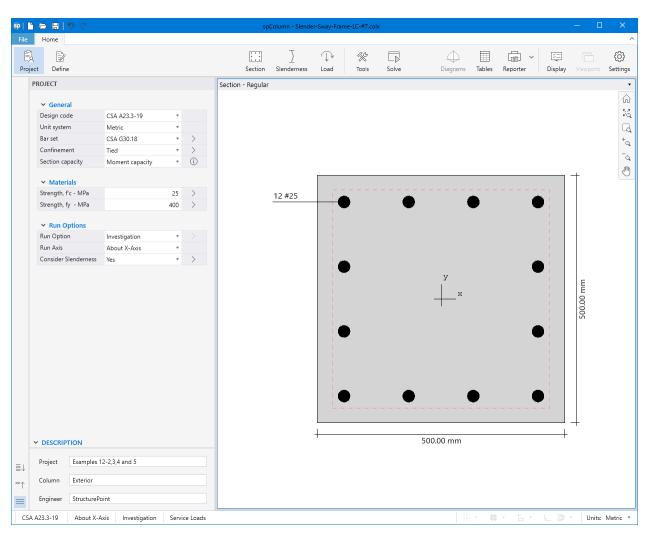


Figure 7 – spColumn Interface

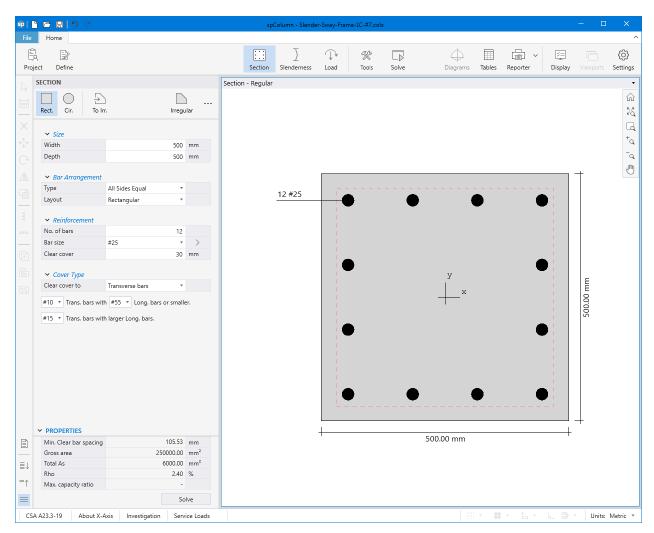


Figure 8 – spColumn Model Editor

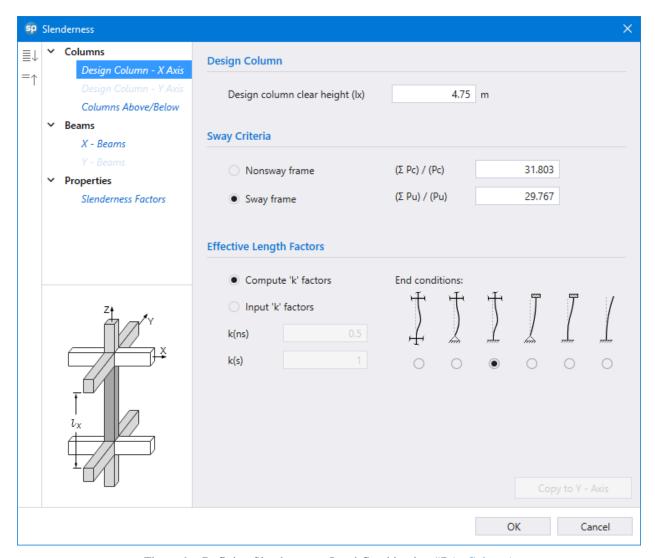


Figure 9 – Defining Slenderness – Load Combination #7 (spColumn)

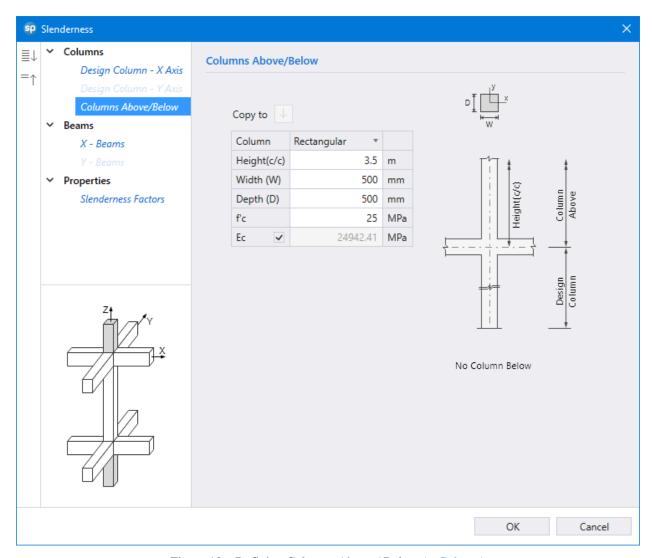


Figure 10 – Defining Columns Above / Below (spColumn)

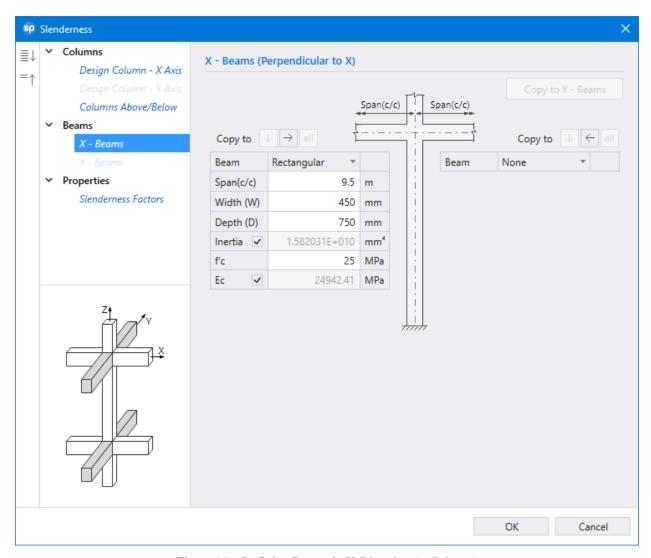


Figure 11 – Defining Beams in X-Direction (spColumn)

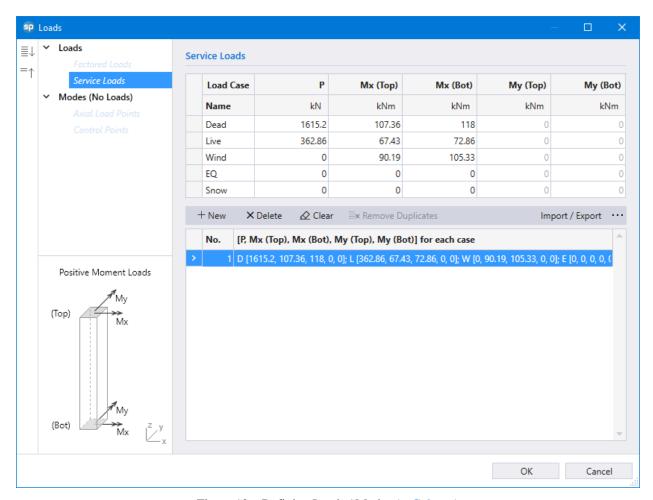


Figure 12 – Defining Loads / Modes (spColumn)

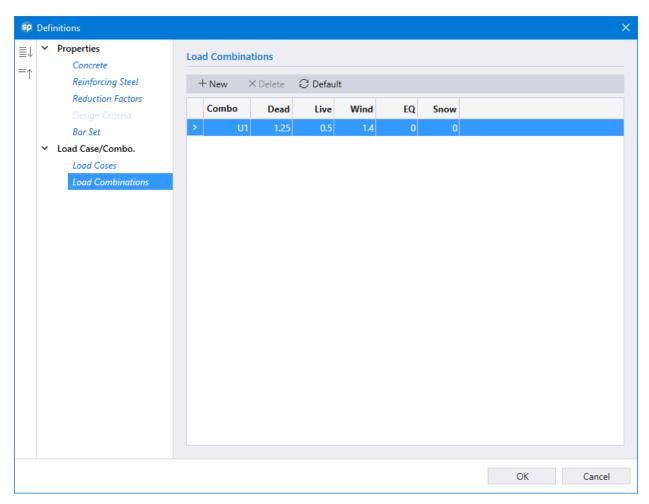
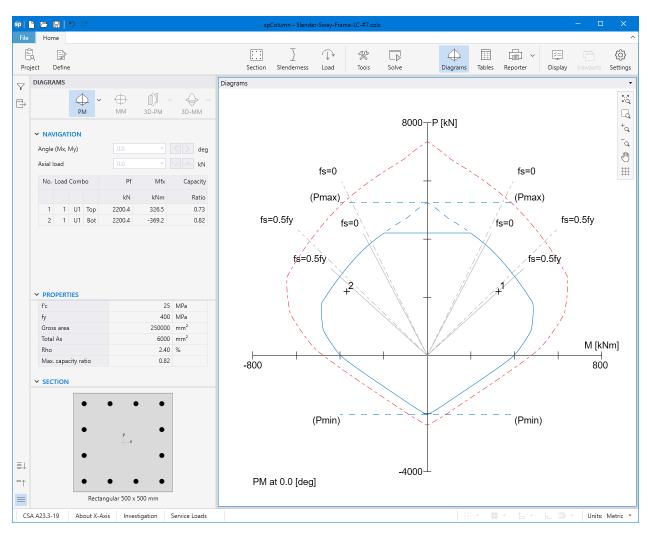
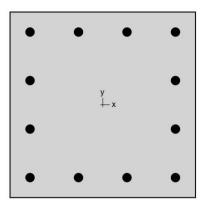



Figure 13 – Defining Load Combination #7 (spColumn)

<u>Figure 14 – Column Section Interaction Diagram about X-Axis – Design Check for Load Combination #7 (spColumn)</u>



spColumn v10.10 (TM)

Computer program for the Strength Design of Reinforced Concrete Sections
Copyright - 1988-2023, STRUCTUREPOINT, LLC.
All rights reserved

Licensee stated below acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program. Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1

E:\StructurePointspColumn\Siender-Sway-Frame-LC-#7.colx	7/27/2023 4:26 PN
E.\StructurePointispColumn\Siender-Sway-Frame-LC-#1.colx	4.26 PW
Contents	
1. General Information	3
2. Material Properties	3
2.1. Concrete	3
2.2. Steel	3
3. Section	3
3.1. Shape and Properties	3
3.2. Section Figure	4
4. Reinforcement	4
4.1. Bar Set: CSA G30.18	
4.2. Confinement and Factors	
4.3. Arrangement	
5. Loading	
5.1. Load Cases	
5.2. Load Combinations	
5.3. Service Loads	
6. Slenderness	
6.1. Sway Criteria	
6.2. Columns	
6.3. X - Beams	
7. Moment Magnification	
7.1. General Parameters	
7.2. Effective Length Factors	
7.3. Magnification Factors: X - axis	
8. Factored Moments.	
8.1. X - axis	
9. Control Points	
Factored Loads and Moments with Corresponding Capacity Ratios	
11. Diagrams	
11.1. PM at θ=0 [deg]	
TITLE IN at 0-0 [degg]	
List of Figures	
Figure 1: Column section	4

STRUCTUREPOINT - spColumn v10.10 (TM)
Licensed to: StructurePoint, LLC. License ID: 00000-000000-4-20FC1-20FC1
E:\StructurePoint\spColumn\Slender-Sway-Frame-LC-#7.colx

Page | 3 7/27/2023 4:26 PM

1. General Information

File Name	E:\StructurePoin\Slender-Sway- Frame-LC-#7.colx
Project	Examples 12-2,3,4 and 5
Column	Exterior
Engineer	StructurePoint
Code	CSA A23.3-19
Bar Set	CSA G30.18
Units	Metric
Run Option	Investigation
Run Axis	X - axis
Slenderness	Considered
Column Type	Structural
Capacity Method	Moment capacity

2. Material Properties

2.1. Concrete

Туре	Standard
f' _c	25 MPa
E _c	24942.4 MPa
f _c	20.3125 MPa
ε _u	0.0035 mm/m
β1	0.9075

2.2. Steel

Туре	Standard	
f _y	400	MPa
Es	200000	MPa
ε _{ty}	0.002	mm/mm

3. Section

3.1. Shape and Properties

Туре	Rectangular	
Width	500 m	m
Depth	500 m	m
Ag	250000 m	m²
l _x	5.20833e+009 m	m
l _y	5.20833e+009 m	m4
r _x	144.338 m	m
r _y X _o	144.338 m	m
X _o	0 m	m
Y.	0 m	m

STRUCTUREPOINT - spColumn v10.10 (TM)
Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1
E:\StructurePoint\spColumn\Slender-Sway-Frame-LC-#7.colx

Page | 4 7/27/2023 4:26 PM

3.2. Section Figure

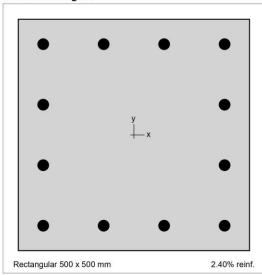


Figure 1: Column section

4. Reinforcement

4.1. Bar Set: CSA G30.18

Bar	Diameter	Area	Bar	Diameter	Area	Bar	Diameter	Area
	mm	mm²		mm	mm²		mm	mm ²
#10	11.30	100.00	#15	16.00	200.00	#20	19.50	300.00
#25	25.20	500.00	#30	29.90	700.00	#35	35.70	1000.00
#45	43.70	1500.00	#55	56.40	2500.00			

4.2. Confinement and Factors

Confinement type	Tied
For #55 bars or less	#10 ties
For larger bars	#15 ties
Material Resistance Factors	
Axial compression, (a)	0.8
Steel (\$\phi_s\$)	0.85
Concrete (φ _c)	0.65
Minimum dimension, h	500 mm

4.3. Arrangement

Pattern	All sides equal	
Bar layout	Rectangular	
Cover to	Transverse bars	
Clear cover	30 mm	

STRUCTUREPOINT - spColumn v10.10 (TM)
Licensed to: StructurePoint, LLC. License ID: 00000-000000-4-20FC1-20FC1
E:\StructurePoint\spColumn\Slender-Sway-Frame-LC-#7.colx

Page | **5** 7/27/2023 4:26 PM

Bars	12 #25	
Total steel area, A _s	6000	mm²
Rho	2.40	%
Minimum clear spacing	106	mm

5. Loading

5.1. Load Cases

Case	Туре	Sustained Load
		%
A	Dead	100
В	Live	0
C	Wind	0
D	EQ	0
E	Snow	0

5.2. Load Combinations

Combination	Dead	Live	Wind	EQ	Snow
U1	1.250	0.500	1.400	0.000	0.000

5.3. Service Loads

No.	Load Case	Axial Load	Mx @ Top	Mx @ Bottom	My @ Top	My @ Bottom
		kN	kNm	kNm	kNm	kNm
1	Dead	1615.20	107.36	118.00	0.00	0.00
1	Live	362.86	67.43	72.86	0.00	0.00
1	Wind	0.00	90.19	105.33	0.00	0.00
1	EQ	0.00	0.00	0.00	0.00	0.00
1	Snow	0.00	0.00	0.00	0.00	0.00

6. Slenderness

6.1. Sway Criteria

X-Axis	Sway column
ΣPc	31.80 x P _c
ΣP_u	29.77 x P _u

6.2. Columns

Column	Axis	Height	Width	Depth/Dia.	1	f'c	E _c
		m	mm	mm	mm ⁴	MPa	MPa
Design	Х	4.75	500	500	5.20833e+009	25	24942.4
Above	X	3.5	500	500	5.20833e+009	25	24942.4
Below	X	(no column specified)				

6.3. X - Beams

Beam	Length	Width	Depth	1	f'c	E,
	m	mm	mm	mm ⁴	MPa	MPa
Above Left	9.5	450	750	1.58203e+010	25	24942.4
Above Right	(no beam specified)					
Below Left	Rigid beam					
Below Right	Rigid beam					

STRUCTUREPOINT - spColumn v10.10 (TM)
Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1
E:\StructurePoint\spColumn\Slender-Sway-Frame-LC-#7.colx

Page | 6 7/27/2023 4:26 PM

7. Moment Magnification

7.1. General Parameters

Factors	Code defaults
Stiffness reduction factor, φ _K	0.75
Cracked section coefficients, cl(beams)	0.35
Cracked section coefficients, cl(columns)	0.7
0.2 E _c I _g + E _s I _{se} (X-axis)	5.85e+010 kNmm
Minimum eccentricity, e _{x min}	30.00 mm
k'	(P _f / (f' _c *A _g)) ^{0.5}

7.2. Effective Length Factors

Axis	Ψ_{top}	Ψ_{bottom}	k (Nonsway)	k (Sway)	kl _u /r
X	3.008	0.025	0.676	1.378	45.35

7.3. Magnification Factors: X - axis

Load			At	Ends			Along Length					
Combo		$\sum P_f$	Pc	ΣPc	β_{ds}	δ_s	P _f	k'l _u /r	Pc	β_{dns}	C _m	δ
		kN	kN	kN			kN		kN			
1	U1	65500.20	13467.68	428312.66	0.000	1.256	2200.43	19.53	(N/A)	(N/A)	(N/A)	(N/A)

8. Factored Moments

NOTE: Each loading combination includes the following cases: Top - At column top Bot - At column bottom

8.1. X - axis

Load Combo			1 st Order			2 nd Order			Ratio	
		Mn	M _{ns}	Ms	M _f	M_{min}		M_i	Mc	2 nd /1 st
			kNm	kNm	kNm	kNm		kNm	kNm	
1	U1	Тор	167.91	126.27	294.18	(N/A)	M ₁ =	326.52	(N/A)	(N/A)
1	U1	Bot	-183.93	-147.46	-331.39	(N/A)	M ₂ =	-369.16	(N/A)	(N/A)

9. Control Points

About Point	Р	X-Moment	Y-Moment	NA Depth	d _t Depth	ε _t
	kN	kNm	kNm	mm	mm	
X @ Max compression	5261.6	0.00	0.00	1041	446	-0.00200
X @ Allowable comp.	4209.2	199.06	0.00	489	446	-0.00030
$X @ f_s = 0.0$	3814.1	266.16	0.00	446	446	0.00000
$X @ f_s = 0.5 f_y$	2711.6	401.04	0.00	347	446	0.00100
X @ Balanced point	1803.1	484.67	0.00	284	446	0.00200
X @ Pure bending	0.0	397.65	0.00	120	446	0.00956
X @ Max tension	-2040.0	0.00	0.00	0	446	9.99999
-X @ Max compression	5261.6	0.00	0.00	1041	446	-0.00200
 -X @ Allowable comp. 	4209.2	-199.06	0.00	489	446	-0.00030
-X @ f _s = 0.0	3814.1	-266.16	0.00	446	446	0.00000
$-X @ f_s = 0.5 f_y$	2711.6	-401.04	0.00	347	446	0.00100
-X @ Balanced point	1803.1	-484.67	0.00	284	446	0.00200
-X @ Pure bending	0.0	-397.65	0.00	120	446	0.00956
-X @ Max tension	-2040.0	0.00	0.00	0	446	9.99999

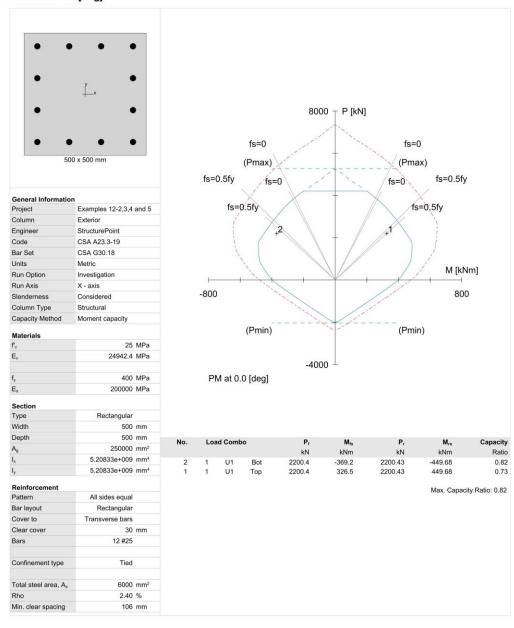
STRUCTUREPOINT - spColumn v10.10 (TM)
Licensed to: StructurePoint, LLC. License ID: 00000-000000-4-20FC1-20FC1
E:\StructurePoint\spColumn\Slender-Sway-Frame-LC-#7.colx

Page | **7** 7/27/2023 4:26 PM

10. Factored Loads and Moments with Corresponding Capacity Ratios

NOTE: Calculations are based on "Moment Capacity" Method.
Each loading combination includes the following cases:
Top - At column top
Bot - At column bottom

No.	Load			Demand		Capacit	у	Parameters at	Capacity	
	Combo		bo P _f M _{fx}		M _{fx}	P _r M _{rx}		NA Depth ϵ_t		Ratio
				kN	kNm	kN	kNm	mm		
1	1	U1	Тор	2200.43	326.52	2200.43	449.68	310	0.00154	0.73
2	1	111	Bot	2200.43	360 16	2200 43	449.68	310	0.00154	0.82



STRUCTUREPOINT - spColumn v10.10 (TM) Licensed to: StructurePoint, LLC. License ID: 00000-0000004-20FC1-20FC1 E:\StructurePoint\spColumn\Slender-Sway-Frame-LC-#7.colx

Page | 8 7/27/2023 4:26 PM

11. Diagrams

11.1. PM at θ=0 [deg]

8. Summary and Comparison of Design Results

Analysis and design results from the hand calculations above are compared for the exact values obtained from spColumn model.

Table 7 – Parameters for Moment Magnification at Column Ends (Load Combination #7)										
	k	EI, N-mm ²	P _c , kN	$M_{1(2nd)}$, kN-m	M _{2(2nd)} , kN-m					
Hand	1.378	5.85×10^{13}	13,465.98	326.53	369.17					
<u>spColumn</u>	1.378	5.85×10^{13}	13,467.68	326.52	369.16					

In this table, a detailed comparison for all considered load combinations are presented for comparison.

	Table 8 – Factored Axial loads and Magnified Moments at Column Ends										
No	P _f ,	kN	3	S_s	$M_{1(2nd)}$,	kN-m	M _{2(2nd)} , kN-m				
No.	Hand	<u>spColumn</u>	Hand	<u>spColumn</u>	Hand	<u>spColumn</u>	Hand	<u>spColumn</u>			
1	2,261.28	2,261.28	N/A	N/A	150.30	150.30	165.20	165.20			
2	2,563.29	2,563.29	N/A	N/A	235.35	235.35	256.79	256.79			
3	2,563.29	2,563.29	1.318	1.318	282.89	282.89	312.32	312.32			
4	2,563.29	2,563.29	1.318	1.318	187.80	187.80	201.26	201.26			
5	1,997.97	1,997.97	1.234	1.234	242.28	242.27	267.47	267.47			
6	1,997.97	1,997.97	1.234	1.234	153.26	153.26	163.51	163.51			
7	2,200.43	2,200.43	1.256	1.256	326.53	326.52	369.17	369.16			
8	2,200.43	2,200.43	1.256	1.256	-1.31	-1.30	9.30	9.31			
9	1,635.11	1,635.11	1.179	1.179	279.25	279.24	316.54	316.53			
10	1,635.11	1,635.11	1.179	1.179	-18.57	-18.57	-31.28	-31.27			

	Table 9 – Design Parameters Comparison										
N.	c, r	nm	$\epsilon_{ m t}$:	$= \varepsilon_{\rm s}$	P _f , k	N	M _r , kN-m				
No.	Hand	<u>spColumn</u>	Hand	<u>spColumn</u>	Hand	<u>spColumn</u>	Hand	<u>spColumn</u>			
1	313.85	314	0.00147	0.00147	2,261.28	2,261.28	444.13	444.14			
2	335.65	336	0.00115	0.00115	2,563.29	2,563.29	415.70	415.70			
3	335.65	336	0.00115	0.00115	2,563.29	2,563.29	415.70	415.70			
4	335.65	336	0.00115	0.00115	2,563.29	2,563.29	415.70	415.70			
5	296.18	296	0.00177	0.00177	1,997.97	1,997.97	467.73	467.73			
6	296.18	296	0.00177	0.00177	1,997.97	1,997.97	467.73	467.73			
7	309.66	310	0.00154	0.00154	2,200.43	2,200.43	449.67	449.68			
8	309.66	310	0.00154	0.00154	2,200.43	2,200.43	449.67	449.68			
9	266.94	267	0.00235	0.00235	1,635.11	1,635.11	485.80	485.80			
10	266.94	267	0.00235	0.00235	1,635.11	1,635.11	485.80	485.80			

All the results of the hand calculations illustrated above are in precise agreement with the automated exact results obtained from the spColumn program.

9. Conclusions & Observations

The analysis of the reinforced concrete section performed by <u>spColumn</u> conforms to the provisions of the Strength Design Method and Unified Design Provisions with all conditions of strength satisfying the applicable conditions of equilibrium and strain compatibility and includes slenderness effects using moment magnification method for sway and nonsway frames.

CSA A23.3 provides multiple options for calculating values of EI and δ_s leading to variability in the determination of the adequacy of a column section. Engineers must exercise judgment in selecting suitable options to match their design condition. The <u>spColumn</u> program utilizes the exact methods whenever possible and allows user to override the calculated values with direct input based on their engineering judgment wherever it is permissible.

It was concluded in the CSA A23.3-19 that the probability of stability failure increases rapidly when the stability index Q exceeds 0.2 and a more rigid structure may be required to provide stability.

CSA A23.3-19 (10.14.6)

If a frame undergoes appreciable lateral deflections under gravity loads, serious consideration should be given to rearranging the frame to make it more symmetrical because with time, creep will amplify these deflections leading to both serviceability and strength problems. One of these limitations is to limit the second-order lateral deflections to first-order lateral deflections to 2.5 (the ratio should not exceed 2.5) under factored gravity load plus a lateral load applied to each story equal to 0.0005 multiplied by factored gravity load in that story.

CSA A23.3-19 (10.16.5)

The limitation on δ_s is intended to prevent instability under gravity loads alone. For values of δ_s above the limit, the frame would be very susceptible to variations in EI, foundation rotations and the like. If δ_s exceeds 2.5 the frame must be stiffened to reduce δ_s .

Exploring the impact of other code permissible equation options provides the engineer added flexibility in decision making regarding design. In some cases, resolving the stability concern may be viable through a frame analysis providing values for V_f and Δ_o to calculate magnification factor δ_s . Creating a complete model with detailed lateral loads and load combinations to account for second order effects may not be warranted for all cases of slender column design nor is it disadvantageous to have a higher margin of safety when it comes to column slenderness and frame stability considerations.