Two-Way Joist Concrete Slab Floor (Waffle Slab) System Analysis and Design (ACI 318-14)

Two-Way Joist Concrete Slab Floor (Waffle Slab) System Analysis and Design (ACI 318-14)

Design the concrete floor slab system shown below for an intermediate floor with partition weight of 50 psf , and unfactored live load of 100 psf . The lateral loads are independently resisted by shear walls. A flat plate system will be considered first to illustrate the impact longer spans and heavier applied loads. A waffle slab system will be investigated since it is economical for longer spans with heavy loads. The dome voids reduce the dead load and electrical fixtures can be fixed in the voids. Waffle system provides an attractive ceiling that can be left exposed when possible producing savings in architectural finishes. The Equivalent Frame Method (EFM) shown in ACI 318 is used in this example. The hand solution from EFM is also used for a detailed comparison with the model results of spSlab engineering software program from StructurePoint.

Figure 1 - Two-Way Flat Concrete Floor System

Contents

1. Preliminary Member Sizing 2
1.1. Preliminary Flat Plate (without Joists) 2
1.1.1. Slab Minimum Thickness - Deflection 2
1.1.2. Slab Shear Strength - One Way Shear 3
1.1.3. Slab Shear Strength - Two-Way Shear5
1.2. Preliminary Two-Way Joist Slab (Waffle Slab) 9
1.2.1. Slab Minimum Thickness - Deflection 9
1.2.2. Slab Shear Strength - One Way Shear 12
1.2.3. Slab Shear Strength - Two-Way Shear 16
1.2.4. Column Dimensions - Axial Load 18
2. Flexural Analysis and Design 19
2.1. Equivalent Frame Method (EFM) 19
2.1.1. Limitations for Use of Equivalent Frame Method. 19
2.1.2. Frame Members of Equivalent Frame 20
2.1.3. Equivalent Frame Analysis 24
2.1.4. Factored Moments Used for Design 29
2.1.5. Factored Moments in Slab-Beam Strip 30
2.1.6. Flexural Reinforcement Requirements 32
2.1.7. Factored Moments in Columns 38
3. Design of Columns by spColumn 40
3.1. Determination of Factored Loads 40
3.2. Moment Interaction Diagram 42
4. Shear Strength 46
4.1. One-Way (Beam Action) Shear Strength 46
4.1.1. At Distance d from the Supporting Column 46
4.1.2. At the Face of the Drop Panel 48
4.2. Two-Way (Punching) Shear Strength 49
4.2.1. Around the Columns Faces 49
4.2.2. Around Drop Panels 55
5. Serviceability Requirements (Deflection Check) 62
5.1. Immediate (Instantaneous) Deflections. 62
5.2. Time-Dependent (Long-Term) Deflections $\left(\Delta_{\mathrm{lt}}\right)$ 75
6. spSlab Software Program Model Solution 77
7. Summary and Comparison of Design Results 102
8. Conclusions \& Observations 106

Code

Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)

References

- Concrete Floor Systems (Guide to Estimating and Economizing), Second Edition, 2002 David A. Fanella, Portland Cement Association
- Notes on ACI 318-11 Building Code Requirements for Structural Concrete, Twelfth Edition, 2013 Portland Cement Association.
- Simplified Design of Reinforced Concrete Buildings, Fourth Edition, 2011 Mahmoud E. Kamara and Lawrence C. Novak
- Control of Deflection in Concrete Structures (ACI 435R-95), American Concrete Institute
- Structural Concrete Theory and Design, $6^{\text {th }}$ Edition, 2015, Nadim Hassoun and Akthem Al-Manaseer, Wiley, Example 17.12
- spSlab Engineering Software Program Manual v5.50, STRUCTUREPOINT, 2018
- "Two-Way Flat Plate Concrete Floor System Analysis and Design (ACI 318-14)" Design Example, STRUCTUREPOINT, 2023
- "Two-Way Flat Slab (Concrete Floor with Drop Panels) System Analysis and Design (ACI 318-14)" Design Example, STRUCTUREPOINT, 2023
- "Two-Way Concrete Floor Slab with Beams System Analysis and Design (ACI 318-14)" Design Example, STRUCTUREPOINT, 2024
- Contact Support@StructurePoint.org to obtain supplementary materials (spSlab models: Two-Way-Joist-Waffle-System-ACI-318-14.slb)

Design Data

Story Height $=13 \mathrm{ft}$ (provided by architectural drawings)
Superimposed Dead Load, $S D L=50 \mathrm{psf}$ for Frame walls, hollow concrete masonry unit wythe, 12 in. thick, 125 pcf unit density, with no grout

ASCE/SEI 7-10 (Table C3-1)
Live Load, $L L=100 \mathrm{psf}$ for Recreational uses - Gymnasiums
ASCE/SEI 7-10 (Table 4-1)
$f_{c}{ }^{\prime}=5,000 \mathrm{psi}$ (for slab)
$f_{c}{ }^{\prime}=6,000 \mathrm{psi}$ (for columns)
$f_{y}=60,000 \mathrm{psi}$

1. Preliminary Member Sizing

1.1. Preliminary Flat Plate (without Joists)

1.1.1. Slab Minimum Thickness - Deflection

ACI 318-14 (8.3.1.1)
In lieu of detailed calculation for deflections, ACI 318 Code gives minimum slab thickness for two-way construction without interior beams in Table 8.3.1.1.

For flat plate slab system, the minimum slab thickness per $\boldsymbol{A C I}$ 318-14 are:
Exterior Panels: $h_{s}=\frac{l_{n}}{30}=\frac{376}{30}=12.53 \mathrm{in}$.
ACI 318-14 (Table 8.3.1.1)

But not less than 5 in.

Interior Panels: $h_{s}=\frac{l_{n}}{33}=\frac{376}{33}=11.39 \mathrm{in}$.
ACI 318-14 (Table 8.3.1.1)

But not less than 5 in.
ACI 318-14 (8.3.1.1(a))

Where $l_{n}=$ length of clear span in the long direction $=33 \times 12-20=376 \mathrm{in}$.

Use 13 in . slab for all panels (self-weight $=150 \mathrm{pcf} \times 13 \mathrm{in} / 12=.162.50 \mathrm{psf}$)

1.1.2. Slab Shear Strength - One Way Shear

Evaluate the average effective depth (Figure 2):
$d_{l}=h_{s}-c_{\text {clear }}-d_{b}-\frac{d_{b}}{2}=13-0.75-0.75-\frac{0.75}{2}=11.13 \mathrm{in}$.
$d_{t}=h_{s}-c_{\text {clear }}-\frac{d_{b}}{2}=13-0.75-\frac{0.75}{2}=11.88 \mathrm{in}$.
$d_{\text {avg }}=\frac{d_{l}+d_{t}}{2}=\frac{11.13+11.88}{2}=11.50 \mathrm{in}$.

Where:
$c_{\text {clear }}=3 / 4 \mathrm{in}$. for \# 6 steel bar
$d_{b}=0.75$ in. for \# 6 steel bar

Figure 2 - Average Effective Depth for Flat Plate

Factored dead load, $\quad q_{D u}=1.20 \times(162.50+50.00)=255.00 \mathrm{psf}$

Factored live load, $\quad q_{L u}=1.60 \times 100.00=160.00 \mathrm{psf}$
ACI 318-14 (5.3.1)

Total factored load, $\quad q_{u}=255.00+160.00=415.00 \mathrm{psf}$

Check the adequacy of slab thickness for beam action (one-way shear)
ACI 318-14 (22.5)

At an interior column:

Consider a 12 -in. wide strip. The critical section for one-way shear is located at a distance d, from the face of support (see Figure 3):

Tributary area for one-way shear is:

$$
\begin{aligned}
& A_{\text {Tributary }}=\left[\frac{33}{2}-\frac{20}{2 \times 12}-\frac{11.50}{12}\right] \times \frac{12}{12}=14.71 \mathrm{ft}^{2} \\
& V_{u}=q_{u} \times A_{\text {Tributary }}=0.415 \times 14.71=6.10 \mathrm{kips} \\
& V_{c}=2 \times \lambda \times \sqrt{f_{c}^{\prime}} \times b_{w} \times d
\end{aligned}
$$

Where $\lambda=1$ for normal weight concrete, more information can be found in "Concrete Type Classification Based on Unit Density" technical article.

$$
\phi V_{c}=0.75 \times 2.0 \times 1.0 \times \sqrt{5,000} \times 12 \times \frac{11.50}{1,000}=14.64 \mathrm{kips}>V_{u}=6.10 \mathrm{kips}
$$

Slab thickness of 13 in . is adequate for one-way shear.

Figure 3 - Critical Section for One-Way Shear

1.1.3. Slab Shear Strength - Two-Way Shear

Check the adequacy of slab thickness for punching shear (two-way shear) at an interior column (Figure 4):

Tributary area for two-way shear is:
$A_{\text {Tributary }}=(33 \times 33)-\left(\frac{20+11.50}{12}\right)^{2}=1,082.11 \mathrm{ft}^{2}$
$V_{u}=q_{u} \times A_{\text {Tributary }}=0.415 \times 1,082.11=449.08 \mathrm{kips}$
$V_{c}=4 \times \lambda \times \sqrt{f_{c}^{\prime}} \times b_{o} \times d$ (For square interior column)
ACI 318-14 (Table 22.6.5.2(a))
$V_{c}=4 \times 1 \times \sqrt{5,000} \times(4 \times(20+11.50)) \times \frac{11.50}{1,000}=409.84 \mathrm{kips}$
$\phi V_{c}=0.75 \times 409.84=307.38 \mathrm{kips}<V_{u}=449.08 \mathrm{kips}$

Slab thickness of 13 in . is not adequate for two-way shear. This is expected as the self-weight an applied loads are very challenging for a flat plate system.

Figure 4 - Critical Section for Two-Way Shear

In this case, four options can be considered: 1) to increase the slab thickness further, 2) use headed shear reinforcement in the slab, 3) apply drop panels at columns, or 4) use two-way joist slab system. In this example, the latter option will be used to achieve better understanding for the design of two-way joist slab often called two-way ribbed slab or waffle slab.

Check the applicable joist dimensional limitations as follows:

1) Width of ribs shall be at least 4 in. at any location along the depth.

ACI 318-14 (9.8.1.2)
Use ribs with 6 in. width.
2) Overall depth of ribs shall not exceed 3.5 times the minimum width.

ACI 318-14 (9.8.1.3)
3.5×6 in. $=21$ in. \rightarrow Use ribs with 14 in. depth.
3) Clear spacing between ribs shall not exceed 30 in.

ACI 318-14 (9.8.1.4)
Use 30 in . clear spacing.
4) Slab thickness (with removable forms) shall be at least the greater of:

ACI 318-14 (8.8.3.1)
a) $1 / 12$ clear distance between ribs $=1 / 12 \times 30=2.50 \mathrm{in}$.
b) 2 in .

Use a slab thickness of $3.00 \mathrm{in} .>2.50 \mathrm{in}$.

Figure 5 - Joists Dimensions

In waffle slabs a drop panel is automatically invoked to guarantee adequate two-way (punching) shear resistance at column supports. This is evident from the flat plate check conducted using 13 in. indicating insufficient punching shear capacity above. Check the drop panel dimensional limitations as follows:

1) The drop panel shall project below the slab at least one-fourth of the adjacent slab thickness.

ACI 318-14 (8.2.4(a))
Since the slab thickness ($h_{M I}-$ calculated in page 9 of this document) is 12 in ., the thickness of the drop panel should be at least:
$h_{d p, \text { min }}=0.25 \times h_{M I}=0.25 \times 12=3.00 \mathrm{in}$.
Drop panel depth are also controlled by the rib depth (both at the same level). For nominal lumber size (2x),
$h_{d p}=h_{r i b}=14.00 \mathrm{in} .>h_{d p, \text { min }}=3.00 \mathrm{in}$.
The total thickness including the actual slab and the drop panel thickness $(h)=h_{s}+h_{d p}=3.00+14.00=$ 17.00 in .
2) The drop panel shall extend in each direction from the centerline of support a distance not less than onesixth the span length measured from center-to-center of supports in that direction.

ACI 318-14 (8.2.4(b))

$$
\begin{aligned}
& l_{1, d p_{-} \text {min }}=\frac{1}{6} \times l_{1}+\frac{1}{6} \times l_{1}=\frac{1}{6} \times 33+\frac{1}{6} \times 33=11.00 \mathrm{ft} \\
& l_{2, d p_{_} \text {min }}=\frac{1}{6} \times l_{2}+\frac{1}{6} \times l_{2}=\frac{1}{6} \times 33+\frac{1}{6} \times 33=11.00 \mathrm{ft}
\end{aligned}
$$

Use $l_{1, d p}=l_{2, d p}=12.00 \mathrm{ft}>l_{1, d p_{_} \text {min }}=l_{2, d p_{-} \text {min }}=11.00 \mathrm{ft}$

Based on the previous discussion, Figure 6 shows the dimensions of the selected two-way joist system.

Figure 6 - Two-Way Joist (Waffle) Slab

1.2. Preliminary Two-Way Joist Slab (Waffle Slab)

For slabs with changes in thickness and subjected to bending in two directions, it is necessary to check shear at multiple sections as defined in the $\underline{\boldsymbol{A C I} \mathbf{3 1 8 - 1 4}}$. The critical sections shall be located with respect to:

1) Edges or corners of columns.

ACI 318-14 (22.6.4.1(a))
2) Changes in slab thickness, such as edges of drop panels.

ACI 318-14 (22.6.4.1(b))

1.2.1. Slab Minimum Thickness - Deflection

ACI 318-14 (8.3.1.1)
In lieu of detailed calculation for deflections, ACI 318 Code gives minimum slab thickness for two-way construction without interior beams in Table 8.3.1.1.

For this slab system, the minimum slab thicknesses per ACI 318-14 are:
Exterior Panels: $h_{s}=\frac{l_{n}}{33}=\frac{376}{33}=11.39 \mathrm{in}$.
ACI 318-14 (Table 8.3.1.1)

But not less than 4 in.
ACI 318-14 (8.3.1.1(b))

Interior Panels: $h_{s}=\frac{l_{n}}{36}=\frac{376}{36}=10.44 \mathrm{in}$.
ACI 318-14 (Table 8.3.1.1)

But not less than 4 in.
ACI 318-14 (8.3.1.1(b))

Where $l_{n}=$ length of clear span in the long direction $=33 \times 12-20=376 \mathrm{in}$.

For the purposes of analysis and design, the ribbed slab will be replaced with a solid slab of equivalent moment of inertia, weight, punching shear capacity, and one-way shear capacity.

The equivalent thickness based on moment of inertia is used to find slab stiffness considering the ribs in the direction of the analysis only. The ribs spanning in the transverse direction are not considered in the stiffness computations. This thickness, $h_{M I}$, is given by:
$h_{M I}=\left(\frac{12 \times I_{r i b}}{b_{r i b}}\right)^{1 / 3}=\left(\frac{12 \times 5134.87}{36}\right)^{1 / 3}=12.00 \mathrm{in}$.
spSlab Software Manual (Eq. 2-11)

Where:
$I_{\text {rib }}=$ Moment of inertia of one joist section between centerlines of ribs (see Figure 7).
$b_{r i b}=$ The center-to-center distance of two ribs (clear rib spacing plus rib width) (see Figure 7).

Since $h_{M I}=12.00 \mathrm{in} .>h_{\text {min }}=11.39 \mathrm{in}$., the deflection calculation can be neglected. However, the deflection calculation will be included in this example for comparison with the $\underline{s p S l a b}$ software results.

The drop panel depth for two-way joist (waffle) slab is set equal to the rib depth. The equivalent drop depth based on moment of inertia, $d_{M I}$, is given by:

$$
d_{M I}=h_{M I}+h_{r i b}=12.00+5.00=17.00 \mathrm{in} .
$$

spSlab Software Manual (Eq. 2-12)

Where:
$h_{\text {rib }}=3.00+14.00-12.00=5.00 \mathrm{in}$.

Figure 7 - Equivalent Thickness Based on Moment of Inertia

Find system self-weight using the equivalent thickness based on the weight of individual components (see the following Figure). This thickness, h_{w}, is given by:
$h_{w}=\frac{V_{\text {mod }}}{A_{\text {mod }}}=\frac{66.037}{99.000}=8.005 \mathrm{in}$.
spSlab Software Manual (Eq. 2-10)

Where:
$V_{\text {mod }}=$ The Volume of one joist module (the transverse joists are included - 11 joists in the frame strip).
$V_{\text {mod }}=V_{\text {Longitudinal Joist }}+V_{\text {Transverse Joists }}-V_{\text {Intersection between Joists }}$
$V_{\text {Longitudinal Joist }}=\left(\frac{6+8.33}{2} \times 14.00+3.00 \times 36.00\right) \times(33.00 \times 12.00)=47.74 \mathrm{ft}^{3}$
$V_{\text {Transverse Joists }}=11 \times\left(\frac{6+8.33}{2} \times 14.00\right) \times 36.00=22.99 \mathrm{ft}^{3}$
$V_{\text {Intersection between Joists }}=11 \times\left(\frac{6^{2}+8.33^{2}}{2} \times 14.00\right)=4.70 \mathrm{ft}^{3}$
$V_{\text {mod }}=47.74+22.99-4.70=66.04 \mathrm{ft}^{3}$
$A_{\text {mod }}=$ The plan area of one joist module $=33 \times 36 / 12=99.00 \mathrm{ft}^{2}$.

Self-weight for slab section without drop panel $=150 \mathrm{pcf} \times 8.00 \mathrm{in} . / 12=100.057 \mathrm{psf}$

Self-weight for slab section with drop panel $=150 \mathrm{pcf} \times(14.00+3.00-8.00)$ in. $/ 12=112.443 \mathrm{psf}$

Figure 8 - Equivalent Thickness Based on the Weight of Individual Components

1.2.2. Slab Shear Strength - One Way Shear

For critical section at distance d from the edge of the column (slab section with drop panel):

Evaluate the average effective depth:
$d_{l}=h_{s}-c_{\text {clear }}-d_{b}-\frac{d_{b}}{2}=17.00-0.75-0.75-\frac{0.75}{2}=15.13 \mathrm{in}$.
$d_{t}=h_{s}-c_{\text {clear }}-\frac{d_{b}}{2}=17.00-0.75-\frac{0.75}{2}=15.88 \mathrm{in}$.
$d_{\text {avg }}=\frac{d_{l}+d_{t}}{2}=\frac{15.13+15.88}{2}=15.50 \mathrm{in}$.

Where:
$c_{c l e a r}=3 / 4$ in. for \# 6 steel bar
ACI 318-14 (Table 20.6.1.3.1)
$d_{b}=0.75 \mathrm{in}$. for \# 6 steel bar
$h_{s}=17.00 \mathrm{in} .=$ The drop depth $\left(d_{M I}\right)$

Figure 9 - Average Effective Depth for Slab Section with Drop Panel

Factored dead load,

$$
q_{D u}=1.20 \times(150 \times 17.00 / 12+50.00)=315.00 \mathrm{psf}
$$

Factored live load,

$$
q_{L u}=1.60 \times 100.00=160.00 \mathrm{psf}
$$

ACI 318-14 (5.3.1)

Total factored load, $\quad q_{u}=315.00+160.00=475.00 \mathrm{psf}$

Check the adequacy of slab thickness for beam action (one-way shear) from the edge of the interior column
ACI 318-14 (22.5)

Consider a 12 -in. wide strip. The critical section for one-way shear is located at a distance d, from the edge of the column (see Figure 10)

Tributary area for one-way shear is:

$$
\begin{aligned}
& A_{\text {Tribuuary }=\left[\frac{33}{2}-\frac{20}{2 \times 12}-\frac{15.50}{12}\right] \times \frac{12}{12}=14.38 \mathrm{ft}^{2}} \begin{array}{l}
V_{u}=q_{u} \times A_{\text {Tribuutuy }}=0.475 \times 14.38=6.83 \mathrm{kips} \\
V_{c}=2 \times \lambda \times \sqrt{f_{c}^{\prime}} \times b_{w} \times d
\end{array},=\text {. }
\end{aligned}
$$

Where $\lambda=1$ for normal weight concrete

$$
\phi V_{c}=0.75 \times 2 \times 1.0 \times \sqrt{5,000} \times 12 \times \frac{15.50}{1,000}=19.73 \mathrm{kips}>V_{u}=6.83 \mathrm{kips}
$$

Slab thickness is adequate for one-way shear for the first critical section (from the edge of the column).

Figure 10 - Critical Section at Distance d from the Edge of the Column for One-Way Shear

For critical section at the edge of the drop panel (slab section without drop panel):

Evaluate the average effective depth:
$d_{l}=h_{s}-c_{\text {clear }}-d_{b}-\frac{d_{b}}{2}=12-0.75-0.75-\frac{0.75}{2}=10.13 \mathrm{in}$.
$d_{t}=h_{s}-c_{\text {clear }}-\frac{d_{b}}{2}=12-0.75-\frac{0.75}{2}=10.88 \mathrm{in}$.
$d_{\text {avg }}=\frac{d_{l}+d_{t}}{2}=\frac{10.13+10.88}{2}=10.50 \mathrm{in}$.

Where:
$c_{c l e a r}=3 / 4$ in. for \# 6 steel bar
$d_{b}=0.75$ in. for \# 6 steel bar

Figure 11 - Average Effective Depth for Slab Section without Drop Panel

Factored dead load, $\quad q_{D u}=1.20 \times(100.057+50.00)=180.07 \mathrm{psf}$

Factored live load, $\quad q_{L u}=1.60 \times 100.00=160.00 \mathrm{psf}$ ACI 318-14 (5.3.1)

Total factored load, $\quad q_{u}=180.07+160.00=340.07 \mathrm{psf}$

Check the adequacy of slab thickness for beam action (one-way shear) from the edge of the interior drop panel

Consider a $12-\mathrm{in}$. wide strip. The critical section for one-way shear is located at the face of the solid head (see Figure 12)

Tributary area for one-way shear is:
$A_{\text {Tributary }}=\left[\frac{33}{2}-\frac{12}{2}\right] \times \frac{12}{12}=10.50 \mathrm{ft}^{2}$
$V_{u}=q_{u} \times A_{\text {Tributary }}=0.340 \times 10.50=3.57 \mathrm{kips}$
$V_{c}=2 \times \lambda \times \sqrt{f_{c}^{\prime}} \times b_{w} \times d$

Where $\lambda=1$ for normal weight concrete

$$
\phi V_{c}=0.75 \times 2.0 \times 1.0 \times \sqrt{5,000} \times 12 \times \frac{10.50}{1,000}=13.36 \mathrm{kips}>V_{u}=3.57 \mathrm{kips}
$$

Slab thickness of 12 in . is adequate for one-way shear for the second critical section (at the edge of the drop panel).

Figure 12 - Critical Section at the Face of the Drop Panel for One-Way Shear

1.2.3. Slab Shear Strength - Two-Way Shear

For critical section at distance $d / 2$ from the edge of the column (slab section with drop panel):

Check the adequacy of slab thickness for punching shear (two-way shear) at an interior column (Figure 13):
Tributary area of two-way shear for the slab without the drop panel is:

$$
A_{\text {Tributary_ }_{-} 1}=(33 \times 33)-(12 \times 12)^{2}=945.00 \mathrm{ft}^{2}
$$

Tributary area of two-way shear for the slab with the drop panel is:

$$
\begin{aligned}
& A_{\text {Tributary }_{-} 2}=(12 \times 12)-\left(\frac{20+15.50}{12}\right)^{2}=135.25 \mathrm{ft}^{2} \\
& V_{u}=q_{u} \times A_{\text {Tributary }}=0.340 \times 945.00+0.475 \times 135.25=385.61 \mathrm{kips} \\
& V_{c}=4 \times \lambda \times \sqrt{f_{c}^{\prime}} \times b_{o} \times d \text { (For square interior column) }
\end{aligned}
$$

ACI 318-14 (Table 22.6.5.2(a))

$$
V_{c}=4 \times 1.0 \times \sqrt{5,000} \times(4 \times(20+15.50)) \times \frac{15.50}{1,000}=622.54 \mathrm{kips}
$$

$$
\phi V_{c}=0.75 \times 622.54=466.90 \mathrm{kips}>V_{u}=385.61 \mathrm{kips}
$$

Slab thickness is adequate for two-way shear for the first critical section (from the edge of the column).

Figure 13 - Critical Section at $d / 2$ from the Edge of the Column for Two-Way Shear

For critical section at the edge of the drop panel (slab section without drop panel):

Check the adequacy of slab thickness for punching shear (two-way shear) at an interior drop panel (Figure 14):

Tributary area for two-way shear is:
$A_{\text {Tributary }}=(33 \times 33)-\left(12+\frac{10.50}{12}\right)^{2}=923.23 \mathrm{ft}^{2}$
$V_{u}=q_{u} \times A_{\text {Tributary }}=0.340 \times 923.23=313.96 \mathrm{kips}$
$V_{c}=4 \times \lambda \times \sqrt{f_{c}^{\prime \prime}} \times b_{o} \times d$ (For square interior column)
ACI 318-14 (Table 22.6.5.2(a))
$V_{c}=4 \times 1.0 \times \sqrt{5,000} \times(4 \times(144+10.50)) \times \frac{10.50}{1,000}=1,835.37 \mathrm{kips}$
$\phi V_{c}=0.75 \times 1835.37=1,376.52 \mathrm{kips}>V_{u}=313.96 \mathrm{kips}$

Slab thickness of 12 in . is adequate for two-way shear for the second critical section (from the edge of the drop panel).

Figure 14 - Critical Section at $d / 2$ from the Edge of the Drop Panel for Two-Way Shear

1.2.4. Column Dimensions - Axial Load

Check the adequacy of column dimensions for axial load:

For live load, superimposed dead load, and self-weight of the slab around an interior column:
$q_{u}=340.07 \mathrm{psf}$ (see on page 14)
$A_{\text {Tributary }}=33 \times 33=1,089.00 \mathrm{ft}^{2}$

For self-weight of additional slab thickness due to the presence of the drop panel around an interior column:
$q_{u}=475.00-340.07=134.93 \mathrm{psf}($ see on page 12 and on page 14$)$
$A_{\text {Tributary }}=12 \times 12=144.00 \mathrm{ft}^{2}$

Assuming four story building
$P_{u}=n \times q_{u} \times A_{\text {Tributary }}=4 \times(0.340 \times 1,089.00+0.135 \times 144.00)=1,559.06 \mathrm{kips}$

Assume 20 in. square column with 12 - No. 11 vertical bars with design axial strength, $\phi P_{n, \max }$ of

$$
\phi P_{n, \max }=0.80 \times \phi \times\left(0.85 \times f_{c}^{\prime} \times\left(A_{g}-A_{s t}\right)+f_{y} \times A_{s t}\right)
$$

ACI 318-14 (22.4.2)
$\phi P_{n, \max }=0.80 \times 0.65 \times(0.85 \times 6,000 \times(20 \times 20-12 \times 1.56)+60,000 \times 12 \times 1.56)=1,595.22 \mathrm{kips}$
$\phi P_{n, \text { max }}=1,595.22 \mathrm{kips}>P_{u}=1,559.06 \mathrm{kips}$

Column dimensions of $20 \mathrm{in} . \times 20 \mathrm{in}$. are adequate for axial load.

2. Flexural Analysis and Design

ACI 318 states that a slab system shall be designed by any procedure satisfying equilibrium and geometric compatibility, provided that strength and serviceability criteria are satisfied. Distinction of two-systems from oneway systems is given by $\underline{A C I ~ 318-14(R 8.10 .2 .3 ~ \& ~ R 8.3 .1 .2) . ~}$

ACI 318 permits the use of Direct Design Method (DDM) and Equivalent Frame Method (EFM) for the gravity load analysis of orthogonal frames and is applicable to flat plates, flat slabs, and slabs with beams. The following sections outline the solution per EFM and spSlab software. For the solution per DDM, check the "Two-Way Flat Plate Concrete Floor System Analysis and Design (ACI 318-14)" example.

2.1. Equivalent Frame Method (EFM)

EFM is the most comprehensive and detailed procedure provided by the ACI 318 for the analysis and design of two-way slab systems where the structure is modeled by a series of equivalent frames (interior and exterior) on column lines taken longitudinally and transversely through the building.

The equivalent frame consists of three parts (for a detailed discussion of this method, refer to "Two-Way Flat Plate Concrete Floor System Analysis and Design (ACI 318-14)":

1) Horizontal slab-beam strip.
2) Columns or other vertical supporting members.
3) Elements of the structure (Torsional members) that provide moment transfer between the horizontal and vertical members.

2.1.1. Limitations for Use of Equivalent Frame Method

In EFM, live load shall be arranged in accordance with 6.4 .3 which requires slab systems to be analyzed and designed for the most demanding set of forces established by investigating the effects of live load placed in various critical patterns.

ACI 318-14 (8.11.1.2 \& 6.4.3)

Complete analysis must include representative interior and exterior equivalent frames in both the longitudinal and transverse directions of the floor.

ACI 318-14 (8.11.2.1)

Panels shall be rectangular, with a ratio of longer to shorter panel dimensions, measured center-to-center of supports, not to exceed 2.

ACI 318-14 (8.10.2.3)

2.1.2. Frame Members of Equivalent Frame

Determine moment distribution factors and fixed-end moments for the equivalent frame members. The moment distribution procedure will be used to analyze the equivalent frame. Stiffness factors k, carry over factors COF, and fixed-end moment factors FEM for the slab-beams and column members are determined using the design aids tables at Appendix 20A of PCA Notes on ACI 318-11. These calculations are shown below.
a) Flexural stiffness of slab-beams at both ends, $K_{s b}$.

$$
\frac{c_{N 1}}{l_{1}}=\frac{20}{(33 \times 12)}=0.051, \frac{c_{N 2}}{l_{2}}=\frac{20}{(33 \times 12)}=0.051
$$

Slab thickness $=h=h_{M I}=12.00 \mathrm{in}$. and drop thickness $=d_{M I}-h_{M I}=17.00-12.00=5.00 \mathrm{in}$.

$$
\frac{\text { drop thickness }}{\text { slab thickness }}=\frac{5.00}{12.00}=0.4167
$$

For $c_{F 1}=c_{F 2}$, stiffness factors, $k_{N F}=k_{F N}=5.541$
PCA Notes on ACI 318-11 (Table A2 \& A3)

Thus, $K_{s b}=k_{N F} \times \frac{E_{c s} \times I_{s}}{l_{1}}=5.541 \times \frac{E_{c s} \times I_{s}}{l_{1}}$
PCA Notes on ACI 318-11 (Table A2 \& A3)

$$
K_{s b}=5.541 \times \frac{4,287 \times 10^{3} \times 57,024.00}{396.00}=3,420,614,448 \mathrm{in} .-\mathrm{lb}
$$

Where, $I_{s}=\frac{l_{2} \times h^{3}}{12}=\frac{396 \times(12)^{3}}{12}=57,024.00 \mathrm{in} .{ }^{4}$
$E_{c s}=w_{c}^{1.5} \times 33 \times \sqrt{f_{c}^{\prime}}=150^{1.5} \times 33 \times \sqrt{5,000}=4,287 \times 10^{3} \mathrm{psi}$
$\underline{\text { ACI 318-14 (19.2.2.1.a) }}$

Carry-over factor $C O F=0.576$
PCA Notes on ACI 318-11 (Table A2 \& A3)

Fixed-end moment $F E M=\sum_{i=1}^{n} m_{N F i} \times w_{i} \times l_{1}^{2}$
PCA Notes on ACI 318-11 (Table A2 \& A3)

Uniform load fixed end moment coefficient, $m_{N F I}=0.0913$

Fixed end moment coefficient for $(\mathrm{b}-\mathrm{a})=0.2$ when $\mathrm{a}=0, m_{N F 2}=0.0162$

Fixed end moment coefficient for $(b-a)=0.2$ when $\mathrm{a}=0.8, m_{N F 3}=0.0020$
b) Flexural stiffness of column members at both ends, K_{c}.

Referring to Table A7, Appendix 20A,

For the Bottom Column (Below):
$t_{a}=3.00 / 2+14.00=15.50 \mathrm{in} . \quad t_{b}=3.00 / 2=1.50 \mathrm{in}$.
$H=13 \mathrm{ft}=156.00 \mathrm{in} . \quad H_{c}=H-t_{a}-t_{b}=156.00-15.50-1.50=139.00 \mathrm{in}$.
$\frac{t_{a}}{t_{b}}=\frac{15.50}{1.50}=10.333 \quad \frac{H}{H_{c}}=\frac{156.00}{139.00}=1.122$
Thus, $k_{A B}=6.178$ and $C_{A B}=0.500$ by interpolation.

$$
\begin{aligned}
K_{c, \text { bottom }} & =\frac{6.178 \times E_{c c} \times I_{c}}{l_{c}} \\
K_{c, \text { bottom }} & =6.178 \times \frac{4,696 \times 10^{3} \times 13,333.33}{156}=2,479,648,547 \mathrm{in} .-\mathrm{lb}
\end{aligned}
$$

Where, $I_{c}=\frac{c^{4}}{12}=\frac{(20)^{4}}{12}=13,333.33 \mathrm{in} .{ }^{4}$
$E_{c s}=w_{c}^{1.5} \times 33 \times \sqrt{f_{c}^{\prime \prime}}=150^{1.5} \times 33 \times \sqrt{6,000}=4,696 \times 10^{3} \mathrm{psi}$
$\underline{\text { ACI 318-14 (19.2.2.1.a) }}$
$l_{c}=13 \mathrm{ft}=156 \mathrm{in}$.

For the Top Column (Above):
$\frac{t_{b}}{t_{a}}=\frac{1.50}{15.50}=0.097 \quad \frac{H}{H_{c}}=\frac{156.00}{139.00}=1.122$

Thus, $k_{B A}=4.624$ and $C_{B A}=0.667$ by interpolation.
$K_{c}=\frac{4.624 \times E_{c c} \times I_{c}}{l_{c}}$
PCA Notes on ACI 318-11 (Table A7)
$K_{c, \text { top }}=4.624 \times \frac{4,696 \times 10^{3} \times 13,333.33}{156}=1,855,923,419 \mathrm{in} .-\mathrm{lb}$
c) Torsional stiffness of torsional members, K_{t}.

$$
\begin{aligned}
& K_{t}=\frac{9 \times E_{c s} \times C}{\left[l_{2} \times\left(1-\frac{c_{2}}{l_{2}}\right)^{3}\right]} \\
& K_{t}=\frac{9 \times 4,287 \times 10^{3} \times 15,213.92}{33 \times 12 \times\left(1-\frac{20}{33 \times 12}\right)^{3}}=1,731,665,695 \mathrm{in} .-\mathrm{lb}
\end{aligned}
$$

ACI 318-14 (R.8.11.5)

Where $C=\Sigma\left(1-0.63 \times \frac{x}{y}\right) \times\left(\frac{x^{3} \times y}{3}\right)$
ACI 318-14 (Eq. 8.10.5.2b)
$C=\left(1-0.63 \times \frac{17.00}{20.00}\right) \times\left(\frac{17.00^{3} \times 20.00}{3}\right)=15,213.92 \mathrm{in}^{4}$
$c_{2}=20 \mathrm{in} ., l_{2}=33 \mathrm{ft}=396 \mathrm{in}$.

Figure 15 - Torsional Member
d) Equivalent column stiffness, $K_{e c}$.

$$
\begin{aligned}
K_{e c} & =\frac{\sum K_{c} \times \sum K_{t}}{\sum K_{c}+\sum K_{t}} \\
K_{e c} & =\frac{(2,479.65+1,855.92) \times(2 \times 1,731.67)}{[(2,479.65+1,855.92)+(2 \times 1,731.67)]} \times 10^{6}=1,925,337,678 \mathrm{in} .-\mathrm{lb}
\end{aligned}
$$

Where $\sum K_{t}$ is for two torsional members one on each side of the column, and $\sum K_{c}$ is for the upper and lower columns at the slab-beam joint of an intermediate floor.

Figure 16 - Column and Edge of Slab
e) Slab-beam joint distribution factors, $D F$.

At exterior joint
$D F=\frac{3,420.61}{(3,420.61+1,925.34)}=0.640$

At interior joint
$D F=\frac{3,420.61}{(3,420.61+3,420.61+1,925.34)}=0.390$

COF for slab-beam $=0.576$

Figure 17 - Slab and Column Stiffness

2.1.3. Equivalent Frame Analysis

Determine negative and positive moments for the slab-beams using the moment distribution method. Since the unfactored live load does not exceed three-quarters of the unfactored dead load, design moments are assumed to occur at all critical sections with full factored live on all spans.

ACI 318-14 (6.4.3.2)
$\frac{L}{D}=\frac{100}{(100+50)}=0.67<\frac{3}{4}$
a) Factored load and Fixed-End Moments (FEM's).

For slab:

Factored dead load, $q_{D u}=1.20 \times(100.00+50.00)=180.00 \mathrm{psf}$

Factored live load, $\quad q_{L u}=1.60 \times 100.00=160.00 \mathrm{psf}$
ACI 318-14 (5.3.1)

Total factored load, $q_{u}=q_{D u}+q_{L u}=340.00 \mathrm{psf}$

For drop panels:

Factored dead load, $\quad q_{D u}=1.20 \times(150.00 \times 9.00 / 12)=135.00 \mathrm{psf}$
Factored live load, $\quad q_{L u}=1.60 \times 0.00=0.00 \mathrm{psf}$
ACI 318-14 (5.3.1)

Total factored load, $q_{u}=q_{D u}+q_{L u}=135.00 \mathrm{psf}$

Fixed-end moment FEM $=\sum_{i=1}^{n} m_{N F i} \times w_{i} \times l_{1}^{2}$
PCA Notes on ACI 318-11 (Table A2 \& A3)

$$
\begin{aligned}
& F E M=0.0913 \times 0.340 \times 33 \times 33^{2}+0.0162 \times 0.135 \times 12 \times 33^{2}+0.0020 \times 0.135 \times 12 \times 33^{2} \\
& F E M=1,147.66 \mathrm{ft}-\mathrm{kips}
\end{aligned}
$$

b) Moment distribution. Computations are shown in the Table below Counterclockwise rotational moments acting on the member ends are taken as positive.

Table 1 - Moment Distribution for Equivalent Frame						
C	"		$\xrightarrow{\text { cma }}$			$\underbrace{4}_{n}$
Joint	1	2		3		4
Member	1-2	2-1	2-3	3-2	3-4	4-3
DF	0.640	0.390	0.390	0.390	0.390	0.640
COF	0.576	0.576	0.576	0.576	0.576	0.576
FEM	1,147.66	-1,147.66	1,147.66	-1,147.66	1,147.66	-1,147.66
Dist	-734.33	0	0	0	0	734.33
CO	0	-422.89	0	0	422.89	0
Dist	0	165.01	165.01	-165.01	-165.01	0
CO	95.03	0	-95.03	95.03	0	-95.03
Dist	-60.80	37.08	37.08	-37.08	-37.08	60.80
CO	21.35	-35.01	-21.35	21.35	35.01	-21.35
Dist	-13.66	21.99	21.99	-21.99	-21.99	13.66
CO	12.67	-7.87	-12.67	12.67	7.87	-12.67
Dist	-8.10	8.01	8.01	-8.01	-8.01	8.10
CO	4.61	-4.67	-4.61	4.61	4.67	-4.61
Dist	-2.95	3.62	3.62	-3.62	-3.62	2.95
CO	2.09	-1.70	-2.09	2.09	1.70	-2.09
Dist	-1.33	1.48	1.48	-1.48	-1.48	1.33
CO	0.85	-0.77	-0.85	0.85	0.77	-0.85
Dist	-0.54	0.63	0.63	-0.63	-0.63	0.54
CO	0.36	-0.31	-0.36	0.36	0.31	-0.36
Dist	-0.23	0.26	0.26	-0.26	-0.26	0.23
CO	0.15	-0.13	-0.15	0.15	0.13	-0.15
Dist	-0.10	0.11	0.11	-0.11	-0.11	0.10
CO	0.06	-0.06	-0.06	0.06	0.06	-0.06
Dist	-0.04	0.05	0.05	-0.05	-0.05	0.04
CO	0.03	-0.02	-0.03	0.03	0.02	-0.03
Dist	-0.02	0.02	0.02	-0.02	-0.02	0.02
$\mathbf{M}_{\text {- }}^{\text {max }}$	462.75	-1,382.84	1,248.72	-1,248.72	1,382.84	-462.75
V	166.97	-222.73	194.85	-194.85	222.73	-166.97
$\mathbf{X}_{\text {max }}$	14.02		16.50		18.98	
$\mathbf{M}^{+}{ }_{\text {max }}$	668.33		307.76		668.33	

Maximum positive span moments are determined from the following equations:

$\begin{array}{ll} M_{\max }^{+}=M_{1}+M_{2}+M_{3} & \\ R_{L}=R_{L, 1}+R_{L, 2}+R_{L, 3} \\ x_{\max }=\frac{l_{1}}{2}+\frac{M_{L}^{-}-M_{R}^{-}}{\left(q_{u} \times l_{2}\right) \times l_{1}} & R_{R}=R_{R, 1}+R_{R, 2}+R_{R, 3} \end{array}$	
$\begin{aligned} & M_{2}=R_{R, 2} \times\left(l_{1}-x_{\text {nax }}\right) \\ & R_{L, 2}=\frac{\left(q_{1, t, p \times} \times l_{2, t p p}\right) \times \frac{l_{1, t p}^{2}}{2}}{2 \times \ell_{1}} \times\left(2 \times \frac{9 \times l_{1, t p p}}{11}+\frac{l_{1, t p}}{2}\right) \quad R_{R, 2}=\frac{\left(q_{1, t, p p} \times l_{2, t p}\right) \times \frac{l_{1, d p}}{2}}{2 \times l_{1}} \times\left(\frac{l_{1, t p p}}{2}\right) \end{aligned}$	
$\begin{aligned} & M_{3}=R_{L, 3} \times x_{\max } \\ & R_{L, 3}=\frac{\left(q_{u, t, t p} \times l_{2, t p}\right) \times \frac{l_{1, t p}}{2}}{2 \times l_{1}} \times\left(\frac{l_{1, t p}}{2}\right) \quad R_{R, 3}=\frac{\left(q_{1, t, t p} \times l_{2, t p}\right) \times \frac{l_{L, t p}}{2}}{2 \times l_{1}} \times\left(2 \times \frac{9 \times l_{1, t p}}{11}+\frac{l_{L, t p}}{2}\right) \end{aligned}$	

Maximum positive moment in spans 1-2 and 3-4:

$$
M_{\text {max }}^{+}=M_{1}+M_{2}+M_{3}=639.17+16.78+12.38=668.33 \mathrm{ft}-\mathrm{kips}
$$

$V_{L}=R_{L}=R_{L, 1}+R_{L, 2}+R_{L, 3}=157.25+8.84+0.88=166.97 \mathrm{kips}$
$V_{R}=R_{R}=R_{R, 1}+R_{R, 2}+R_{R, 3}=213.01+0.88+8.84=222.73 \mathrm{kips}$
$x_{\max }=\frac{33}{2}+\frac{(462.75-1,382.84)}{(0.340 \times 33) \times 33}=14.02 \mathrm{ft}$

Where:
$M_{L^{-}}=462.75 \mathrm{ft}-\mathrm{kips}$
$M_{R^{-}}=1,382.84 \mathrm{ft}-\mathrm{kips}$
$M_{1}=\frac{(0.340 \times 33) \times 33^{2}}{8}-\frac{462.75+1,382.84}{2}+\frac{(462.75-1,382.84)^{2}}{2 \times(0.340 \times 33) \times 33^{2}}=639.17 \mathrm{ft}-\mathrm{kips}$
$M_{2}=\frac{(0.135 \times 12) \times\left(\frac{12}{2}\right)}{2 \times 33} \times\left(\frac{12}{2}\right) \times(33-14.02)=16.78 \mathrm{ft}-\mathrm{kips}$
$M_{3}=\frac{(0.135 \times 12) \times\left(\frac{12}{2}\right)}{2 \times 33} \times\left(\frac{12}{2}\right) \times 14.02=12.38 \mathrm{ft}-\mathrm{kips}$
And:
$R_{L, 1}=\frac{(0.340 \times 33) \times 33}{2}+\frac{(462.75-1,382.84)}{33}=157.25 \mathrm{kips}$
$R_{L, 2}=\frac{(0.135 \times 12) \times 6}{2 \times 33} \times\left(2 \times \frac{9 \times 33}{11}+6\right)=8.84 \mathrm{kips}$
$R_{L, 3}=\frac{(0.135 \times 12) \times 6}{2 \times 33} \times(6)=0.88 \mathrm{kips}$
$R_{R, 1}=\frac{(0.340 \times 33) \times 33}{2}-\frac{(462.75-1,382.84)}{33}=213.01 \mathrm{kips}$
$R_{R, 2}=\frac{(0.135 \times 12) \times 6}{2 \times 33} \times(6)=0.88 \mathrm{kips}$
$R_{R, 3}=\frac{(0.135 \times 12) \times 6}{2 \times 33} \times\left(2 \times \frac{9 \times 33}{11}+6\right)=8.84 \mathrm{kips}$

Maximum positive moment in span 2-3:

$$
M_{\max }^{+}=M_{1}+M_{2}+M_{3}=278.60+14.58+14.58=307.76 \mathrm{ft}-\mathrm{kips}
$$

$V_{L}=R_{L}=R_{L, 1}+R_{L, 2}+R_{L, 3}=185.13+8.84+0.88=194.85 \mathrm{kips}$
$V_{R}=R_{R}=R_{R, 1}+R_{R, 2}+R_{R, 3}=185.13+0.88+8.84=194.85 \mathrm{kips}$
$x_{\max }=\frac{33}{2}+\frac{(1,248.72-1,248.72)}{(0.340 \times 33) \times 33}=16.50 \mathrm{ft}$

Where:
$M_{L}{ }^{-}=1,248.72 \mathrm{ft}-\mathrm{kips}$
$M_{R^{-}}=1,248.72 \mathrm{ft}-\mathrm{kips}$
$M_{1}=\frac{(0.340 \times 33) \times 33^{2}}{8}-\frac{1,248.72+1,248.72}{2}+\frac{(1,248.72-1,248.72)^{2}}{2 \times(0.340 \times 33) \times 33^{2}}=278.60 \mathrm{ft}-\mathrm{kips}$
$M_{2}=\frac{(0.135 \times 12) \times\left(\frac{12}{2}\right)}{2 \times 33} \times\left(\frac{12}{2}\right) \times(33-16.50)=14.58 \mathrm{ft}-\mathrm{kips}$
$M_{3}=\frac{(0.135 \times 12) \times\left(\frac{12}{2}\right)}{2 \times 33} \times\left(\frac{12}{2}\right) \times 16.50=14.58 \mathrm{ft}-\mathrm{kips}$
and:
$R_{L, 1}=\frac{(0.340 \times 33) \times 33}{2}+\frac{(1,248.72-1,248.72)}{33}=185.13 \mathrm{kips}$
$R_{L, 2}=\frac{(0.135 \times 12) \times 6}{2 \times 33} \times\left(2 \times \frac{9 \times 33}{11}+6\right)=8.84 \mathrm{kips}$
$R_{L, 3}=\frac{(0.135 \times 12) \times 6}{2 \times 33} \times(6)=0.88 \mathrm{kips}$
$R_{R, 1}=\frac{(0.340 \times 33) \times 33}{2}-\frac{(1,248.72-1,248.72)}{33}=185.13 \mathrm{kips}$
$R_{R, 2}=\frac{(0.135 \times 12) \times 6}{2 \times 33} \times(6)=0.88 \mathrm{kips}$
$R_{R, 3}=\frac{(0.135 \times 12) \times 6}{2 \times 33} \times\left(2 \times \frac{9 \times 33}{11}+6\right)=8.84 \mathrm{kips}$

2.1.4. Factored Moments Used for Design

Positive and negative factored moments for the slab system in the direction of analysis are plotted in Figure 18.
The negative moments used for design are taken at the faces of supports (rectangle section or equivalent rectangle for circular or polygon sections) but not at distances greater than $0.175 \times l_{1}$ from the centers of supports.

ACI 318-14 (8.11.6.1)
$\frac{20 \mathrm{in} .}{12 \times 2}=0.83 \mathrm{ft}<0.175 \times 33=5.78 \mathrm{ft}$ (use face of support location)

Moment diagram (ft-kips)

Figure 18 - Positive and Negative Design Moments for Slab-Beam (All Spans Loaded with Full Factored Live Load)

2.1.5. Factored Moments in Slab-Beam Strip

a) Check whether the moments calculated above can take advantage of the reduction permitted by $\boldsymbol{A C I} 318$ -

14 (8.11.6.5):

If the slab system analyzed using EFM within the limitations of $\boldsymbol{A C I}$ 318-14 (8.10.2), it is permitted by the ACI code to reduce the calculated moments obtained from EFM in such proportion that the absolute sum of the positive and average negative design moments need not exceed the total static moment M_{o} given by Equation 8.10.3.2 in the ACI 318-14.

Check Applicability of Direct Design Method:

1. There is a minimum of three continuous spans in each direction.

ACI 318-14 (8.10.2.1)
2. Successive span lengths are equal.

ACI 318-14 (8.10.2.2)
3. Long-to-Short ratio is $33 / 33=1.00<2.00$.

ACI 318-14 (8.10.2.3)
4. Column are not offset.

ACI 318-14 (8.10.2.4)
5. Loads are gravity and uniformly distributed with service live-to-dead ratio of $0.67<2.00$
(Note: The self-weight of the drop panels is not uniformly distributed entirely along the span. However, the variation in load magnitude is small).

ACI 318-14 (8.10.2.5 and 6)
6. Check relative stiffness for slab panel.
$\underline{\text { ACI 318-14 (8.10.2.7) }}$
Slab system is without beams and this requirement is not applicable.

All limitation of $\underline{\text { ACI 318-14 (8.10.2) }}$ are satisfied and the provisions of $\underline{A C I ~ 318-14 ~(8.11 .6 .5) ~ m a y ~ b e ~}$ applied:
$M_{o}=\frac{q_{u} \times l_{2} \times l_{n}{ }^{2}}{8}=\frac{0.340 \times 33 \times(33-20 / 12)^{2}}{8}=1,376.94 \mathrm{ft}-\mathrm{kips}$
ACI 318-14 (Eq. 8.10.3.2)

End spans: $668.33+\frac{462.75+1,382.84}{2}=1,591.13 \mathrm{ft}-\mathrm{kips}>M_{o}$
Interior span: $307.76+\frac{1,248.72+1,248.72}{2}=1,556.48 \mathrm{ft}-\mathrm{kips}>M_{o}$

To illustrate proper procedure, the interior span factored moments may be reduced as follows:
Permissible reduction $=\frac{1,376.94}{1,556.48}=0.885$

Adjusted negative design moment $=1,248.72 \times 0.885=1,104.68 \mathrm{ft}-\mathrm{kips}$

Adjusted positive design moment $=307.76 \times 0.885=272.26 \mathrm{ft}-\mathrm{kips}$

$$
M_{o}=272.26+\frac{1,104.68+1,104.68}{2}=1,376.94 \mathrm{ft}-\mathrm{kips}
$$

ACI 318 allows the reduction of the moment values based on the previous procedure. Since the drop panels may cause gravity loads not to be uniform (Check limitation \#5 and Figure 18), the moment values obtained from EFM will be used for comparison reasons.
b) Distribute factored moments to column and middle strips:

After the negative and positive moments have been determined for the slab-beam strip, the ACI code permits the distribution of the moments at critical sections to the column strips, beams (if any), and middle strips in accordance with the DDM.

ACI 318-14 (8.11.6.6)

Distribution of factored moments at critical sections is summarized in Table below.

Table 2 - Distribution of Factored Moments						
Location	Slab-beam Strip		Column Strip		Middle Strip	
	Moment (ft-kips)	Percent	Moment (ft-kips)	Percent	Moment (ft-kips)	
End Span	Exterior					
	Negative	328.07	100	328.07	0	0.00
	Positive	Interior Negative	668.33	60	401.00	40
Interior Span	Negative	$1,201.69$	75	901.27	25	300.42
	Positive	307.76	75	818.10	25	272.70

2.1.6. Flexural Reinforcement Requirements

a) Determine flexural reinforcement required for strip moments

The flexural reinforcement calculation for the column strip of end span - interior negative location is provided below:
$M_{u}=901.27 \mathrm{ft}-\mathrm{kips}$

Use $d=15.88$ in. (slab with drop panel where $h=17 \mathrm{in}$.)

To determine the area of steel, assumptions have to be made whether the section is tension or compression controlled, and regarding the distance between the resultant compression and tension forces along the slab section ($j d$). In this example, tension-controlled section will be assumed so the reduction factor ϕ is equal to 0.90 , and $j d$ will be taken equal to $0.971 \times d$. The assumptions will be verified once the area of steel in finalized.

Assume $j d=0.971 \times d=15.41 \mathrm{in}$.

Column strip width, $b=\frac{33 \times 12}{2}=198.00 \mathrm{in}$.

Middle strip width, $b=33 \times 12-198.00=198.00 \mathrm{in}$.

$$
A_{s}=\frac{M_{u}}{\phi \times f_{y} \times j d}=\frac{901.27 \times 12,000}{0.90 \times 60,000 \times 15.41}=12.995 \mathrm{in} .^{2}
$$

Recalculate ' a ' for the actual $A_{s}=12.995$ in. ${ }^{2}$:

$$
\begin{aligned}
& a=\frac{A_{s} \times f_{y}}{0.85 \times f_{c}^{\prime} \times b}=\frac{12.995 \times 60,000}{0.85 \times 5,000 \times 198.00}=0.927 \mathrm{in} \\
& c=\frac{a}{\beta_{1}}=\frac{0.927}{0.85}=1.090 \mathrm{in} . \\
& \varepsilon_{t}=\left(\frac{0.003}{c}\right) \times d_{t}-0.003=\left(\frac{0.003}{1.090}\right) \times 15.88-0.003=0.0407 \geq 0.005
\end{aligned}
$$

Therefore, the assumption that section is tension-controlled is valid.

$$
A_{s}=\frac{M_{u}}{\phi \times f_{y} \times\left(d-\frac{a}{2}\right)}=\frac{901.27 \times 12,000}{0.90 \times 60,000 \times\left(15.88-\frac{0.927}{2}\right)}=12.995 \mathrm{in.}^{2}
$$

Two values of thickness must be considered. The slab thickness in the column strip is 17.00 in . with the drop panel and 8.00 in . for the equivalent slab without the drop panel based on the system weight.

The weighted slab thickness:
$h_{w}=\frac{17.00 \times(12)+8 \times\left(\frac{33}{2}-12\right)}{(12)+\left(\frac{33}{2}-12\right)}=14.55 \mathrm{in}$.

Figure 19 - The Weighted Slab Thickness
$A_{s, \text { min }}=0.0018 \times b \times h_{w}$
ACI 318-14 (24.4.3.2)
$A_{s, \text { min }}=0.0018 \times 198 \times 14.55=5.184$ in $^{2}{ }^{2}<12.995$ in $^{2}{ }^{2}$
$s_{\max }=$ lesser of $\left[\begin{array}{l}5 h \\ 18 \mathrm{in} .\end{array}\right]=$ lesser of $\left[\begin{array}{l}5 \times 3=15 \mathrm{in} . \\ 18 \mathrm{in} .\end{array}\right]=15.00 \mathrm{in}$.
ACI 318-14 (24.4.3.3)

Provide $30-\# 6$ bars with $A_{s}=13.20$ in. ${ }^{2}$ and $s=\frac{198}{30}=6.60 \mathrm{in} . \leq s_{\max }=15.00 \mathrm{in}$.

The flexural reinforcement calculation for the column strip of interior span - positive location is provided below:
$M_{u}=184.66 \mathrm{ft}-\mathrm{kips}$

Use $d=15.88 \mathrm{in}$. (slab with rib where $h=17 \mathrm{in}$.)

To determine the area of steel, assumptions have to be made whether the section is tension or compression controlled, and regarding the distance between the resultant compression and tension forces along the slab section $(j d)$. In this example, tension-controlled section will be assumed so the reduction factor ϕ is equal to 0.90 , and $j d$ will be taken equal to $0.994 \times d$. The assumptions will be verified once the area of steel in finalized.

Assume $j d=0.994 \times d=15.78 \mathrm{in}$.

Column strip width, $b=\frac{33 \times 12}{2}=198.00 \mathrm{in}$.

Middle strip width, $b=33 \times 12-198.00=198.00 \mathrm{in}$.

$$
A_{s}=\frac{M_{u}}{\phi \times f_{y} \times j d}=\frac{184.66 \times 12,000}{0.90 \times 60,000 \times 15.78}=2.600 \mathrm{in} .^{2}
$$

Recalculate ' a ' for the actual $A_{s}=2.600$ in. ${ }^{2}$:

$$
a=\frac{A_{s} \times f_{y}}{0.85 \times f_{c}^{\prime} \times b}=\frac{2.600 \times 60,000}{0.85 \times 5,000 \times 198.00}=0.185 \mathrm{in} .
$$

$c=\frac{a}{\beta_{1}}=\frac{0.185}{0.85}=0.218 \mathrm{in}$.

$$
\varepsilon_{t}=\left(\frac{0.003}{c}\right) \times d_{t}-0.003=\left(\frac{0.003}{0.218}\right) \times 15.88-0.003=0.2154 \geq 0.005
$$

Therefore, the assumption that section is tension-controlled is valid.

$$
\begin{aligned}
& A_{s}=\frac{M_{u}}{\phi \times f_{y} \times\left(d-\frac{a}{2}\right)}=\frac{184.66 \times 12,000}{0.90 \times 60,000 \times\left(15.88-\frac{0.185}{2}\right)}=2.600 \mathrm{in.}^{2} \\
& A_{s, \min }=0.0018 \times b \times h_{e q}
\end{aligned}
$$

ACI 318-14 (24.4.3.2)

$$
\begin{aligned}
& A_{s, \min }=0.0018 \times 198 \times 8.00=2.851 \mathrm{in}^{2}>2.600 \mathrm{in} .^{2} \\
& \therefore \text { use } A_{s}=A_{s, \min }=2.851 \mathrm{in} .^{2}
\end{aligned}
$$

Since column strip has 5 ribs \rightarrow provide $10-\# 6$ bars (2 bars / rib):

$$
A_{s, \text { provided }}=10 \times 0.44=4.40 \mathrm{in} .^{2}>A_{s, \text { required }}=2.851 \mathrm{in} .^{2}
$$

Based on the procedure outlined above, values for all span locations are given in Table below.

Span Location		$\underset{\text { (ft-kips) }}{\mathbf{M}_{\mathbf{u}}}$	$\begin{gathered} \mathbf{b} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \mathbf{d} \\ \text { (in.) } \end{gathered}$	$\mathbf{A s}_{\text {s,req }}$ (in. ${ }^{2}$)	$\begin{aligned} & \mathbf{A}_{s, \text { min }} \\ & \left(\text { (in. }{ }^{2}\right) \end{aligned}$	Reinforcement Provided	Assprovided (in. ${ }^{2}$)
End Span								
$\begin{aligned} & \text { Column } \\ & \text { Strip } \end{aligned}$	Exterior Negative	328.07	198	15.88	4.641	5.184	$14-\# 6^{* * *}$	6.16
	Positive	401.00	198	15.81	5.709	2.851	$\begin{gathered} 10-\# 7 \\ (2 \text { bars / rib) } \end{gathered}$	6.00
	Interior Negative	901.27	198	15.88	12.995	5.184	$30-\# 6$	13.20
Middle Strip	Exterior Negative	0.00	198	15.88	0	5.184	$14-\# 6^{* * *}$	6.16
	Positive	267.33	198	15.88	3.774	2.851	$\begin{gathered} 12-\# 6 \\ (2 \text { bars / rib) } \end{gathered}$	5.28
	Interior Negative	300.42	198	15.88	4.246	5.184	$14-\# 6^{* * *}$	6.16
Interior Span								
Column Strip	Positive	184.66	198	15.88	2.600	2.851	$\begin{gathered} 10-\# 6^{*} \\ (2 \mathrm{bars} / \mathrm{rib}) \end{gathered}$	4.40
Middle Strip	Positive	123.10	198	15.88	1.730	2.851	$\begin{gathered} 12-\# 6^{*} \\ (2 \mathrm{bars} / \mathrm{rib}) \end{gathered}$	5.28
* Design governed by minimum reinforcement. ${ }^{* *}$ Number of bars governed by maximum allowable spacing.								

b) Calculate additional slab reinforcement at columns for moment transfer between slab and column by flexure

The factored slab moment resisted by the column ($\gamma_{f} \times M_{s c}$) shall be assumed to be transferred by flexure. Concentration of reinforcement over the column by closer spacing or additional reinforcement shall be used to resist this moment. The fraction of slab moment not calculated to be resisted by flexure shall be assumed to be resisted by eccentricity of shear.

ACI 318-14 (8.4.2.3)

Portion of the unbalanced moment transferred by flexure is $\gamma_{f} \times M_{s c}$
ACI 318-14 (8.4.2.3.1)

Where:

$$
\gamma_{f}=\frac{1}{1+\frac{2}{3} \times \sqrt{\frac{b_{1}}{b_{2}}}}
$$

ACI 318-14 (8.4.2.3.2)

- $b_{1}=$ Dimension of the critical section b_{o} measured in the direction of the span for which moments are determined in ACI 318, Chapter 8 (see Figure 20).
- $b_{2}=$ Dimension of the critical section b_{o} measured in the direction perpendicular to b_{1} in ACI 318, Chapter 8 (see Figure 20).
- $b_{b}=$ Effective slab width $=c_{2}+3 \times h$

ACI 318-14 (8.4.2.3.3)

Critical shear perimeter for interior column

Critical shear perimeter for exterior column

Critical shear perimeter for corner column
Figure 20 - Critical Shear Perimeters for Columns

For exterior support:

$$
\begin{array}{ll}
d=h-c_{c l a a r}-\frac{d_{b}}{2}=17.00-0.75-\frac{0.75}{2}=15.88 \mathrm{in} . \\
M_{s c}=462.75 \mathrm{ft}-\mathrm{kips} & \\
b_{1}=c_{1}+\frac{d}{2}=20+\frac{15.88}{2}=27.94 \mathrm{in} . & A_{s(p r o v)}=6.16 \mathrm{in.}{ }^{2} \\
b_{b}=c_{2}+3 \times h=20+3 \times 17.00=71.00 \mathrm{in.} & \gamma_{f}=\frac{1}{1+\frac{2}{3} \times \sqrt{\frac{27.94}{35.88}}}=0.630 \\
A_{s}=\frac{0.85 \times f_{c}^{\prime} \times b_{b}}{f_{y}} \times\left(d-\sqrt{d^{2}-\frac{2 \times \gamma_{f} \times M_{s c}}{\phi \times 0.85 \times f_{c}^{\prime} \times b_{b}}}\right) & \\
A_{s}=\frac{0.85 \times 5,000 \times 71.00}{60,000} \times\left(15.88-\sqrt{15.88^{2}-\frac{15.88}{0.90 \times 0.85 \times 5,000 \times 71.00}}\right)=35.88 \mathrm{i}
\end{array}
$$

However, the area of steel provided to resist the flexural moment within the effective slab width, b_{b} :

$$
A_{s, \text { provided within bb }}=A_{s, \text { provided }} \times \frac{b_{b}}{b}=4.188 \times \frac{71.00}{198}=2.209 \mathrm{in.}^{2}
$$

Then, the required additional reinforcement at exterior column for moment transfer between slab and column:

$$
A_{s, \text { additional }}=A_{s}-A_{s, \text { provided within bb }}=4.188-2.209=1.979 \mathrm{in.}^{2}
$$

Provide $5-\# 6$ additional bars with $A_{s}=2.20$ in. ${ }^{2}$

Based on the procedure outlined above, values for all supports are given in Table below.

Table 4 - Additional Slab Reinforcement required for moment transfer between slab and column (EFM)

Span Location		$\begin{gathered} \text { Msc }^{*} \\ \text { (ft-kips) } \end{gathered}$	γ_{f}	$\gamma_{\mathrm{f}} \mathrm{M}_{\mathrm{sc}}$ (ft-kips)	$\begin{gathered} \mathbf{b}_{b} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \mathbf{d} \\ \text { (in.) } \end{gathered}$	As req'd within \mathbf{b}_{b} (in. ${ }^{2}$)	As prov. For flexure within b_{b} (in. ${ }^{2}$)	Add'l Reinf.
End Span									
Column Strip	Exterior Negative	462.75	0.630	291.35	71.00	15.88	4.188	2.209	5-\#6
	Interior Negative	134.12	0.600	80.47	71.00	15.88	2.029	4.733	-

[^0]
2.1.7. Factored Moments in Columns

The unbalanced moment from the slab-beams at the supports of the equivalent frame are distributed to the support columns above and below the slab-beam in proportion to the relative stiffness of the support columns. Referring to Figure 18, the unbalanced moment at the exterior and interior joints are:

Exterior Joint $=+462.75 \mathrm{ft}$-kips

Joint $2=-1,382.84+1,248.72=-134.12 \mathrm{ft}-\mathrm{kips}$

The stiffness and carry-over factors of the actual columns and the distribution of the unbalanced slab moments $\left(M_{s c}\right)$ to the exterior and interior columns are shown in the following Figure.

EXTERIOR COLUMN

INTERIOR COLUMN
Figure 21 - Column Moments (Unbalanced Moments from Slab-Beam)

In summary:
For Top column (Above): For Bottom column (Below):
$M_{\text {col, } \text { Exterior }}=194.91 \mathrm{ft}-\mathrm{kips}$
$M_{\text {col }, \text { Exterior }}=225.22 \mathrm{ft}$-kips
$M_{\text {col }, \text { Interior }}=56.49 \mathrm{ft}-\mathrm{kips}$
$M_{\text {col }, \text { Interior }}=65.27 \mathrm{ft}-\mathrm{kips}$
The moments determined above are combined with the factored axial loads (for each story) and factored moments in the transverse direction for design of column sections. The moment values at the face of interior, exterior, and corner columns from the unbalanced moment values are shown in the following Table.

Figure 22 - Moment Diagrams (kips-ft)

Table 5 - Factored Moments in Columns				
$\mathbf{M}_{\mathbf{u}}$ (kips-ft)	Column Location			
	Interior	Exterior	Corner	
$\mathbf{M}_{\mathbf{u x}}$	65.27	225.22	225.22	
$\mathbf{M}_{\mathbf{u y}}$	65.27	65.27	225.22	

3. Design of Columns by spColumn

This section includes the design of interior, edge, and corner columns using spColumn software. The preliminary dimensions for these columns were calculated previously in section one. The reduction of live load per $\underline{\operatorname{ASCE}} \mathbf{~ 7 -}$ 10 will be ignored in this example. However, the detailed procedure to calculate the reduced live loads is explained in the "One-Way Wide Module (Skip) Joist Concrete Floor System Design (ACI 318-14)" example.

3.1. Determination of Factored Loads

Assume 4 story building

Interior Column:

Tributary area for interior column for live load, superimposed dead load, and self-weight of the slab is
$A_{\text {Tributary }}=(33 \times 33)=1,089.00 \mathrm{ft}^{2}$
Tributary area for interior column for self-weight of additional slab thickness due to the presence of the drop panel is
$A_{\text {Tributary }}=(12 \times 12)=144.00 \mathrm{ft}^{2}$

- $P_{u}=4 \times q_{u} \times A_{\text {Tributary }}=4 \times(0.340 \times 1,089.00+0.135 \times 144.00)=1,558.80 \mathrm{kips}$
- $M_{u, x}=65.27 \mathrm{ft}-\mathrm{kips}$ (see the previous Table)
- $M_{u, y}=65.27 \mathrm{ft}-\mathrm{kips}$ (see the previous Table)

Edge (Exterior) Column:

Tributary area for exterior column for live load, superimposed dead load, and self-weight of the slab is
$A_{\text {Tributary }}=\left(\frac{33}{2}+\frac{20 / 2}{12}\right) \times 33=572.00 \mathrm{ft}^{2}$

Tributary area for exterior column for self-weight of additional slab thickness due to the presence of the drop panel is

$$
A_{\text {Tributary }}=\left(\frac{12}{2}+\frac{20 / 2}{12}\right) \times 12=82.00 \mathrm{ft}^{2}
$$

- $P_{u}=4 \times q_{u} \times A_{\text {Tributary }}=4 \times(0.340 \times 572.00+0.135 \times 82.00)=822.20 \mathrm{kips}$
- $M_{u, x}=225.22 \mathrm{ft}$-kips (see the previous Table)
- $M_{u, y}=65.27 \mathrm{ft}-\mathrm{kips}$ (see the previous Table)

Corner Column:

Tributary area for corner column for live load, superimposed dead load, and self-weight of the slab is

$$
A_{\text {Tributary }}=\left(\frac{33}{2}+\frac{20 / 2}{12}\right) \times\left(\frac{33}{2}+\frac{20 / 2}{12}\right)=300.44 \mathrm{ft}^{2}
$$

Tributary area for corner column for self-weight of additional slab thickness due to the presence of the drop panel is

$$
A_{\text {Tributary }}=\left(\frac{12}{2}+\frac{20 / 2}{12}\right) \times\left(\frac{12}{2}+\frac{20 / 2}{12}\right)=46.69 \mathrm{ft}^{2}
$$

- $P_{u}=4 \times q_{u} \times A_{\text {Tributary }}=4 \times(0.340 \times 300.44+0.135 \times 46.69)=433.82 \mathrm{kips}$
- $M_{u, x}=225.22 \mathrm{ft}$-kips (see the previous Table)
- $M_{u, y}=225.22 \mathrm{ft}$-kips (see the previous Table)

The factored loads are then input into spColumn to construct the axial load - moment interaction diagram.

3.2. Moment Interaction Diagram

Interior Column:

Edge Column:

Corner Column:

4. Shear Strength

Shear strength of the slab in the vicinity of columns/supports includes an evaluation of one-way shear (beam action) and two-way shear (punching) in accordance with ACI 318 Chapter 22.

4.1. One-Way (Beam Action) Shear Strength

ACI 318-14 (22.5)
One-way shear is critical at a distance d from the face of the column as shown in Figure 3. Figure 24 and Figure 26 show the factored shear forces $\left(V_{u}\right)$ at the critical sections around each column and each drop panel, respectively. In members without shear reinforcement, the design shear capacity of the section equals to the design shear capacity of the concrete:

$$
\phi V_{n}=\phi V_{c}+\phi V_{s}=\phi V_{c},\left(\phi V_{s}=0\right)
$$

ACI 318-14 (Eq. 22.5.1.1)

Where:

$$
\phi V_{c}=\phi \times 2 \times \lambda \times \sqrt{f_{c}^{\prime}} \times b_{w} \times d
$$

One-way shear capacity is calculated assuming the shear cross-section area consisting of the drop panel (if any), the ribs, and the slab portion above them, decreased by concrete cover. For such section the equivalent shear width for single rib is calculated from the formula:
$b_{v}=b+\frac{d}{12}$
spSlab Software Manual (Eq. 2-13)

Where:
$b=$ rib width, in.
$d=$ distance from extreme compression fiber to tension reinforcement centroid.

4.1.1. At Distance \boldsymbol{d} from the Supporting Column

$d=h-c_{\text {clear }}-\frac{d_{b}}{2}=17.00-0.75-\frac{0.75}{2}=15.88$ in. for middle span with \#6 reinforcement.
$b_{v}=6.00+\frac{15.88}{12}=7.32 \mathrm{in}$.

Where $\lambda=1$ for normal weight concrete
$b=l_{2, \text { drop }}+n_{\text {ribs }} \times b_{v}=12 \times 12+7 \times 7.32=195.26 \mathrm{in}$. (see the following Figure)

Figure 23 - Frame Strip Cross Section (at Distance d from the Face of the Supporting Column)

The one-way shear capacity for the ribbed slab portions shown in Figure 23 is permitted to be increased by 10%.

ACI 318-14 (9.8.1.5)
$\phi V_{c}=\left(\phi V_{c}\right)_{\text {Solid Slab }}+1.10 \times\left(\phi V_{c}\right)_{\text {Ribbed Slab }}$
$\phi V_{c}=0.75 \times 2.0 \times 1.0 \times \frac{\sqrt{5,000}}{1,000} \times(12 \times 12) \times 15.88+1.10 \times 0.75 \times 2.0 \times 1.0 \times \frac{\sqrt{5,000}}{1,000} \times(7 \times 7.32) \times 15.88$
$\phi V_{c}=337.41 \mathrm{kips}$

Because $\phi V_{c} \geq V_{u}$ at all the critical sections, the slab has adequate one-way shear strength.

Figure 24 - One-way Shear at Critical Sections (at Distance d from the Face of the Supporting Column)

4.1.2. At the Face of the Drop Panel

$d=h-c_{\text {clear }}-\frac{d_{b}}{2}=17.00-0.75-\frac{0.75}{2}=15.88$ in. for middle span with \#6 reinforcement.
$b_{v}=6.00+\frac{15.88}{12}=7.32 \mathrm{in}$.

Where $\lambda=1$ for normal weight concrete
$b=n_{\text {ribs }} \times b_{v}=11 \times 7.32=80.55 \mathrm{in}$. (see the following Figure)

Figure 25 - Frame Strip Cross Section (at Distance d from the Face of the Drop Panel)

The one-way shear capacity for the ribbed slab portions shown in Figure 25 is permitted to be increased by 10%.

ACI 318-14 (9.8.1.5)
$\phi V_{c}=1.10 \times\left(\phi V_{c}\right)_{\text {Ribbed Slab }}=1.10 \times 0.75 \times 2.0 \times 1.0 \times \frac{\sqrt{5,000}}{1,000} \times(11 \times 7.32) \times 15.88=149.20 \mathrm{kips}$

Because $\phi V_{c} \geq V_{u}$ at all the critical sections, the slab has adequate one-way shear strength.

Figure 26 - One-Way Shear at Critical Sections (at the Face of the Drop Panel)

4.2. Two-Way (Punching) Shear Strength

ACI 318-14 (22.6)

4.2.1. Around the Columns Faces

Two-way shear is critical on a rectangular section located at $d / 2$ away from the face of the column as shown in Figure 20.

a) Exterior column:

The factored shear force $\left(V_{u}\right)$ in the critical section is computed as the reaction at the centroid of the critical section minus the self-weight and any superimposed surface dead and live load acting within the critical section ($d / 2$ away from column face).
$V_{u}=V-q_{u} \times\left(b_{1} \times b_{2}\right)=166.97-0.475 \times\left(\frac{27.94 \times 35.88}{144}\right)=163.66 \mathrm{kips}$

The factored unbalanced moment used for shear transfer, $M_{u n b}$, is computed as the sum of the joint moments to the left and right. Moment of the vertical reaction with respect to the centroid of the critical section is also taken into account.

$$
M_{u n b}=M-V_{u} \times\left(b_{1}-c_{A B}-\frac{c_{1}}{2}\right)=462.75-163.66 \times\left(\frac{27.94-8.51-\frac{20}{2}}{12}\right)=334.13 \mathrm{ft}-\mathrm{kips}
$$

For the exterior column in Figure 18 the location of the centroidal axis $z-z$ is:

$$
c_{A B}=\frac{\text { moment of area of the sides about } \mathrm{AB}}{\text { area of the sides }}=\frac{b_{1}^{2}}{2 \times b_{1}+b_{2}}=\frac{27.94^{2}}{2 \times 27.94+35.88}=8.51 \mathrm{in} .
$$

Where:

$$
b_{1}=c_{1}+\frac{d}{2}=20+\frac{15.88}{2}=27.94 \mathrm{in} . \quad b_{2}=c_{2}+d=20+15.88=35.88 \mathrm{in} .
$$

The polar moment J_{c} of the shear perimeter is:

$$
\begin{aligned}
& J_{c}=2 \times\left(\frac{b_{1} \times d^{3}}{12}+\frac{d \times b_{1}^{3}}{12}+\left(b_{1} \times d\right)\left(\frac{b_{1}}{2}-c_{A B}\right)^{2}\right)+b_{2} \times d \times c_{A B}^{2} \\
& J_{c}=2 \times\left(\frac{27.94 \times 15.88^{3}}{12}+\frac{15.88 \times 27.94^{3}}{12}+(27.94 \times 15.88) \times\left(\frac{27.94}{2}-8.51\right)^{2}\right)+35.88 \times 15.88 \times 8.51^{2} \\
& J_{c}=143,997.36 \text { in. }^{4}
\end{aligned}
$$

Where:

$$
\begin{aligned}
& \gamma_{f}=\frac{1}{1+\frac{2}{3} \times \sqrt{\frac{b_{1}}{b_{2}}}} \\
& \gamma_{f}=\frac{1}{1+\frac{2}{3} \times \sqrt{\frac{27.94}{35.88}}}=0.630
\end{aligned}
$$

The length of the critical perimeter for the exterior column:
$b_{o}=2 \times b_{1}+b_{2}=2 \times 27.94+35.88=91.75 \mathrm{in}$.

The two-way shear stress $\left(v_{u}\right)$ can then be calculated as:
$v_{u}=\frac{V_{u}}{b_{o} \times d}+\frac{\gamma_{v} \times M_{u n b} \times c_{A B}}{J_{c}}$
$v_{u}=\frac{163.66 \times 1,000}{91.75 \times 15.88}+\frac{0.370 \times(334.13 \times 12 \times 1,000) \times 8.51}{143,997.36}=112.36+87.74=200.10 \mathrm{psi}$
$v_{c}=\min \left\{\begin{array}{l}4 \times \lambda \times \sqrt{f_{c}^{\prime}} \\ \left(2+\frac{4}{\beta}\right) \times \lambda \times \sqrt{f_{c}^{\prime}} \\ \left(\frac{\alpha_{s} \times d}{b_{o}}+2\right) \times \lambda \times \sqrt{f_{c}^{\prime}}\end{array}\right\}$
ACI 318-14 (Table 22.6.5.2)
$v_{c}=\min \left\{\begin{array}{l}4 \times 1 \times \sqrt{5,000} \\ \left(2+\frac{4}{1}\right) \times 1 \times \sqrt{5,000} \\ \left(\frac{30 \times 15.88}{91.75}+2\right) \times 1 \times \sqrt{5,000}\end{array}\right\}=\min \left\{\begin{array}{l}282.84 \\ 424.26 \\ 508.46\end{array}\right\}=282.84 \mathrm{psi}$
$\phi v_{c}=0.75 \times 282.84=212.13 \mathrm{psi}$

Because $\phi v_{c}>v_{u}$ at the critical section, the slab has adequate two-way shear strength at this joint.

b) Interior column:

$$
\begin{aligned}
& V_{u}=V-q_{u} \times\left(b_{1} \times b_{2}\right)=(222.73+194.85)-0.475 \times\left(\frac{35.88 \times 35.88}{144}\right)=413.34 \mathrm{kips} \\
& M_{u n b}=M-V_{u} \times\left(b_{1}-c_{A B}-\frac{c_{1}}{2}\right)=(1,382.84-1,248.72)-413.34 \times(0)=134.12 \mathrm{ft}-\mathrm{kips}
\end{aligned}
$$

For the interior column in Figure 18, the location of the centroidal axis z-z is:
$c_{A B}=\frac{b_{1}}{2}=\frac{35.88}{2}=17.94 \mathrm{in}$.

Where:

$$
b_{1}=c_{1}+d=20+15.88=35.88 \mathrm{in} . \quad b_{2}=c_{2}+d=20+15.88=35.88 \mathrm{in} .
$$

The polar moment J_{c} of the shear perimeter is:
$J_{c}=2 \times\left(\frac{b_{1} \times d^{3}}{12}+\frac{d \times b_{1}^{3}}{12}+\left(b_{1} \times d\right) \times\left(\frac{b_{1}}{2}-c_{A B}\right)^{2}\right)+2 \times b_{2} \times d \times c_{A B}{ }^{2}$
$J_{c}=2 \times\left(\frac{35.88 \times 15.88^{3}}{12}+\frac{15.88 \times 35.88^{3}}{12}+(35.88 \times 15.88) \times(0)^{2}\right)+2 \times 35.88 \times 15.88 \times 17.94^{2}$
$J_{c}=512,571.48 \mathrm{in} .{ }^{4}$
$\gamma_{v}=1-\gamma_{f}=1-0.600=0.400$
ACI 318-14 (Eq. 8.4.4.2.2)

Where:
$\gamma_{f}=\frac{1}{1+\frac{2}{3} \times \sqrt{\frac{b_{1}}{b_{2}}}}$
ACI 318-14 (8.4.2.3.2)
$\gamma_{f}=\frac{1}{1+\frac{2}{3} \times \sqrt{\frac{35.88}{35.88}}}=0.600$
The length of the critical perimeter for the interior column:
$b_{o}=2 \times\left(b_{1}+b_{2}\right)=2 \times(35.88+35.88)=143.50 \mathrm{in}$.

The two-way shear stress $\left(v_{u}\right)$ can then be calculated as:
$v_{u}=\frac{V_{u}}{b_{o} \times d}+\frac{\gamma_{v} \times M_{u n b} \times c_{A B}}{J_{c}}$
$v_{u}=\frac{413.34 \times 1,000}{143.50 \times 15.88}+\frac{0.400 \times(134.12 \times 12 \times 1,000) \times 17.94}{512,571.48}=181.44+22.53=203.97 \mathrm{psi}$
$v_{c}=\min \left\{\begin{array}{l}4 \times \lambda \times \sqrt{f_{c}^{\prime}} \\ \left(2+\frac{4}{\beta}\right) \times \lambda \times \sqrt{f_{c}^{\prime}} \\ \left(\frac{\alpha_{s} \times d}{b_{o}}+2\right) \times \lambda \times \sqrt{f_{c}^{\prime}}\end{array}\right\}$
$v_{c}=\min \left\{\begin{array}{l}4 \times 1 \times \sqrt{5,000} \\ \left(2+\frac{4}{1}\right) \times 1 \times \sqrt{5,000} \\ \left(\frac{40 \times 15.88}{143.50}+2\right) \times 1 \times \sqrt{5,000}\end{array}\right\}=\min \left\{\begin{array}{l}282.84 \\ 424.26 \\ 454.32\end{array}\right\}=282.84 \mathrm{psi}$

$$
\phi v_{c}=0.75 \times 282.84=212.13 \mathrm{psi}
$$

Since $\phi v_{c}>v_{u}$ at the critical section, the slab has adequate two-way shear strength at this joint.

c) Corner column:

In this example, interior equivalent frame strip was selected where it only has exterior and interior supports (no corner supports are included in this strip). However, the two-way shear strength of corner supports usually governs. Thus, the two-way shear strength for the corner column in this example will be checked for educational purposes. Same procedure is used to find the reaction and factored unbalanced moment used for shear transfer at the centroid of the critical section for the corner support for the exterior equivalent frame strip.

$$
\begin{aligned}
& V_{u}=V-q_{u} \times\left(b_{1} \times b_{2}\right)=94.32-0.475 \times\left(\frac{27.94 \times 27.94}{144}\right)=91.75 \mathrm{kips} \\
& M_{u n b}=M-V_{u} \times\left(b_{1}-c_{A B}-\frac{c_{1}}{2}\right)=265.55-91.75 \times\left(\frac{27.94-6.98-\frac{20}{2}}{12}\right)=181.81 \mathrm{ft}-\mathrm{kips}
\end{aligned}
$$

For the corner column in Figure 18, the location of the centroidal axis z-z is:

$$
c_{A B}=\frac{\text { moment of area of the sides about } \mathrm{AB}}{\text { area of the sides }}=\frac{b_{1}^{2}}{2 \times\left(b_{1}+b_{2}\right)}=\frac{27.94^{2}}{2 \times(27.94+27.94)}=6.98 \mathrm{in} .
$$

Where:

$$
b_{1}=c_{1}+\frac{d}{2}=20+\frac{15.88}{2}=27.94 \mathrm{in} . \quad b_{2}=c_{2}+\frac{d}{2}=20+\frac{15.88}{2}=27.94 \mathrm{in} .
$$

The polar moment J_{c} of the shear perimeter is:

$$
\begin{aligned}
& J_{c}=\left(\frac{b_{1} \times d^{3}}{12}+\frac{d \times b_{1}^{3}}{12}+\left(b_{1} \times d\right) \times\left(\frac{b_{1}}{2}-c_{A B}\right)^{2}\right)+b_{2} \times d \times c_{A B}^{2} \\
& J_{c}=\left(\frac{27.94 \times 15.88^{3}}{12}+\frac{15.88 \times 27.94^{3}}{12}+(27.94 \times 15.88) \times\left(\frac{27.94}{2}-6.98\right)^{2}\right)+27.94 \times 15.88 \times 6.98^{2} \\
& J_{c}=81,430.82 \text { in. }^{4}
\end{aligned}
$$

$$
\gamma_{v}=1-\gamma_{f}=1-0.600=0.400
$$

ACI 318-14 (Eq. 8.4.4.2.2)

Where:

$$
\begin{aligned}
& \gamma_{f}=\frac{1}{1+\frac{2}{3} \times \sqrt{\frac{b_{1}}{b_{2}}}} \\
& \gamma_{f}=\frac{1}{1+\frac{2}{3} \times \sqrt{\frac{27.94}{27.94}}}=0.600
\end{aligned}
$$

The length of the critical perimeter for the corner column:
$b_{o}=b_{1}+b_{2}=27.94+27.94=55.88 \mathrm{in}$.

The two-way shear stress $\left(v_{u}\right)$ can then be calculated as:

$$
\begin{aligned}
& v_{u}=\frac{V_{u}}{b_{o} \times d}+\frac{\gamma_{v} \times M_{u n b} \times c_{A B}}{J_{c}} \\
& v_{u}=\frac{91.75 \times 1,000}{55.88 \times 15.88}+\frac{0.400 \times(181.81 \times 12 \times 1,000) \times 6.98}{81,430.82}=103.43+74.85=178.28 \mathrm{psi}
\end{aligned}
$$

ACI 318-14 (R.8.4.4.2.3)

$$
v_{c}=\min \left\{\begin{array}{l}
4 \times \lambda \times \sqrt{f_{c}^{\prime}} \\
\left(2+\frac{4}{\beta}\right) \times \lambda \times \sqrt{f_{c}^{\prime}} \\
\left(\frac{\alpha_{s} \times d}{b_{o}}+2\right) \times \lambda \times \sqrt{f_{c}^{\prime}}
\end{array}\right\}
$$

$v_{c}=\min \left\{\begin{array}{l}4 \times 1 \times \sqrt{5,000} \\ \left(2+\frac{4}{1}\right) \times 1 \times \sqrt{5,000} \\ \left(\frac{20 \times 15.88}{55.88}+2\right) \times 1 \times \sqrt{5,000}\end{array}\right\}=\min \left\{\begin{array}{l}282.84 \\ 424.26 \\ 543.22\end{array}\right\}=282.84 \mathrm{psi}$

$$
\phi v_{c}=0.75 \times 282.84=212.13 \mathrm{psi}
$$

Since $\phi v_{c}>v_{u}$ at the critical section, the slab has adequate two-way shear strength at this joint.

4.2.2. Around Drop Panels

Two-way shear is critical on a rectangular section located at $d / 2$ away from the face of the drop panel.

The factored shear force $\left(V_{u}\right)$ in the critical section is computed as the reaction at the centroid of the critical section minus the self-weight and any superimposed surface dead and live load acting within the critical section ($d / 2$ away from column face).

Note: For simplicity, it is conservative to deduct only the self-weight of the slab and joists in the critical section from the shear reaction in punching shear calculations. This approach is also adopted in the spSlab program for the punching shear check around the drop panels.

a) Exterior drop panel:

$V_{u}=V-q_{u} \times\left(b_{1} \times b_{2}\right)=166.97-0.340 \times\left(\frac{89.94 \times 159.88}{144}\right)=133.02 \mathrm{kips}$
d value is used in the calculation of v_{u} is given by (see the following Figure).
$d=\frac{(\# \text { of ribs within the drop panel width }) \times h \times b_{v}}{\text { the drop panel width }}$
spSlab Software Manual (Eq. 2-14)
$d=\frac{4 \times 17 \times 7.32}{150}=3.32 \mathrm{in}$.

Figure 27 - Equivalent Thickness based on Shear Area Calculation)
The length of the critical perimeter for the exterior drop panel:
$b_{o}=2 \times 89.94+159.88=339.75 \mathrm{in}$.

Where:
$b_{1}=\frac{c_{1}}{2}+\frac{d}{2}+\frac{l_{1, d p}}{2}=\frac{20}{2}+\frac{15.88}{2}+\frac{12 \times 12}{2}=89.94 \mathrm{in} . \quad b_{2}=d+l_{2, d p}=15.88+12 \times 12=159.88 \mathrm{in}$.

$$
c_{A B}=\frac{b_{1}^{2}}{2 \times b_{1}+b_{2}}=\frac{89.94^{2}}{2 \times 89.94+159.88}=23.81 \mathrm{in} .
$$

The polar moment J_{c} of the shear perimeter is:

$$
\begin{aligned}
& J_{c}=2 \times\left(\frac{b_{1} \times d^{3}}{12}+\frac{d \times b_{1}^{3}}{12}+\left(b_{1} \times d\right)\left(\frac{b_{1}}{2}-c_{A B}\right)^{2}\right)+b_{2} \times d \times{c_{A B}}^{2} \\
& J_{c}=2 \times\left(\frac{89.94 \times 3.32^{3}}{12}+\frac{3.32 \times 89.94^{3}}{12}+(89.94 \times 3.32) \times\left(\frac{89.94}{2}-23.81\right)^{2}\right)+159.88 \times 3.32 \times 23.81^{2} \\
& J_{c}=971,273.30 \mathrm{in.}^{4}
\end{aligned}
$$

The two-way shear stress $\left(v_{u}\right)$ can then be calculated as:
$v_{u}=\frac{V_{u}}{b_{o} \times d}$
ACI 318-14 (R.8.4.4.2.3)
$v_{u}=\frac{133.02 \times 1,000}{339.75 \times 3.32}=117.94 \mathrm{psi}$

The two-way shear capacity for the ribbed slab is permitted to be increased by 10%.
ACI 318-14 (9.8.1.5)
$v_{c}=\min \left\{\begin{array}{l}1.10 \times 4 \times \lambda \times \sqrt{f_{c}^{\prime}} \\ 1.10 \times\left(2+\frac{4}{\beta}\right) \times \lambda \times \sqrt{f_{c}^{\prime}} \\ 1.10 \times\left(\frac{\alpha_{s} \times d}{b_{o}}+2\right) \times \lambda \times \sqrt{f_{c}^{\prime}}\end{array}\right\}$
ACI 318-14 (Table 22.6.5.2)
$v_{c}=\min \left\{\begin{array}{l}1.10 \times 4 \times 1 \times \sqrt{5,000} \\ 1.10 \times\left(2+\frac{4}{1}\right) \times 1 \times \sqrt{5,000} \\ 1.10 \times\left(\frac{30 \times 3.32}{339.75}+2\right) \times 1 \times \sqrt{5,000}\end{array}\right\}=\min \left\{\begin{array}{l}311.13 \\ 466.69 \\ 178.36\end{array}\right\}=178.36 \mathrm{psi}$
$\phi v_{c}=0.75 \times 178.36=133.77 \mathrm{psi}$

In waffle slab design where the drop panels create a large critical shear perimeter, the factor $\left(b_{o} / d\right)$ has limited contribution and is traditionally neglected for simplicity and conservatism. This approach is adopted in this calculation and in the spSlab program (spSlab software manual, Eq. 2-46).

The two-way shear capacity for the ribbed slab is permitted to be increased by 10%.

ACI 318-14 (9.8.1.5)

$$
v_{c}=1.10 \times 2 \times \lambda \times \sqrt{f_{c}^{\prime}}
$$

spSlab Software Manual (Eq. 2-46)
$v_{c}=1.10 \times 2 \times 1 \times \sqrt{5,000}=155.56 \mathrm{psi}$
$\phi v_{c}=0.75 \times 155.56=116.67 \mathrm{psi}$

Since $\phi v_{c}<v_{u}$ at the critical section, the slab does not have adequate two-way shear strength around this drop panel.

b) Interior drop panel:

$$
V_{u}=V-q_{u} \times\left(b_{1} \times b_{2}\right)=222.73+194.85-0.340 \times\left(\frac{159.88 \times 159.88}{144}\right)=357.23 \mathrm{kips}
$$

The length of the critical perimeter for the interior drop panel:

$$
b_{o}=2 \times(159.88+159.88)=639.50 \mathrm{in} .
$$

Where:

$$
b_{1}=d+l_{1, d p}=15.88+12 \times 12=159.88 \mathrm{in} . \quad b_{2}=d+l_{2, d p}=15.88+12 \times 12=159.88 \mathrm{in} .
$$

$c_{A B}=\frac{b_{1}}{2}=\frac{159.88}{2}=79.94 \mathrm{in}$.

The polar moment J_{c} of the shear perimeter is:

$$
\begin{aligned}
& J_{c}=2 \times\left(\frac{b_{1} \times d^{3}}{12}+\frac{d \times b_{1}^{3}}{12}+\left(b_{1} \times d\right) \times\left(\frac{b_{1}}{2}-c_{A B}\right)^{2}\right)+2 \times b_{2} \times d \times c_{A B}^{2} \\
& J_{c}=2 \times\left(\frac{159.88 \times 3.32^{3}}{12}+\frac{3.32 \times 159.88^{3}}{12}+(159.88 \times 3.32) \times(0)^{2}\right)+2 \times 159.88 \times 3.32 \times 79.94^{2} \\
& J_{c}=9,044,800.03 \text { in. }^{4}
\end{aligned}
$$

The two-way shear stress $\left(v_{u}\right)$ can then be calculated as:
$v_{u}=\frac{V_{u}}{b_{o} \times d}$
ACI 318-14 (R.8.4.4.2.3)
$v_{u}=\frac{357.23 \times 1,000}{639.50 \times 3.32}=168.27 \mathrm{psi}$

The two-way shear capacity for the ribbed slab is permitted to be increased by 10%.

$$
v_{c}=\min \left\{\begin{array}{l}
1.10 \times 4 \times 1 \times \sqrt{5,000} \\
1.10 \times\left(2+\frac{4}{1}\right) \times 1 \times \sqrt{5,000} \\
1.10 \times\left(\frac{40 \times 3.32}{639.50}+2\right) \times 1 \times \sqrt{5,000}
\end{array}\right\}=\min \left\{\begin{array}{l}
311.13 \\
466.69 \\
171.71
\end{array}\right\}=171.71 \mathrm{psi}
$$

$$
\phi v_{c}=0.75 \times 171.71=128.79 \mathrm{psi}
$$

$$
v_{c}=1.10 \times 2 \times \lambda \times \sqrt{f_{c}^{\prime}}
$$

$$
v_{c}=1.10 \times 2 \times 1 \times \sqrt{5,000}=155.56 \mathrm{psi}
$$

$$
\phi v_{c}=0.75 \times 155.56=116.67 \mathrm{psi}
$$

Since $\phi v_{c}<v_{u}$ at the critical section, the slab does not have adequate two-way shear strength around this drop panel.

c) Corner drop panel:

$$
V_{u}=V-q_{u} \times\left(b_{1} \times b_{2}\right)=94.32-0.340 \times\left(\frac{89.94 \times 89.94}{144}\right)=75.22 \mathrm{kips}
$$

The length of the critical perimeter for the corner drop panel:

$$
b_{o}=89.94+89.94=179.88 \mathrm{in} .
$$

Where:

$$
b_{1}=\frac{l_{1, d p}}{2}+\frac{d}{2}+\frac{c_{1}}{2}=\frac{12 \times 12}{2}+\frac{15.88}{2}+\frac{20}{2}=89.94 \mathrm{in} . \quad b_{2}=\frac{l_{2, d p}}{2}+\frac{d}{2}+\frac{c_{2}}{2}=\frac{12 \times 12}{2}+\frac{15.88}{2}+\frac{20}{2}=89.94 \mathrm{in} .
$$

$$
c_{A B}=\frac{b_{1}^{2}}{2 \times\left(b_{1}+b_{2}\right)}=\frac{89.94^{2}}{2 \times(89.94+89.94)}=22.48 \mathrm{in} .
$$

The polar moment J_{c} of the shear perimeter is:

$$
\begin{aligned}
& J_{c}=\left(\frac{b_{1} \times d^{3}}{12}+\frac{d \times b_{1}^{3}}{12}+\left(b_{1} \times d\right) \times\left(\frac{b_{1}}{2}-c_{A B}\right)^{2}\right)+b_{2} \times d \times c_{A B}^{2} \\
& J_{c}=\left(\frac{89.94 \times 3.32^{3}}{12}+\frac{3.32 \times 89.94^{3}}{12}+(89.94 \times 3.32) \times\left(\frac{89.94}{2}-22.48\right)^{2}\right)+89.94 \times 3.32 \times 22.48^{2} \\
& J_{c}=503,407.36 \text { in. }^{4}
\end{aligned}
$$

The two-way shear stress $\left(v_{u}\right)$ can then be calculated as:

$$
v_{u}=\frac{V_{u}}{b_{o} \times d}
$$

ACI 318-14 (R.8.4.4.2.3)
$v_{u}=\frac{75.22 \times 1,000}{179.88 \times 3.32}=125.97 \mathrm{psi}$

The two-way shear capacity for the ribbed slab is permitted to be increased by 10%.

$$
\begin{aligned}
& v_{c}=\min \left\{\begin{array}{l}
1.10 \times 4 \times \lambda \times \sqrt{f_{c}^{\prime}} \\
1.10 \times\left(2+\frac{4}{\beta}\right) \times \lambda \times \sqrt{f_{c}^{\prime}} \\
1.10 \times\left(\frac{\alpha_{s} \times d}{b_{o}}+2\right) \times \lambda \times \sqrt{f_{c}^{\prime}}
\end{array}\right\} \\
& v_{c}=\min \left\{\begin{array}{l}
1.10 \times 4 \times 1 \times \sqrt{5,000} \\
1.10 \times\left(2+\frac{4}{1}\right) \times 1 \times \sqrt{5,000} \\
1.10 \times\left(\frac{20 \times 3.32}{179.88}+2\right) \times 1 \times \sqrt{5,000}
\end{array}\right\}=\min \left\{\begin{array}{l}
311.13 \\
466.69 \\
184.27
\end{array}\right\}=184.27 \mathrm{psi} \\
& \phi v_{c}=0.75 \times 184.27=138.21 \mathrm{psi} \\
& v_{c}=1.10 \times 2 \times \lambda \times \sqrt{f_{c}^{\prime}} \\
& v_{c}=1.10 \times 2 \times 1 \times \sqrt{5,000}=155.56 \mathrm{psi} \\
& \phi v_{c}=0.75 \times 155.56=116.67 \mathrm{psi}
\end{aligned}
$$

spSlab Software Manual (Eq. 2-46)

Since $\phi v_{c}<v_{u}$ at the critical section, the slab does not have adequate two-way shear strength around this drop panel.

To mitigate the deficiency in two-way shear capacity an evaluation of possible options is required:

1. Increase the thickness of the slab system
2. Increasing the dimensions of the drop panels (length and/or width)
3. Increasing the concrete strength
4. Reduction of the applied loads
5. Reduction of the panel spans
6. Using less conservative punching shear allowable (gain of 5-10\%)
7. Refine the deduction of drop panel weight from the shear reaction (gain of $2-5 \%$)

This example will be continued without the required modification discussed above to continue the illustration of the analysis and design procedure.

5. Serviceability Requirements (Deflection Check)

Since the slab thickness was selected to meet the minimum slab thickness tables in ACI 318-14, the deflection calculations of immediate and time-dependent deflections are not required. They are shown below for illustration purposes and comparison with $\underline{s p S l a b}$ software results.

5.1. Immediate (Instantaneous) Deflections

The calculation of deflections for two-way slabs is challenging even if linear elastic behavior can be assumed. Elastic analysis for three service load levels ($D, D+L_{\text {sustained, }} D+L_{\text {Full }}$) is used to obtain immediate deflections of the two-way slab in this example. However, other procedures may be used if they result in predictions of deflection in reasonable agreement with the results of comprehensive tests.

ACI 318-14 (24.2.3)

The effective moment of inertia $\left(I_{e}\right)$ is used to account for the cracking effect on the flexural stiffness of the slab. I_{e} for uncracked section $\left(M_{c r}>M_{a}\right)$ is equal to I_{g}. When the section is cracked ($M_{c r}<M_{a}$), then the following equation should be used:
$I_{e}=\left(\frac{M_{c r}}{M_{a}}\right)^{3} \times I_{g}+\left[1-\left(\frac{M_{c r}}{M_{a}}\right)^{3}\right] \times I_{c r} \leq I_{g}$
ACI 318-14 (Eq. 24.2.3.5a)

Where:
$M_{a}=$ Maximum moment in member due to service loads at stage deflection is calculated.

The values of the maximum moments for the three service load levels are calculated from structural analysis as shown previously in this document. These moments are shown in Figure 28.

Moment diagram (ft-kips)

1. DL
2. $\mathrm{DL}+\mathrm{LL}_{\text {sustained }}$

x, ft
*Moment values@columns centerlines

Moment diagram (ft-kips)
3. $\mathrm{DL}+\mathrm{LL}_{\text {full }}$

x, ft
*Moment values@columns centerlines
Figure 28 - Maximum Moments for the Three Service Load Levels

For positive moment (midspan) section:
$M_{c r}=$ cracking moment.
$M_{c r}=\frac{f_{r} \times I_{g}}{y_{t}}=\frac{530.33 \times 60,254.73}{11.41} \times \frac{1}{12 \times 1,000}=233.46 \mathrm{ft}-\mathrm{kips}$
ACI 318-14 (Eq. 24.2.3.5b)
$f_{r}=$ Modulus of rapture of concrete.
$f_{r}=7.5 \times \lambda \times \sqrt{f_{c}^{\prime}}=7.5 \times 1.0 \times \sqrt{5,000}=530.33 \mathrm{psi}$
ACI 318-14 (Eq. 19.2.3.1)
$I_{g}=$ Moment of inertia of the gross uncracked concrete section. See the following Figure.
$I_{g}=I_{g / r i b} \times \#$ of ribs $=5,477.70 \times 11=60,254.73 \mathrm{in} .{ }^{2}$
$y_{t}=$ Distance from centroidal axis of gross section, neglecting reinforcement, to tension face, in.
$y_{t}=h_{r i b}-y_{\text {bar }}=17.00-5.59=11.41 \mathrm{in}$.

Figure 29 - Equivalent Gross Section for One Rib - Positive Moment Section
$I_{c r}=$ moment of inertia of the cracked section transformed to concrete. \quad PCA Notes on ACI 318-11 (9.5.2.2)

As calculated previously, the positive reinforcement for the middle span frame strip is 22 \#6 bars located at 1.125 in. along the section from the bottom of the slab. The Figure below shows all the parameters needed to calculate the moment of inertia of the cracked section transformed to concrete at midspan.

Figure 30 - Cracked Transformed Section - Positive Moment Section
$E_{c s}=$ Modulus of elasticity of slab concrete.
$E_{c s}=w_{c}^{1.5} \times 33 \times \sqrt{f_{c}^{\prime \prime}}=150^{1.5} \times 33 \times \sqrt{5,000}=4,287 \times 10^{3} \mathrm{psi}$
ACI 318-14 (19.2.2.1.a)
$n=\frac{E_{s}}{E_{c s}}=\frac{29,000,000}{4,287,000}=6.76$
PCA Notes on ACI 318-11 (Table 10-2)
$B=\frac{b}{n \times A_{s}}=\frac{33 \times 12}{6.76 \times(22 \times 0.44)}=6.05 \mathrm{in} .^{-1}$
PCA Notes on ACI 318-11 (Table 10-2)
$k d=\frac{\sqrt{2 \times d \times B+1}-1}{B}=\frac{\sqrt{2 \times 15.88 \times 6.05+1}-1}{6.05}=2.13 \mathrm{in}$.
PCA Notes on ACI 318-11 (Table 10-2)
$I_{c r}=\frac{b \times(k d)^{3}}{3}+n \times A_{s} \times(d-k d)^{2}$
PCA Notes on ACI 318-11 (Table 10-2)
$I_{c r}=\frac{33 \times 12 \times(2.13)^{3}}{3}+6.76 \times(22 \times 0.44) \times(15.88-2.13)^{2}=13,646.72 \mathrm{in}^{4}{ }^{4}$

For negative moment section (near the interior support of the end span):

The negative reinforcement for the end span frame strip near the interior support is 45 \#6 bars located at 1.125 in . along the section from the top of the slab.
$M_{c r}=\frac{f_{r} \times I_{g}}{y_{t}}=\frac{530.33 \times 103,622.30}{9.65} \times \frac{1}{12 \times 1,000}=474.40 \mathrm{ft}-\mathrm{kips}$
ACI 318-14 (Eq. 24.2.3.5b)
$f_{r}=7.5 \times \lambda \times \sqrt{f_{c}^{\prime}}=7.5 \times 1.0 \times \sqrt{5,000}=530.33 \mathrm{psi}$
ACI 318-14 (Eq. 19.2.3.1)
$I_{g}=103,622.30$ in. ${ }^{2}$ (See the following Figure)

Note: A lower value of $I_{g}\left(60,254.73 \mathrm{in} .^{4}\right)$ excluding the drop panel is conservatively adopted in calculating waffle slab deflection by the spSlab software.
$y_{t}=9.65 \mathrm{in}$.

Figure 31 - Gross Section - Negative Moment Section
$E_{c s}=w_{c}^{1.5} \times 33 \times \sqrt{f_{c}^{\prime \prime}}=150^{1.5} \times 33 \times \sqrt{5,000}=4,287 \times 10^{3} \mathrm{psi}$
ACI 318-14 (19.2.2.1.a)
$n=\frac{E_{s}}{E_{c s}}=\frac{29,000,000}{4,287,000}=6.76$
PCA Notes on ACI 318-11 (Table 10-2)
$B=\frac{b_{\text {total }}}{n \times A_{s}}=\frac{194.17}{6.76 \times(45 \times 0.44)}=1.45 \mathrm{in}^{-1}$
PCA Notes on ACI 318-11 (Table 10-2)

Where $b_{\text {total }}=144.00+7 \times 7.17=194.17$ in. (See Figure 31 and Figure 32)

$$
\begin{aligned}
& k d=\frac{\sqrt{2 \times d \times B+1}-1}{B}=\frac{\sqrt{2 \times 15.88 \times 1.45+1}-1}{1.45}=4.04 \mathrm{in} . \\
& I_{c r}=\frac{b_{\text {total }} \times(k d)^{3}}{3}+n \times A_{s} \times(d-k d)^{2} \\
& I_{c r}=\frac{194.17 \times(4.04)^{3}}{3}+6.76 \times(45 \times 0.44) \times(15.88-4.04)^{2}=23,028.31 \mathrm{in} .4
\end{aligned}
$$

PCA Notes on ACI 318-11 (Table 10-2)

PCA Notes on ACI 318-11 (Table 10-2)

Note: A lower value of $I_{c r}\left(18,722.37 \mathrm{in} .^{4}\right)$ excluding the drop panel is conservatively adopted in calculating waffle slab deflection by the spSlab software.

Figure 32 - Cracked Transformed Section - Negative Moment Section

The effective moment of inertia procedure described in the Code is considered sufficiently accurate to estimate deflections. The effective moment of inertia, I_{e}, was developed to provide a transition between the upper and lower bounds of I_{g} and $I_{c r}$ as a function of the ratio $M_{c r} / M_{a}$. For conventionally reinforced (nonprestressed) members, the effective moment of inertia, I_{e}, shall be calculated by Eq. (24.2.3.5a) unless obtained by a more comprehensive analysis.
I_{e} shall be permitted to be taken as the value obtained from Eq. (24.2.3.5a) at midspan for simple and continuous spans, and at the support for cantilevers.

ACI 318-14 (24.2.3.7)

For continuous one-way slabs and beams. I_{e} shall be permitted to be taken as the average of values obtained from Eq. (24.2.3.5a) for the critical positive and negative moment sections.

ACI 318-14 (24.2.3.6)

For the middle span (span with two ends continuous) with service load level ($D+L L_{\text {full }}$):

Since $M_{c r}=474.40 \mathrm{ft}-\mathrm{kips}<M_{a}=926.56 \mathrm{ft}$-kips
$I_{e}^{-}=\left(\frac{M_{c r}}{M_{a}}\right)^{3} \times I_{g}+\left[1-\left(\frac{M_{c r}}{M_{a}}\right)^{3}\right] \times I_{c r}$
ACI 318-14 (24.2.3.5a)

Where I_{e}^{-}is the effective moment of inertia for the critical negative moment section (near the support).
$I_{e}^{-}=\left(\frac{474.40}{926.56}\right)^{3} \times 103,622.30+\left[1-\left(\frac{474.40}{926.56}\right)^{3}\right] \times 23,028.31=33,845.29 \mathrm{in}^{4}$
$I_{e}^{+}=I_{g}=60,254.73 \mathrm{in} .{ }^{4}$, since $M_{c r}=233.46 \mathrm{ft}-\mathrm{kips}>M_{a}=221.02 \mathrm{ft}-\mathrm{kips}$

Where $I_{e}{ }^{+}$is the effective moment of inertia for the critical positive moment section (midspan).

Since midspan stiffness (including the effect of cracking) has a dominant effect on deflections, midspan section is heavily represented in calculation of I_{e} and this is considered satisfactory in approximate deflection calculations. Both the midspan stiffness $\left(I_{e}^{+}\right)$and averaged span stiffness ($I_{e, a v g}$) can be used in the calculation of immediate (instantaneous) deflection.

The averaged effective moment of inertia ($I_{e, a v g}$) is given by:
$I_{e, a v g}=0.70 \times I_{e}^{+}+0.15 \times\left(I_{e, l}^{-}+I_{e, r}^{-}\right)$for interior span
PCA Notes on ACI 318-11 (9.5.2.4(2))
$I_{e, \text { vvg }}=0.85 \times I_{e}^{+}+0.15 \times I_{e}^{-}$for end span
PCA Notes on ACI 318-11 (9.5.2.4(1))

However, these expressions lead to improved results only for continuous prismatic members. The drop panels in this example result in non-prismatic members and the following expressions are recommended according to ACI 318-89:

$$
I_{e, a v g}=0.50 \times I_{e}^{+}+0.25 \times\left(I_{e, l}^{-}+I_{e, r}^{-}\right) \text {for interior span }
$$

ACI 435R-95 (2.14)

For the middle span (span with two ends continuous) with service load level ($\left.D+L L_{\text {full }}\right)$:

$$
\begin{aligned}
& I_{e, a v g}=0.50 \times 60,254.73+0.25 \times(33,845.29+33,845.29)=47,050.01 \mathrm{in}^{4} \\
& I_{e, a v g}=0.50 \times I_{e}^{+}+0.50 \times I_{e}^{-} \text {for end span }
\end{aligned}
$$

ACI 435R-95 (2.14)

For the end span (span with one end continuous) with service load level ($\left.D+L L_{\text {full }}\right)$:

$$
I_{e, a v g}=0.50 \times 20,378.52+0.50 \times 30,990.47=25,684.49 \mathrm{in}^{4}
$$

Where:

- $I_{e, l}=$ The effective moment of inertia for the critical negative moment section near the left support.
- $I_{e, r}{ }^{-}=$The effective moment of inertia for the critical negative moment section near the right support.
- $I_{e}^{+}=$The effective moment of inertia for the critical positive moment section (midspan).

Note: The prismatic member equations excluding the effect of the drop panel are conservatively adopted in calculating waffle slab deflection by spSlab.

The following Table provides a summary of the required parameters and calculated values needed for deflections for exterior and interior spans.

Table 6 - Averaged Effective Moment of Inertia Calculations													
For Frame Strip													
Span	zone	$\underset{\text { (in. }{ }^{\mathbf{I}} \mathbf{I g}^{\text {(}}}{ }$	$\underset{\text { (in. }{ }^{4} \text {) }}{ }$	Ma_{a} (ft-kips)			$\underset{(k-f t)}{\mathbf{M}_{\mathrm{cr}}}$	$\mathrm{I}_{\mathrm{e}}\left(\mathrm{in} .{ }^{4}\right)$			$I_{e, \text { avg }}\left(\text { in. }^{4}\right)$		
				D	$\begin{gathered} \mathbf{D}+ \\ \text { LLsus } \end{gathered}$	$\begin{aligned} & \hline \text { D + } \\ & \text { Lfull } \end{aligned}$		D	$\begin{gathered} \text { D + } \\ \text { LLSus } \end{gathered}$	$\begin{aligned} & \text { D + } \\ & \text { Lfull } \end{aligned}$	D	$\begin{gathered} \text { D + } \\ \text { LLSus } \end{gathered}$	$\begin{aligned} & \hline \mathbf{D}+ \\ & \text { Lfull } \\ & \hline \end{aligned}$
Ext	Left	103,622	15,504	206.49	206.49	338.01	474.40	103,622	103,622	103,622	47,520	47,520	25,684
	Midspan	60,255	15,603	298.16	298.16	491.82	233.46	37,037	37,037	20,379			
	Right	103,622	23,028	626.60	626.60	1,026.20	474.40	58,003	58,003	30,990			
Int	Left	103,622	23,028	565.78	565.78	926.56	474.40	70,538	70,538	33,845	65,396	65,396	47,050
	Midspan	60,255	13,647	132.58	132.58	221.02	233.46	60,255	60,255	60,255			
	Right	103,622	23,028	565.78	565.78	926.56	474.40	70,538	70,538	33,845			

Deflections in two-way slab systems shall be calculated taking into account size and shape of the panel, conditions of support, and nature of restraints at the panel edges. For immediate deflections in two-way slab systems, the midpanel deflection is computed as the sum of deflection at midspan of the column strip or column line in one direction $\left(\Delta_{c x}\right.$ or $\left.\Delta_{c y}\right)$ and deflection at midspan of the middle strip in the orthogonal direction $\left(\Delta_{m x}\right.$ or $\left.\Delta_{m y}\right)$. Figure $\underline{33}$ shows the deflection computation for a rectangular panel. The average Δ for panels that have different properties in the two direction is calculated as follows:

$$
\Delta=\frac{\left(\Delta_{c x}+\Delta_{m y}\right)+\left(\Delta_{c y}+\Delta_{m x}\right)}{2}
$$

PCA Notes on ACI 318-11 (9.5.3.4 Eq. 8)

a) X Direction Bending

b) Y Direction Bending

c) Combined Bending

Figure 33 - Deflection Computation for a Rectangular Panel

To calculate each term of the previous equation, the following procedure should be used. Figure 34 shows the procedure of calculating the term $\Delta_{c x}$. Same procedure can be used to find the other terms.

$$
\begin{aligned}
& \longrightarrow \Delta_{\text {frame, fixed }}=\frac{w \times l^{4}}{384 \times E_{c} \times I_{\text {frame, averaged }}}
\end{aligned}
$$

Figure $34-\Delta_{c \underline{c}}$ Calculation Procedure

For end span - service dead load case:
$\Delta_{\text {frame, fixed }}=\frac{w \times l^{4}}{384 \times E_{c} \times I_{\text {frame, averaged }}}$
PCA Notes on ACI 318-11 (9.5.3.4 Eq. 10)

Where:

$w_{S D L+s l a b}=\left(50.00+150 \times \frac{8}{12}\right) \times 33=4,950.00 \frac{\mathrm{lb}}{\mathrm{ft}}$
$w_{\text {drop panel }}=\left(150 \times \frac{17}{12}\right) \times 12=2,550.00 \frac{\mathrm{lb}}{\mathrm{ft}}$
$w=\frac{4,950.00 \times(33-12)+(4,950.00+2,550.00) \times(12-20 / 12)}{(33-20 / 12)}=5,790.96 \frac{\mathrm{lb}}{\mathrm{ft}}$
$E_{c s}=w_{c}^{1.5} \times 33 \times \sqrt{f_{c}^{\prime}}=150^{1.5} \times 33 \times \sqrt{5,000}=4,287 \times 10^{3} \mathrm{psi}$
ACI 318-14 (19.2.2.1.a)
$I_{\text {frame,averaged }}=$ The averaged effective moment of inertia $\left(I_{e, a v g}\right)$ for the frame strip for service dead load case from $\underline{\text { Table } 6}=47,520.23 \mathrm{in} .{ }^{4}$
$\Delta_{\text {frame } \text {, fixed }}=\frac{5,790.96 \times(33-20 / 12)^{4} \times 12^{3}}{384 \times\left(4,287 \times 10^{3}\right) \times 47,520.23}=0.1233 \mathrm{in}$.

$$
\Delta_{c, \text { fixed }}=L D F_{c} \times \Delta_{\text {frame }, \text { fixed }} \times\left(\frac{I_{\text {frame }}}{I_{c}}\right)_{g}
$$

PCA Notes on ACI 318-11 (9.5.3.4 Eq. 11)
$L D F_{c}$ is the load distribution factor for the column strip. The load distribution factor for the column strip can be found from the following equation:
$L D F_{c}=\frac{L D F^{+}+\frac{L D F_{l}^{-}+L D F_{R}^{-}}{2}}{2}$
spSlab Software Manual (Eq. 2-114)

And the load distribution factor for the middle strip can be found from the following equation:
$L D F_{m}=1-L D F_{c}$
spSlab Software Manual (Eq. 2-115)

Taking for example the end span where highest deflections are expected, the LDF for exterior negative region $\left(\mathrm{LDF}_{\mathrm{L}}{ }^{-}\right)$, interior negative region $\left(\mathrm{LDF}_{\mathrm{R}}{ }^{-}\right)$, and positive region $\left(\mathrm{LDF}_{\mathrm{L}}{ }^{+}\right)$are $1.00,0.75$, and 0.60 , respectively (From Table 2 of this document). Thus, the load distribution factor for the column strip for the end span is given by:
$L D F_{c}=\frac{0.6+\frac{1.0+0.75}{2}}{2}=0.738$
$I_{c, g}=$ The gross moment of inertia $\left(I_{g}\right)$ for the column strip for service dead load $=28,289.32 \mathrm{in} .{ }^{4}$
$\Delta_{c, f \text { fixed }}=0.738 \times 0.1233 \times \frac{60,254.73}{28,289.32}=0.1937 \mathrm{in}$.
$\theta_{c, L}=\frac{\left(M_{\text {net }, L}\right)_{\text {frame }}}{K_{e c}}$
PCA Notes on ACI 318-11 (9.5.3.4 Eq. 12)

Where:
$\theta_{c, L}=$ Rotation of the span left support
$\left(M_{\text {net }, L}\right)_{\text {frame }}=206.49 \mathrm{ft}$-kips $=$ Net frame strip negative moment of the left support
$K_{e c}=$ Effective column stiffness $=1,925.34 \times 10^{6}$ in. $-\mathrm{lb}($ calculated above $)$.
$\theta_{c, L}=\frac{206.49 \times 12 \times 1,000}{1,925.34 \times 10^{6}}=0.00129 \mathrm{rad}$
$\Delta \theta_{c, L}=\theta_{c, L} \times\left(\frac{l}{8}\right) \times\left(\frac{I_{g}}{I_{e}}\right)_{\text {frame }}$
PCA Notes on ACI 318-11 (9.5.3.4 Eq. 14)

Where:
$\Delta \theta_{c, L}=$ Midspan deflection due to rotation of left support.
$\left(I_{g} / I_{e}\right)_{\text {frame }}=$ Gross-to-effective moment of inertia ratio for frame strip.
$\Delta \theta_{c, L}=0.00129 \times \frac{33 \times 12-20}{8} \times \frac{60,254.73}{47,520.23}=0.0767 \mathrm{in}$.
$\theta_{c, R}=\frac{\left(M_{\text {net }, R}\right)_{\text {frame }}}{K_{\text {ec }}}=\frac{(626.60-565.78) \times 12 \times 1,000}{1,925.34 \times 10^{6}}=0.00038 \mathrm{rad}$
Where:
$\theta_{c, R}=$ rotation of the end span right support.
$\left(M_{n e t, R}\right)_{\text {frame }}=$ Net frame strip negative moment of the right support.
$\Delta \theta_{c, R}=\theta_{c, R} \times\left(\frac{l}{8}\right) \times\left(\frac{I_{g}}{I_{e}}\right)_{\text {frame }}=0.00038 \times \frac{33 \times 12-20}{8} \times \frac{60,254.73}{47,520.23}=0.0226 \mathrm{in}$.
Where:
$\Delta \theta_{c, R}=$ Midspan deflection due to rotation of right support.
$\Delta_{c x}=\Delta_{c x, f i x e d}+\Delta \theta_{c x, R}+\Delta \theta_{c x, L}$
PCA Notes on ACI 318-11 (9.5.3.4 Eq. 9)
$\Delta_{c x}=0.1937+0.0767+0.0226=0.2930 \mathrm{in}$.

Following the same procedure, $\Delta_{m x}$ can be calculated for the middle strip. This procedure is repeated for the equivalent frame in the orthogonal direction to obtain $\Delta_{c y}$, and $\Delta_{m y}$ for the end and middle spans for the other load levels $\left(D+L L_{\text {sus }}\right.$ and $\left.D+L L_{\text {full }}\right)$.

Since this example has square panels, $\Delta_{c x}=\Delta_{c y}=0.2930 \mathrm{in}$., and $\Delta_{m x}=\Delta_{m y}=0.1682 \mathrm{in}$.

The average Δ for the corner panel is calculated as follows:
$\Delta=\frac{\left(\Delta_{c x}+\Delta_{m y}\right)+\left(\Delta_{c y}+\Delta_{m x}\right)}{2}=\left(\Delta_{c x}+\Delta_{m y}\right)=\left(\Delta_{c y}+\Delta_{m x}\right)=0.2930+0.1682=0.4612 \mathrm{in}$.

Table 7 - Immediate (Instantaneous) Deflections in the \mathbf{x}-direction

Column Strip

Span	LDF	D						
		$\Delta_{\text {frame- }}$ fixed (in.)	$\begin{aligned} & \Delta_{\text {c-fixed }} \\ & \text { (in.) } \end{aligned}$	$\begin{gathered} \boldsymbol{\theta}_{\mathbf{c 1}} \\ (\mathbf{r a d}) \end{gathered}$	$\begin{gathered} \boldsymbol{\theta}_{\mathbf{c} 2} \\ (\mathrm{rad}) \end{gathered}$	$\begin{aligned} & \Delta \boldsymbol{\theta}_{\mathrm{c} 1} \\ & \text { (in.) } \end{aligned}$	$\begin{aligned} & \Delta \boldsymbol{\theta}_{\mathrm{c} 2} \\ & \text { (in.) } \end{aligned}$	$\begin{aligned} & \Delta_{\mathrm{cx}}, \\ & \text { (in.) } \end{aligned}$
Ext	0.738	0.1233	0.1937	0.00129	0.00038	0.0767	0.0226	0.2930
Int	0.675	0.0896	0.1288	-0.00038	-0.00038	-0.0164	-0.0164	0.0960

Span	LDF	D $+\mathbf{L L}_{\text {sus }}$						
		$\Delta_{\text {frame- }}$ fixed (in.)	$\Delta_{\text {c-fixed }}$ (in.)	$\begin{gathered} \boldsymbol{\theta}_{\mathbf{c} 1} \\ (\mathrm{rad}) \end{gathered}$	$\begin{gathered} \boldsymbol{\theta}_{\mathbf{c} 2} \\ (\mathbf{r a d}) \end{gathered}$	$\begin{aligned} & \Delta \boldsymbol{\theta}_{\mathrm{c} 1} \\ & \text { (in.) } \end{aligned}$	$\begin{aligned} & \Delta \boldsymbol{\theta}_{\mathrm{c} 2} \\ & \text { (in.) } \end{aligned}$	$\begin{gathered} \Delta_{\mathrm{cx}} \\ \text { (in.) } \end{gathered}$
Ext	0.738	0.1233	0.1937	0.00129	0.00038	0.0767	0.0226	0.2930
Int	0.675	0.0896	0.1288	-0.00038	-0.00038	-0.0164	-0.0164	0.0960

Span	LDF	D $+L_{\text {full }}$						
		$\begin{gathered} \hline \Delta_{\text {frame- }} \\ \text { fixed } \\ \text { (in.) } \\ \hline \end{gathered}$	$\Delta_{\text {c-fixed }}$ (in.)	$\begin{gathered} \boldsymbol{\theta}_{\mathbf{c 1}} \\ (\mathbf{r a d}) \end{gathered}$	$\begin{gathered} \theta_{\mathbf{c} 2} \\ (\mathrm{rad}) \end{gathered}$	$\begin{aligned} & \Delta \boldsymbol{\theta}_{\mathrm{c} 1} \\ & \text { (in.) } \end{aligned}$	$\begin{aligned} & \Delta \theta_{\mathrm{c} 2} \\ & \text { (in.) } \end{aligned}$	$\begin{gathered} \Delta_{\mathrm{cx}} \\ \text { (in.) } \end{gathered}$
Ext	0.738	0.3581	0.5625	0.00211	0.00062	0.2323	0.0685	0.8633
Int	0.675	0.1955	0.2811	-0.00062	-0.00062	-0.0374	-0.0374	0.2063

Span	LDF	LL Ext Int (in.)
	0.6703	0.1103

LDF	D							
	$\boldsymbol{\Delta}_{\text {frame- }}$ fixed (in.)	$\boldsymbol{\Delta}_{\text {m-fixed }}$ (in.)	$\boldsymbol{\theta}_{\mathbf{m} 1}$ (rad)	$\boldsymbol{\theta}_{\mathbf{m} 2}$ (rad)	$\boldsymbol{\Delta} \boldsymbol{\theta}_{\mathbf{m} 1}$ (in.)	$\boldsymbol{\Delta} \boldsymbol{\theta}_{\mathbf{m} 2}$ (in.)	$\boldsymbol{\Delta}_{\mathbf{m x}}$ (in.)	
0.263	0.1233	0.0689	0.00129	0.00038	0.0767	0.0226	0.1682	
0.325	0.0896	0.0620	-0.00038	-0.00038	-0.0164	-0.0164	0.0292	

$\mathbf{L} \mathbf{L D F}$	$\mathbf{D}+\mathbf{L L}_{\text {sus }}$							
	$\boldsymbol{\Delta}_{\text {frame- }}$ fixed (in.)	$\boldsymbol{\Delta}_{\text {m-fixed }}$ (in.)	$\boldsymbol{\theta}_{\mathbf{m} 1}$ (rad)	$\boldsymbol{\theta}_{\mathbf{m} 2}$ (rad)	$\boldsymbol{\Delta} \boldsymbol{\theta}_{\mathbf{m} 1}$ (in.)	$\boldsymbol{\Delta} \boldsymbol{\theta}_{\mathbf{m} 2}$ (in.)	$\boldsymbol{\Delta}_{\mathbf{m x}}$ (in.)	
0.263	0.1233	0.0689	0.00129	0.00038	0.0767	0.0226	0.1682	
0.325	0.0896	0.0620	-0.00038	-0.00038	-0.0164	-0.0164	0.0292	

$\mathbf{L} \mathbf{L D F}$	$\mathbf{D}+\mathbf{L} \mathbf{L}_{\text {full }}$							
	$\boldsymbol{\Delta}_{\text {frame- }}$ fixed (in.)	$\boldsymbol{\Delta}_{\mathbf{m} \text {-fixed }}$ (in.)	$\boldsymbol{\theta}_{\mathbf{m} 1}$ (rad)	$\boldsymbol{\theta}_{\mathbf{m} 2}$ (rad)	$\boldsymbol{\Delta} \boldsymbol{\theta}_{\mathbf{m} 1}$ (in.)	$\boldsymbol{\Delta} \boldsymbol{\theta}_{\mathbf{m} 2}$ (in.)	$\boldsymbol{\Delta}_{\mathbf{m x}}$ (in.)	
	0.3581	0.2002	0.00211	0.00062	0.2323	0.0685	0.5010	
0.325	0.1955	0.1353	-0.00062	-0.00062	-0.0374	-0.0374	0.0606	

$\mathbf{L D F}$	$\mathbf{L L}$
	$\boldsymbol{\Delta}_{\mathbf{m x}}$ (in.)
0.263	0.3328
0.325	0.0314

5.2. Time-Dependent (Long-Term) Deflections (Δ_{It})

The additional time-dependent (long-term) deflection resulting from creep and shrinkage ($\Delta_{c s}$) may be estimated as follows:
$\Delta_{c s}=\lambda_{\Delta} \times\left(\Delta_{\text {sust }}\right)_{\text {Inst }}$
PCA Notes on ACI 318-11 (9.5.2.5 Eq. 4)

The total time-dependent (long-term) deflection is calculated as:

$$
\left(\Delta_{\text {total }}\right)_{\text {It }}=\left(\Delta_{\text {sust }}\right)_{\text {Inst }} \times\left(1+\lambda_{\Delta}\right)+\left[\left(\Delta_{\text {total }}\right)_{\text {Inst }}-\left(\Delta_{\text {sust }}\right)_{\text {Inst }}\right]
$$

CSA A23.3-04 (N9.8.2.5)

Where:
$\left(\Delta_{\text {sust }}\right)_{\text {Inst }}=$ Immediate (instantaneous) deflection due to sustained load, in.

$$
\lambda_{\Delta}=\frac{\xi}{1+50 \times \rho^{\prime}}
$$

$\left(\Delta_{\text {total }}\right)_{l t}=$ Time-dependent (long-term) total deflection, in.
$\left(\Delta_{\text {total }}\right)_{\text {Inst }}=$ Total immediate (instantaneous) deflection, in.

For the exterior span
$\xi=2$, consider the sustained load duration to be 60 months or more.
ACI 318-14 (Table 24.2.4.1.3)
$\rho^{\prime}=0$, conservatively.
$\lambda_{\Delta}=\frac{2}{1+50 \times 0}=2$
$\Delta_{c s}=2 \times 0.2930=0.5859 \mathrm{in}$.
$\left(\Delta_{\text {total }}\right)_{l t}=0.2930 \times(1+2)+(0.8633-0.2930)=1.4492 \mathrm{in}$.

The following Table shows long-term deflections for the exterior and interior spans for the analysis in the x direction, for column and middle strips.

Table 8 - Long-Term Deflections					
Column Strip					
Span	($\left.\Delta_{\text {sust }}\right)_{\text {Inst }}(\mathbf{i n}$.	λ_{1}	$\Delta_{\text {cs }}(\mathbf{i n}$.)	($\left.\Delta_{\text {total }}\right)_{\text {Inst }}$ (in.)	
Exterior	0.2930	2	0.5859	0.8633	1.4492
Interior	0.0960	2	0.1920	0.2063	0.3983
Middle Strip					
Exterior	0.1682	2	0.3365	0.5010	0.8374
Interior	0.0292	2	0.0584	0.0606	0.1189

6. spSlab Software Program Model Solution

spSlab program utilizes the Equivalent Frame Method described and illustrated in details here for modeling, analysis and design of two-way concrete floor slab systems with drop panels. spSlab uses the exact geometry and boundary conditions provided as input to perform an elastic stiffness (matrix) analysis of the equivalent frame taking into account the torsional stiffness of the slabs framing into the column. It also takes into account the complications introduced by a large number of parameters such as vertical and torsional stiffness of transverse beams, the stiffening effect of drop panels, column capitals, and effective contribution of columns above and below the floor slab using the of equivalent column concept ($\boldsymbol{\text { ACI 318-14 (R8.11.4)). }}$
spSlab Program models the equivalent frame as a design strip. The design strip is, then, separated by spSlab into column and middle strips. The program calculates the internal forces (Shear Force \& Bending Moment), moment and shear capacity vs. demand diagrams for column and middle strips, instantaneous and long-term deflection results, and required flexural reinforcement for column and middle strips.

[^1]STRUCTUREPOINT - spSlab v5.50 Page | 2
Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-241C3-241C3 2/9/202
F:IStructurePointlspSlablTwo-Way-Joist-Waffle-System-ACI-318-14.slb 5:46 PM
Contents

1. Input Echo4
1.1. General Information 4
1.2. Solve Options 4
1.3. Material Properties 4
1.3.1. Concrete: Slabs / Beams 4
1.3.2. Concrete: Columns 4
1.3.3. Reinforcing Steel 4
1.4. Reinforcement Database 5
1.5. Span Data 5
1.5.1. Slabs 5
1.5.2. Ribs and Longitudinal Beams 5
1.6. Support Data 5
1.6.1. Columns 5
1.6.2. Drop Panels 5
1.6.3. Boundary Conditions 6
1.7. Load Data 6
1.7.1. Load Cases and Combinations 6
1.7.2. Area Loads 6
1.7.3. Line Loads 6
1.8. Reinforcement Criteria 6
1.8.1. Slabs and Ribs 6
1.8.2. Beams 7
2. Design Results*7
2.1. Strip Widths and Distribution Factors 7
2.2. Top Reinforcement 7
2.3. Top Bar Details. 8
2.4. Top Bar Development Lengths 9
2.5. Bottom Reinforcement. 9
2.6. Bottom Bar Details 9
2.7. Bottom Bar Development Lengths 10
2.8. Flexural Capacity. 10
2.9. Slab Shear Capacity 13
2.10. Flexural Transfer of Negative Unbalanced Moment at Supports 13
2.11. Punching Shear Around Columns 13
2.11.1. Critical Section Properties. 13
2.11.2. Punching Shear Results 13
2.12. Punching Shear Around Drops13
2.12.1. Critical Section Properties 13
2.12.2. Punching Shear Results 14
2.13. Material TakeOff 14
2.13.1. Reinforcement in the Direction of Analysis 14
3. Deflection Results: Summary 14
3.1. Section Properties 14
3.1.1. Frame Section Properties 14
3.1.2. Frame Effective Section Properties 14
3.1.3. Strip Section Properties at Midspan 15
3.2. Instantaneous Deflections 15
3.2.1. Extreme Instantaneous Frame Deflections and Corresponding Locations 15
3.2.2. Extreme Instantaneous Column Strip Deflections and Corresponding Locations 15
3.2.3. Extreme Instantaneous Middle Strip Deflections and Corresponding Locations 16
3.3. Long-term Deflections 17
3.3.1. Long-term Column Strip Deflection Factors 17
3.3.2. Long-term Middle Strip Deflection Factors 17
3.3.3. Extreme Long-term Column Strip Deflections and Corresponding Locations 17
STRUCTUREPOINT - spSlab v5.50 Page | 3
Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-241C3-241C3 2/9/2024
F:IStructurePointlspSlablTwo-Way-Joist-Waffle-System-ACI-318-14.slb 5:46 PM
3.3.4. Extreme Long-term Middle Strip Deflections and Corresponding Locations 18
4. Diagrams 19
4.1. Loads. 19
4.2. Internal Forces 20
4.3. Moment Capacity 21
4.4. Shear Capacity 22
4.5. Deflection 23
4.6. Reinforcement 24

1. Input Echo

1.1. General Information

File Name	F:L...ITwo-Way-Joist-Waffle-System-ACI-318- 14.slb
Project	Two-Way Joist (Waffle) System
Frame	Interior Frame
Engineer	SP
Code	ACI 318-14
Reinforcement Database Mode	ASTM A615
Number of supports $=$	Design
Floor System	Two-Way

1.2. Solve Options

Live load pattern ratio $=0 \%$
Minimum free edge distance for punching shear $=4$ times slab thickness.
Circular critical section around circular supports used (if possible).
Deflections are based on cracked section properties
In negative moment regions, Ig and Mcr include flange/slab contribution (if available)
Long-term deflections are calculated for load duration of 60 months.
0% of live load is sustained.
Compression reinforcement calculations NOT selected.
Default incremental rebar design selected.
User-defined slab strip widths NOT selected.
User-defined distribution factors NOT selected.
One-way shear in drop panel selected
Distribution of shear to strips NOT selected
Beam T-section design NOT selected.
Longitudinal beam contribution in negative reinforcement design over support NOT selected.
Transverse beam contribution in negative reinforcement design over support NOT selected.

1.3. Material Properties

1.3.1. Concrete: Slabs / Beams

w_{c}	$150 \mathrm{lb} / \mathrm{ft}^{3}$
f^{\prime}	5 ksi
E_{c}	4286.8 ksi
f_{r}	0.53033 ksi

1.3.2. Concrete: Columns

w_{c}	$150 \mathrm{lb} / \mathrm{ft}^{3}$
f_{c}	6 ksi
E_{c}	4696 ksi
f_{r}	0.58095 ksi

1.3.3. Reinforcing Steel

f_{y}	60 ksi
f_{yt}	60 ksi

29000 ksi
Epoxy coated bars No
1.4. Reinforcement Database

Size	Db in	Ab in 2	Wb lb/ft	Size	Db in	Ab in 2	Wb lb/ft
\#3	0.38	0.11	0.38	$\# 4$	0.50	0.20	0.67
$\# 5$	0.63	0.31	1.04	$\# 6$	0.75	0.44	1.50
$\# 7$	0.88	0.60	2.04	$\# 8$	1.00	0.79	2.67
$\# 9$	1.13	1.00	3.40	$\# 10$	1.27	1.27	4.30
$\# 11$	1.41	1.56	5.31	$\# 14$	1.69	2.25	7.65
$\# 18$	2.26	4.00	13.60				

1.5. Span Data

1.5.1. Slabs

Notes:
Deflection check required for panels where code-specified Hmin for two-way construction doesn't apply due to:
*i - cantilever end span (LC, RC) support condition

Span	Loc	L1 ft	\mathbf{t} in	$\mathbf{w L}$ ft	wR ft	L2L ft	L2R ft	Hin in
1	Int	0.833	3.00	16.500	16.500	33.000	33.000	$---\quad$ LC *i
2	Int	33.000	3.00	16.500	16.500	33.000	33.000	2.50
3	Int	33.000	3.00	16.500	16.500	33.000	33.000	2.50
4	Int	33.000	3.00	16.500	16.500	33.000	33.000	2.50
5	Int	0.833	3.00	16.500	16.500	33.000	33.000	$---\quad$ RC *i

1.5.2. Ribs and Longitudinal Beams

Span	Ribs			Beams		
	b	h	Sp	b	h	Offset
	in	in	in	in	in	in
1	6.00	14.00	30.00	0.00	0.00	0.00
2	6.00	14.00	30.00	0.00	0.00	0.00
3	6.00	14.00	30.00	0.00	0.00	0.00
4	6.00	14.00	30.00	0.00	0.00	0.00
5	6.00	14.00	30.00	0.00	0.00	0.00

1.6. Support Data
1.6.1. Columns

Support	$\begin{array}{r} \text { c1a } \\ \text { in } \end{array}$	$\begin{array}{r} \text { c2a } \\ \text { in } \end{array}$	Ha ft	$\begin{array}{r} \mathbf{c} 1 \mathbf{b} \\ \text { in } \end{array}$	$\begin{array}{r} \mathbf{c 2 b} \\ \text { in } \end{array}$	$\begin{array}{r} \mathrm{Hb} \\ \mathrm{ft} \end{array}$	Red \%
1	20.00	20.00	13.000	20.00	20.00	13.000	100
2	20.00	20.00	13.000	20.00	20.00	13.000	100
3	20.00	20.00	13.000	20.00	20.00	13.000	100
4	20.00	20.00	13.000	20.00	20.00	13.000	100

1.6.2. Drop Panels

Support	h in	LI ft	Lr ft	WI ft	Wr ft
1	0.00	0.833	6.000	6.000	6.000
2	0.00	6.000	6.000	6.000	6.000
3	0.00	6.000	6.000	6.000	6.000
4	0.00	6.000	0.833	6.000	6.000

1.6.3. Boundary Conditions

Support	Spring $\mathbf{K}_{\mathbf{z}}$	$\mathbf{K}_{\mathbf{r y}}$ $\mathrm{kip} / \mathrm{in}$	kip-in/rad Above End	Below
	0	0	Fixed	Fixed
	1	0	0	Fixed

1.7. Load Data
1.7.1. Load Cases and Combinations

Case	SELF	Dead	Live
Type	DEAD	DEAD	LIVE
U1	1.200	1.200	1.600

1.7.2. Area Loads

Case/Patt	Span	Wa $\mathrm{lb} / \mathrm{ft}^{2}$
SELF	1	100.06
	2	100.06
	3	100.06
	4	100.06
Dead	5	100.06
	1	50.00
	2	50.00
	3	50.00
Live	4	50.00
	5	50.00
	1	100.00
	2	100.00
	3	100.00
	4	100.00
	5	100.00

1.7.3. Line Loads

Case/Patt Span	Wa lb/ft	La ft	Wb lb/ft	Lb ft	
SELF	1	1349.32	0.000	1349.32	0.833
	2	1349.32	0.000	1349.32	6.000
	2	1349.32	27.000	1349.32	33.000
	3	1349.32	0.000	1349.32	6.000
	3	1349.32	27.000	1349.32	33.000
	4	1349.32	0.000	1349.32	6.000
	4	1349.32	27.000	1349.32	33.000
	5	1349.32	0.000	1349.32	0.833

1.8. Reinforcement Criteria

1.8.1. Slabs and Ribs

	Units	Top Bars		Bottom Bars	
		Min.	Max.	Min.	Max.
Bar Size		$\# 6$	$\# 8$	$\# 6$	$\# 8$
Bar spacing	in	1.00	18.00	1.00	18.00

STRUCTUREPOINT - spSlab v5.50
Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-241C3-241C3
F:IStructurePointlspSlablTwo-Way-Joist-Waffle-System-ACI-318-14.slb
2/9/2024
5:46 PM

	Units	Top Bars		Bottom Bars	
		Min.	Max.	Min.	Max.
Reinf ratio	\%	0.14	5.00	0.14	5.00
Clear Cover	in	0.75		0.75	

1.8.2. Beams

	Units	Top Bars		Bottom Bars		Stirrups	
		Min.	Max.	Min.	Max.	Min.	Max.
Bar Size		$\# 5$	$\# 8$	$\# 5$	$\# 8$	$\# 3$	$\# 5$
Bar spacing	in	1.00	18.00	1.00	18.00	6.00	18.00
Reinf ratio	$\%$	0.14	5.00	0.14	5.00		
Clear Cover	in	1.50		1.50			
Layer dist.	in	1.00		1.00			6
No. of legs				2	1.50		
Side cover	in				3.00		
1st Stirrup	in						

2. Design Results*

*Unless otherwise noted, all results are in the direction of analysis only. Another analysis in the perpendicular direction has to be carried out for two-way slab systems

2.1. Strip Widths and Distribution Factors

Notes:
*Used for bottom reinforcement. **Used for top reinforcement.

Span	Strip	Width			Moment Factor		
		Left **ft	Right **ft	Bottom * ft	Left ** ft	Right ** ft	Bottom * ft
1	Column	16.50	16.50	16.50	1.000	1.000	0.600
	Middle	16.50	16.50	16.50	0.000	0.000	0.400
2	Column	16.50	16.50	16.50	1.000	0.750	0.600
	Middle	16.50	16.50	16.50	0.000	0.250	0.400
3	Column	16.50	16.50	16.50	0.750	0.750	0.600
	Middle	16.50	16.50	16.50	0.250	0.250	0.400
4	Column	16.50	16.50	16.50	0.750	1.000	0.600
	Middle	16.50	16.50	16.50	0.250	0.000	0.400
5	Column	16.50	16.50	16.50	1.000	1.000	0.600
	Middle	16.50	16.50	16.50	0.000	0.000	0.400

2.2. Top Reinforcement

Notes:
*3 - Design governed by minimum reinforcement
*5 - Number of bars governed by maximum allowable spacing

STRUCTUREPOINT - spSlab v5.50
Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-241C3-241C3
F:IStructurePointlspSlablTwo-Way-Joist-Waffle-System-ACI-318-14.slb

Span Strip	Zone	Width	$\mathbf{M}_{\max }$ k-ft	$\mathbf{X}_{\text {max }}$	$\mathrm{A}_{\mathrm{s}, \text { min }}$ in 2	$\mathrm{A}_{\mathrm{s}, \text { max }}$ i^{2}	$\mathbf{A}_{\text {s, req }}$ in^{2}	${ }_{\substack{\text { Prov } \\ \text { in }}}$	Bars	
Middle	Left	16.50	0.00	0.000	2.853	12.144	0.000	14.143	14-\#6	*3 *5
	Midspan	16.50	0.00	0.344	2.853	12.144	0.000	14.143	14-\#6	*3 *5
	Right	16.50	0.00	0.687	2.853	12.144	0.000	14.143	14-\#6	*3*5
2 Column	Left	16.50	323.84	0.833	5.184	51.614	4.594	14.143	14-\#6	*3 *5
	Midspan	16.50	0.00	16.500	0.000	10.120	0.000	0.000	---	
	Right	16.50	907.33	32.167	5.184	51.614	13.208	6.387	31-\#6	
Middle	Left	16.50	1.39	2.063	2.853	12.144	0.019	14.143	14-\#6	*3 *5
	Midspan	16.50	0.00	16.500	0.000	12.144	0.000	0.000	---	
	Right	16.50	302.44	32.167	2.853	12.144	4.482	14.143	14-\#6	*5
3 Column	Left	16.50	823.68	0.833	5.184	51.614	11.945	6.387	31-\#6	
	Midspan	16.50	0.00	16.500	0.000	10.120	0.000	0.000	---	
	Right	16.50	823.68	32.167	5.184	51.614	11.945	6.387	31-\#6	
Middle	Left	16.50	274.56	0.833	2.853	12.144	4.046	14.143	14-\#6	*5
	Midspan	16.50	0.00	16.500	0.000	12.144	0.000	0.000	---	
	Right	16.50	274.56	32.167	2.853	12.144	4.046	14.143	14-\#6	*5
4 Column	Left	16.50	907.33	0.833	5.184	51.614	13.208	6.387	31-\#6	
	Midspan	16.50	0.00	16.500	0.000	10.120	0.000	0.000	---	
	Right	16.50	323.84	32.167	5.184	51.614	4.595	14.143	14-\#6	*3*5
Middle	Left	16.50	302.44	0.833	2.853	12.144	4.482	14.143	14-\#6	*5
	Midspan	16.50	0.00	16.500	0.000	12.144	0.000	0.000	---	
	Right	16.50	1.39	30.937	2.853	12.144	0.019	14.143	14-\#6	*3 *5
5 Column	Left	16.50	3.10	0.146	5.184	51.614	0.043	14.143	14-\#6	*3*5
	Midspan	16.50	1.32	0.386	2.853	10.120	0.018	14.143	14-\#6	*3*5
	Right	16.50	0.41	0.593	2.853	10.120	0.006	14.143	14-\#6	*3 *5
Middle	Left	16.50	0.00	0.146	2.853	12.144	0.000	14.143	14-\#6	*3*5
	Midspan	16.50	0.00	0.490	2.853	12.144	0.000	14.143	14-\#6	*3*5
	Right	16.50	0.00	0.833	2.853	12.144	0.000	14.143	14-\#6	*3*5

2.3. Top Bar Details

NOTES:

* - Bar cut-off location does not meet $\mathrm{ACI} 318,12.10 .5$.1. Revise location, unless the requirements of either 12.10.5.2 or 12.10.5.3 are manually checked and satisfied.

Span	Strip	Left				Continuous		Right			
		Bars	Length ft								
1	Column	---		---		14-\#6	0.83	---		---	
	Middle	---		---		14-\#6	0.83	---		---	
2	Column	12-\#6	11.17	2-\#6	7.10	---		16-\#6	11.17	15-\#6 *	7.10
	Middle	14-\#6	7.73	---		---		14-\#6	10.21	---	
3	Column	16-\#6	11.21	15-\#6 *	7.10	---		16-\#6	11.21	15-\#6 *	7.10
	Middle	14-\#6	11.21	---		---		14-\#6	11.21	---	
4	Column	16-\#6	11.17	15-\#6	7.10	---		12-\#6	11.17	2-\#6	7.10
	Middle	14-\#6	10.21	---		---		14-\#6	7.73	---	

Page 19
2/9/2024
5:46 PM
Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-241C3-241C3
F:IStructurePointlspSlablTwo-Way-Joist-Waffle-System-ACl-318-14.slb

Span	Strip	Left				Continuous		Right			
		Bars	Length								
			ft								
5	Column	---		---		14-\#6	0.83	---		---	
	Middle	---		---		14-\#6	0.83	---		---	

2.4. Top Bar Development Lengths

Span	Strip	Left				Continuous		Right			
		Bars	DevLen in								
1	Column	---		---		14-\#6	12.00	---		---	
	Middle	---		---		14-\#6	12.00	---		---	
2	Column	12-\#6	18.99	2-\#6	18.99	---		16-\#6	24.65	15-\#6	24.65
	Middle	14-\#6	12.00	---		---		14-\#6	18.52	---	
3	Column	16-\#6	22.29	15-\#6	22.29	---		16-\#6	22.29	15-\#6	22.29
	Middle	14-\#6	16.72	---		---		14-\#6	16.72	---	
4	Column	16-\#6	24.65	15-\#6	24.65	---		12-\#6	18.99	2-\#6	18.99
	Middle	14-\#6	18.52	---		---		14-\#6	12.00	---	
5	Column	---		---		14-\#6	12.00	---		---	
	Middle	---		---		14-\#6	12.00	---		---	

2.5. Bottom Reinforcement

Notes:
*3-Design governed by minimum reinforcement.

Span Strip	Width	$\mathbf{M}_{\text {max }}$	$\mathbf{X}_{\text {max }}$	$\mathrm{A}_{\text {s, min }}$	$\mathbf{A s , m a x}^{\text {s, }}$	$\mathrm{A}_{\text {s,req }}$	$\mathbf{S p}_{\text {Prov }}$	Bars
	ft	k-ft	ft	in ${ }^{2}$	in^{2}	in ${ }^{2}$	in	
1 Column	16.50	0.00	0.344	0.000	66.794	0.000	0.000	---
Middle	16.50	0.00	0.344	0.000	66.794	0.000	0.000	---
2 Column	16.50	400.59	14.000	2.853	66.531	5.703	3.823	10-\#7
Middle	16.50	267.06	14.000	2.853	66.794	3.770	3.938	12-\#6
3 Column	16.50	180.35	16.500	2.853	66.794	2.539	3.938	10-\#6 *3
Middle	16.50	120.24	16.500	2.853	66.794	1.690	3.938	12-\#6 *3
4 Column	16.50	400.59	19.000	2.853	66.531	5.703	3.823	10-\#7
Middle	16.50	267.06	19.000	2.853	66.794	3.770	3.938	12-\#6
5 Column	16.50	0.00	0.490	0.000	66.794	0.000	0.000	---
Middle	16.50	0.00	0.490	0.000	66.794	0.000	0.000	---

2.6. Bottom Bar Details

Span	Strip	Long Bars			Short Bars			Waffle		
		Bars	Start ft	Length	Bars	Start ft	Length	Ribs	Bars/Rib	$\begin{aligned} & \mathrm{A}_{s} / \mathrm{Rib}^{i \mathrm{n}^{2}} \end{aligned}$
1	Column	---			---			---		
	Middle	---			---			---		
2	Column	10-\#7	0.00	33.00	---			5	2-\#7	1.200

STRUCTUREPOINT - spSlab v5. 50
Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-241C3-241C3
F:IStructurePointlspSlablTwo-Way-Joist-Waffle-System-ACI-318-14.slb
2/9/2024

Span	Strip	Long Bars			Short Bars		Waffle		
		Bars	Start ft	Length	Bars	Start Length ft ft	Ribs	Bars/Rib	$\mathbf{A}_{s} / \text { Rib }$ in^{2}
3	Middle	12-\#6	0.00	33.00	---		6	2-\#6	0.880
	Column	10-\#6	0.00	33.00	---		5	2-\#6	0.880
	Middle	12-\#6	0.00	33.00	---		6	2-\#6	0.880
4	Column	10-\#7	0.00	33.00	---		5	2-\#7	1.200
	Middle	12-\#6	0.00	33.00	---		6	2-\#6	0.880
5	Column	---			---		---		
	Middle	---			---		---		

2.7. Bottom Bar Development Lengths

Span	Strip	Long Bars		Short Bars	
		Bars	DevLen in	Bars	DevLen in
1	Column	---		-	
	Middle	---		---	
2	Column	10-\#7	39.00	---	
	Middle	12-\#6	18.18	---	
3	Column	10-\#6	14.69	---	
	Middle	12-\#6	12.00	---	
4	Column	10-\#7	39.00	---	
	Middle	12-\#6	18.18	---	
5	Column	---		---	
	Middle	---		---	

2.8. Flexural Capacity

Span Strip	Top						Bottom				
	\mathbf{x}	$\mathrm{A}_{\text {s,top }}$	$\boldsymbol{\Phi} \mathrm{M}_{\mathrm{n}}{ }^{-}$	$\mathrm{M}_{\mathrm{u}^{-}}$	Comb Pat	Status	$\begin{gathered} \mathbf{A}_{\mathbf{s}, \text { bot }} \\ \text { in }^{2} \end{gathered}$	$\begin{array}{r} \Phi \mathrm{M}_{\mathrm{n}}+ \\ \mathrm{k}-\mathrm{ft} \end{array}$	$\begin{array}{r} \mathbf{M}_{\mathbf{u}}+ \\ \mathrm{k}-\mathrm{ft} \end{array}$	Comb Pat	Status
	ft	in ${ }^{2}$	k-ft	k-ft							
1 Column	0.000	6.16	-399.88	0.00	U1 All	OK	0.00	0.00	0.00	U1 All	OK
	0.241	6.16	-399.88	-0.41	U1 All	OK	0.00	0.00	0.00	U1 All	OK
	0.417	6.16	-399.88	-1.11	U1 All	OK	0.00	0.00	0.00	U1 All	OK
	0.447	6.16	-432.18	-1.32	U1 All	OK	0.00	0.00	0.00	U1 All	OK
	0.687	6.16	-432.18	-3.09	U1 All	OK	0.00	0.00	0.00	U1 All	OK
	0.833	6.16	-432.18	-4.46	U1 All	---	0.00	0.00	0.00	U1 All	---
Middle	0.000	6.16	-406.57	0.00	U1 All	OK	0.00	0.00	0.00	U1 All	OK
	0.241	6.16	-406.57	0.00	U1 All	OK	0.00	0.00	0.00	U1 All	OK
	0.417	6.16	-406.57	0.00	U1 All	OK	0.00	0.00	0.00	U1 All	OK
	0.447	6.16	-406.57	0.00	U1 All	OK	0.00	0.00	0.00	U1 All	OK
	0.687	6.16	-406.57	0.00	U1 All	OK	0.00	0.00	0.00	U1 All	OK
	0.833	6.16	-406.57	0.00	U1 All	---	0.00	0.00	0.00	U1 All	---
2 Column	0.000	6.16	-432.18	-461.26	U1 All	---	6.00	421.16	0.00	U1 All	--
	0.833	6.16	-432.18	-323.84	U1 All	OK	6.00	421.16	0.00	U1 All	OK
	5.518	6.16	-432.18	0.00	U1 All	OK	6.00	421.16	159.35	U1 All	OK
	6.000	5.89	-413.70	0.00	U1 All	OK	6.00	421.16	186.15	U1 All	OK
	6.000	5.89	-384.13	0.00	U1 All	OK	6.00	421.16	186.19	U1 All	OK

STRUCTUREPOINT - spSlab v5.50	Page \| 11
Licensed to: StructurePoint, LLC. License ID: $00000-0000000-4-241$ C3-241C3	$2 / 9 / 2024$
F:IStructurePointlspSlablTwo-Way-Joist-Waffle-System-ACI-318-14.slb	$5: 46$ PM

	Top						Bottom				
Span Strip	$\begin{aligned} & \mathrm{x} \\ & \mathrm{ft} \end{aligned}$	$\mathrm{A}_{\mathrm{s}, \text { top }}$ in^{2}	$\Phi \mathrm{M}_{\mathrm{n}}$ -k-ft	$\begin{aligned} & \mathbf{M}_{\mathbf{u}^{-}} \\ & \mathrm{k}-\mathrm{ft} \end{aligned}$	Comb Pat	Status	$\mathbf{A}_{\mathbf{s}, \text { bot }}$ in^{2}	$\begin{array}{r} \Phi \mathbf{M}_{\mathrm{n}}+ \\ \mathrm{k} \text {-ft } \end{array}$	$\begin{gathered} \mathbf{M}_{\mathrm{u}}+ \\ \mathrm{k}-\mathrm{ft} \end{gathered}$	Comb Pat	Status
	7.100	5.28	-347.67	0.00	U1 All	OK	6.00	421.16	241.15	U1 All	OK
	9.591	5.28	-347.67	0.00	U1 All	OK	6.00	421.16	335.67	U1 All	OK
	11.173	0.00	0.00	0.00	U1 All	OK	6.00	421.16	374.01	U1 All	OK
	11.800	0.00	0.00	0.00	U1 All	OK	6.00	421.16	384.55	U1 All	OK
	14.000	0.00	0.00	0.00	U1 All	OK	6.00	421.16	400.59	U1 All	OK
	16.500	0.00	0.00	0.00	U1 All	OK	6.00	421.16	379.22	U1 All	OK
	21.200	0.00	0.00	0.00	U1 All	OK	6.00	421.16	225.08	U1 All	OK
	21.827	0.00	0.00	0.00	U1 All	OK	6.00	421.16	193.28	U1 All	OK
	23.881	7.04	-450.44	0.00	U1 All	OK	6.00	421.16	70.55	U1 All	OK
	25.900	7.04	-450.44	-103.71	U1 All	OK	6.00	421.16	0.00	U1 All	OK
	27.000	10.57	-616.27	-224.26	U1 All	OK	6.00	421.16	0.00	U1 All	OK
	27.000	10.58	-732.25	-224.33	U1 All	OK	6.00	421.16	0.00	U1 All	OK
	27.954	13.64	-935.78	-336.00	U1 All	OK	6.00	421.16	0.00	U1 All	OK
	32.167	13.64	-935.78	-907.33	U1 All	OK	6.00	421.16	0.00	U1 All	OK
	32.375	13.64	-935.78	-938.65	U1 All	---	6.00	421.16	0.00	U1 All	---
	33.000	13.64	-935.78	-1034.21	U1 All	---	6.00	421.16	0.00	U1 All	---
Middle	0.000	6.16	-406.57	3.05	U1 All	---	5.28	372.72	0.00	U1 All	---
	0.833	6.16	-406.57	0.00	U1 All	OK	5.28	372.72	0.00	U1 All	OK
	2.063	6.16	-406.57	-1.39	U1 All	OK	5.28	372.72	0.00	U1 All	OK
	6.727	6.16	-406.57	0.00	U1 All	OK	5.28	372.72	148.95	U1 All	OK
	7.727	0.00	0.00	0.00	U1 All	OK	5.28	372.72	179.27	U1 All	OK
	11.800	0.00	0.00	0.00	U1 All	OK	5.28	372.72	256.36	U1 All	OK
	14.000	0.00	0.00	0.00	U1 All	OK	5.28	372.72	267.06	U1 All	OK
	16.500	0.00	0.00	0.00	U1 All	OK	5.28	372.72	252.81	U1 All	OK
	21.200	0.00	0.00	0.00	U1 All	OK	5.28	372.72	150.05	U1 All	OK
	22.792	0.00	0.00	0.00	U1 All	OK	5.28	372.72	92.79	U1 All	OK
	24.335	6.16	-406.57	0.00	U1 All	OK	5.28	372.72	26.38	U1 All	OK
	32.167	6.16	-406.57	-302.44	U1 All	OK	5.28	372.72	0.00	U1 All	OK
	33.000	6.16	-406.57	-357.07	U1 All	---	5.28	372.72	0.00	U1 All	---
3 Column	0.000	13.64	-935.78	-942.14	U1 All	---	4.40	311.22	0.00	U1 All	---
	0.833	13.64	-935.78	-823.68	U1 All	OK	4.40	311.22	0.00	U1 All	OK
	5.242	13.64	-935.78	-308.27	U1 All	OK	4.40	311.22	0.00	U1 All	OK
	6.000	10.95	-757.29	-238.55	U1 All	OK	4.40	311.22	0.00	U1 All	OK
	6.000	10.95	-617.63	-238.50	U1 All	OK	4.40	311.22	0.00	U1 All	OK
	7.100	7.04	-450.44	-146.47	U1 All	OK	4.40	311.22	0.00	U1 All	OK
	9.351	7.04	-450.44	0.00	U1 All	OK	4.40	311.22	8.22	U1 All	OK
	11.208	0.00	0.00	0.00	U1 All	OK	4.40	311.22	86.05	U1 All	OK
	11.800	0.00	0.00	0.00	U1 All	OK	4.40	311.22	105.95	U1 All	OK
	16.500	0.00	0.00	0.00	U1 All	OK	4.40	311.22	180.35	U1 All	OK
	21.200	0.00	0.00	0.00	U1 All	OK	4.40	311.22	105.95	U1 All	OK
	21.792	0.00	0.00	0.00	U1 All	OK	4.40	311.22	86.05	U1 All	OK
	23.649	7.04	-450.44	0.00	U1 All	OK	4.40	311.22	8.22	U1 All	OK
	25.900	7.04	-450.44	-146.47	U1 All	OK	4.40	311.22	0.00	U1 All	OK
	27.000	10.95	-617.63	-238.50	U1 All	OK	4.40	311.22	0.00	U1 All	OK
	27.000	10.95	-757.29	-238.55	U1 All	OK	4.40	311.22	0.00	U1 All	OK
	27.758	13.64	-935.78	-308.27	U1 All	OK	4.40	311.22	0.00	U1 All	OK
	32.167	13.64	-935.78	-823.68	U1 All	OK	4.40	311.22	0.00	U1 All	OK
	33.000	13.64	-935.78	-942.14	U1 All	---	4.40	311.22	0.00	U1 All	---
Middle	0.000	6.16	-406.57	-314.05	U1 All	---	5.28	372.72	0.00	U1 All	---
	0.833	6.16	-406.57	-274.56	U1 All	OK	5.28	372.72	0.00	U1 All	OK
	9.815	6.16	-406.57	0.00	U1 All	OK	5.28	372.72	19.91	U1 All	OK
	11.208	0.00	0.00	0.00	U1 All	OK	5.28	372.72	57.37	U1 All	OK
	11.800	0.00	0.00	0.00	U1 All	OK	5.28	372.72	70.63	U1 All	OK

STRUCTUREPOINT - spSIab v5.50	Page \| $\mathbf{1 2}$
Licensed to: StructurePoint, LLC. License ID: $00000-0000000-4-241 \mathrm{C3}-241 \mathrm{C3}$	$2 / 9 / 2024$
F:IStructurePointlspSlablTwo-Way-Joist-Waffle-System-ACI-318-14.slb	$5: 46$ PM

2.9. Slab Shear Capacity

Span	b in	d in	$\mathbf{V}_{\text {ratio }}$	$\boldsymbol{\Phi} \mathbf{V}_{\mathbf{c}}$ kip	\mathbf{V}_{u} kip	\mathbf{X}_{u} ft
1	80.55	15.87	1.000	149.20	10.70	0.00
	195.26	15.88	1.000	337.41	10.70	0.00
2	195.22	15.81	1.000	336.01	138.99	2.15
	80.49	15.81	1.000	148.50	146.11	27.00
	195.22	15.81	1.000	336.01	195.53	30.85
3	195.26	15.88	1.000	337.41	167.19	2.16
	80.55	15.87	1.000	149.20	117.83	6.00
	195.26	15.88	1.000	337.41	167.19	30.84
4	195.22	15.81	1.000	336.01	195.53	2.15
	80.49	15.81	1.000	148.50	146.11	6.00
	195.22	15.81	1.000	336.01	138.99	30.85
5	195.26	15.88	1.000	337.41	0.00	0.83
	80.55	15.87	1.000	149.20	0.00	0.83

2.10. Flexural Transfer of Negative Unbalanced Moment at Supports

Support	Width in	Width-c in	$\begin{aligned} & \mathbf{d} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \mathbf{M}_{\text {unb }} \text { Comb } \\ & \text { k-ft } \end{aligned}$		Yf_{f}	$\begin{gathered} \mathbf{A}_{\mathbf{s}, \text { req }} \\ \mathrm{in}^{2} \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{s}, \text { prov }} \\ \mathrm{in}^{2} \end{gathered}$	Add Bars
1	71.00	71.00	15.88	453.76 U1	All	0.630	4.105	2.209	5-\#6
2	71.00	71.00	15.88	135.09 U1	All	0.600	1.143	4.891	---
3	71.00	71.00	15.88	135.09 U1	All	0.600	1.143	4.891	---
4	71.00	71.00	15.88	453.76 U1	All	0.630	4.105	2.209	5-\#6

2.11. Punching Shear Around Columns

2.11.1. Critical Section Properties

Support	Type	$\mathbf{b}_{\mathbf{1}}$ in	$\mathbf{b}_{\mathbf{2}}$ in	$\mathbf{b}_{\mathbf{0}}$ in	$\mathbf{d}_{\text {avg }}$ in	CG in	$\mathbf{c}_{\text {(left) }}$ in	$\mathbf{c}_{\text {(right) }}$ in	$\mathbf{A}_{\mathbf{c}}$ in 2
1	Rect	27.94	35.88	91.75	15.87	9.43	19.43	8.51	1456.5

2.11.2. Punching Shear Results

| Support | $\mathbf{V}_{\mathbf{u}}$
 kip | $\mathbf{v}_{\mathbf{u}}$
 psi | $\mathbf{M}_{\mathbf{u n b}}$
 $\mathrm{k}-\mathrm{ft}$ | $\mathbf{C o m b}$ | Patt | $\mathbf{V}_{\mathbf{v}}$ | $\mathbf{v}_{\mathbf{u}}$
 psi | $\boldsymbol{\Phi} \mathbf{V}_{\mathbf{c}}$
 psi |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 174.86 | 120.1 | 316.33 | U1 | All | 0.370 | 203.1 | 212.1 |
| 2 | 414.86 | 182.1 | -135.09 | U1 | All | 0.400 | 204.8 | 212.1 |
| 3 | 414.86 | 182.1 | 135.09 | U1 | All | 0.400 | 204.8 | 212.1 |
| 4 | 174.87 | 120.1 | -316.33 | U1 | All | 0.370 | 203.1 | 212.1 |

2.12. Punching Shear Around Drops
2.12.1. Critical Section Properties

Support	Type	$\mathbf{b}_{\mathbf{1}}$ in	$\mathbf{b}_{\mathbf{2}}$ in	$\mathbf{b}_{\mathbf{0}}$ in	$\mathbf{d}_{\text {avg }}$ in	CG in	$\mathbf{c}_{\text {(left) }}$ in	$\mathbf{c}_{\text {(right) }}$ in	$\mathbf{A}_{\mathbf{c}}$ in 2	$\mathbf{J}_{\mathbf{c}}$ in 4
1	Rect	89.94	159.88	339.75	3.32	56.13	66.13	23.81	1127	$9.705 \mathrm{e}+005$
2	Rect	159.88	159.88	639.50	3.32	0.00	79.94	79.94	2121.3	$9.0377 \mathrm{e}+006$
3	Rect	159.88	159.88	639.50	3.32	0.00	79.94	79.94	2121.3	$9.0377 \mathrm{e}+006$
4	Rect	89.94	159.88	339.75	3.32	-56.13	23.81	66.13	1127	$9.705 \mathrm{e}+005$

Page | 14
2/9/2024
5:46 PM

STRUCTUREPOINT - spSlab v5.50
Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-241C3-241C3
F:IStructurePointlspSlablTwo-Way-Joist-Waffle-System-ACl-318-14.slb

2.12.2. Punching Shear Results

Support	$\mathbf{V}_{\mathbf{u}}$ kip	Comb	Pat	$\mathbf{v}_{\mathbf{u}}$ psi	$\boldsymbol{\Phi} \mathbf{V}_{\mathbf{c}}$ psi	
1	143.28	U1	All	127.1	116.7	*EXCEEDED
2	357.54	U1	All	168.5	116.7	*EXCEEDED
3	357.54	U1	All	168.5	116.7	*EXCEEDED
4	143.28	U1	All	127.1	116.7	*EXCEEDED

2.13. Material TakeOff
2.13.1. Reinforcement in the Direction of Analysis

Top Bars	3456.8 lb	<=>	$34.34 \mathrm{lb} / \mathrm{ft}$	<=>	$1.041 \mathrm{lb} / \mathrm{ft}^{2}$
Bottom Bars	3629.1 lb	<=>	$36.05 \mathrm{lb} / \mathrm{ft}$	<=>	$1.092 \mathrm{lb} / \mathrm{ft}^{2}$
Stirrups	0.0 lb	<=>	$0.00 \mathrm{lb} / \mathrm{ft}$	<=>	$0.000 \mathrm{lb} / \mathrm{ft}^{2}$
Total Steel	7085.9 lb	<=>	$70.39 \mathrm{lb} / \mathrm{ft}$	<=>	$2.133 \mathrm{lb} / \mathrm{ft}^{2}$
Concrete	$2215.9 \mathrm{ft}^{3}$	<=>	$22.01 \mathrm{ft} 3 / \mathrm{ft}^{\text {d }}$	<=>	$0.667 \mathrm{ft}^{3} / \mathrm{ft}^{2}$

3. Deflection Results: Summary

3.1. Section Properties

3.1.1. Frame Section Properties

Notes:
M+ve values are for positive moments (tension at bottom face).
M -ve values are for negative moments (tension at top face)

Span Zone	$\mathbf{M}_{\text {+ve }}$			M.ve		
	I_{g}	I_{cr}	$\mathbf{M}_{\text {cr }}$	I_{g}	I_{cr}	$\mathbf{M}_{\text {cr }}$
	in^{4}	in ${ }^{4}$	k-ft	in^{4}	in ${ }^{4}$	k-ft
1 Left	60255	0	233.46	60255	13128	-476.06
Midspan	60255	0	233.46	60255	13128	-476.06
Right	60255	0	233.46	60255	13128	-476.06
2 Left	60255	12200	233.46	60255	13128	-476.06
Midspan	60255	15599	233.46	60255	0	-476.06
Right	60255	12200	233.46	60255	18722	-476.06
3 Left	60255	10861	233.46	60255	18722	-476.06
Midspan	60255	13647	233.46	60255	0	-476.06
Right	60255	10861	233.46	60255	18722	-476.06
4 Left	60255	12200	233.46	60255	18722	-476.06
Midspan	60255	15599	233.46	60255	0	-476.06
Right	60255	12200	233.46	60255	13128	-476.06
5 Left	60255	0	233.46	60255	13128	-476.06
Midspan	60255	0	233.46	60255	13128	-476.06
Right	60255	0	233.46	60255	13128	-476.06

3.1.2. Frame Effective Section Properties

Span Zone	Weight	Load Level					
		Dead		Sustained		Dead+Live	
		$\mathbf{M}_{\text {max }}$ $\mathrm{k}-\mathrm{ft}$	$\begin{array}{r} \mathrm{I}_{\mathrm{e}} \\ \mathrm{in} 4 \end{array}$	$\mathbf{M}_{\text {max }}$ k-ft	$\begin{array}{r} \mathrm{I}_{\mathrm{e}} \\ \mathrm{in} \mathbf{n}^{2} \end{array}$	$\mathbf{M}_{\text {max }}$ $\mathrm{k}-\mathrm{ft}$	I in 4
1 Right	1.000	-2.19	60255	-2.19	60255	-3.33	60255
Span Avg	----	----	60255	----	60255	----	60255
2 Middle	0.850	298.16	37035	298.16	37035	491.82	20376
Right	0.150	-626.60	36936	-626.60	36936	-1026.20	22869
Span Avg	----	----	37020	----	37020	----	20750
3 Left	0.150	-565.78	43465	-565.78	43465	-926.56	24356
Middle	0.700	132.58	60255	132.58	60255	221.02	60255

STRUCTUREPOINT - spSlab v5.50	Page \| $\mathbf{1 5}$
Licensed to: StructurePoint, LLC. License ID: $00000-0000000-4-241 \mathrm{C3}-241 \mathrm{C3}$	$2 / 9 / 2024$
F:StructurePointlspSlablTwo-Way-Joist-Waffle-System-ACI-318-14.slb	$5: 46$ PM

F:IStructurePointlspSlablTwo-Way-Joist-Waffle-System-ACI-318-14.slb
5:46 PM

Span Zone	Weight	Load Level					
		Dead		Sustained		Dead+Live	
		$\mathbf{M}_{\text {max }}$	I_{e}	$\mathbf{M}_{\text {max }}$	I_{6}	$\mathrm{M}_{\text {max }}$	$1{ }^{\text {e }}$
		k-ft	in ${ }^{4}$	k-ft	in ${ }^{4}$	k-ft	in ${ }^{4}$
Right	0.150	-565.78	43465	-565.78	43465	-926.56	24356
Span Avg	----	----	55218	----	55218	----	49485
4 Left	0.150	-626.60	36936	-626.60	36936	-1026.20	22869
Middle	0.850	298.16	37035	298.16	37035	491.82	20376
Span Avg	----	----	37020	----	37020	---	20750
5 Left	1.000	-2.19	60255	-2.19	60255	-3.34	60255
Span Avg	--	----	60255	----	60255	----	60255

3.1.3. Strip Section Properties at Midspan

Notes:
Load distirubtion factor, LDL, averages moment distribution factors listed in Design Results.
Ratio refers to proportion of strip to frame deflections under fix-end condtions.

Span	Column Strip		Middle Strip			
	$\mathbf{I}_{\mathbf{g}}$ n 4	LDF	Ratio	$\mathbf{I}_{\mathbf{g}}$ in 4		LDF

3.2. Instantaneous Deflections

3.2.1. Extreme Instantaneous Frame Deflections and Corresponding Locations

Span	Direction	Value	Units	Dead	Live			Total	
					Sustained	Unsustained	Total	Sustained	Dead+Live
1	Down	Def	in	---	---	---	---	---	---
		Loc	ft	---	---	---	---	---	---
	Up	Def	in	-0.017	---	-0.017	-0.017	-0.017	-0.034
		Loc	ft	0.000	---	0.000	0.000	0.000	0.000
2	Down	Def	in	0.253	---	0.374	0.374	0.253	0.627
		Loc	ft	15.000	---	15.500	15.500	15.000	15.250
	Up	Def	in	---	---	---	---	---	---
		Loc	ft	---	---	---	---	---	---
3	Down	Def	in	0.070	---	0.070	0.070	0.070	0.140
		Loc	ft	16.500	---	16.500	16.500	16.500	16.500
	Up	Def	in	-0.004	---	-0.001	-0.001	-0.004	-0.005
		Loc	ft	1.571	---	1.325	1.325	1.571	1.325
4	Down	Def	in	0.253	---	0.374	0.374	0.253	0.627
		Loc	ft	18.000	---	17.500	17.500	18.000	17.750
	Up	Def	in	---	---	---	---	---	---
		Loc	ft	---	---	---	---	---	---
5	Down	Def	in	---	---	---	---	---	---
		Loc	ft	---	---	---	---	---	---
	Up	Def	in	-0.017	---	-0.017	-0.017	-0.017	-0.034
		Loc	ft	0.833	---	0.833	0.833	0.833	0.833

3.2.2. Extreme Instantaneous Column Strip Deflections and Corresponding Locations

				Live			Total		
Span	Direction	Value	Units	Dead	Sustained	Unsustained	Total	Sustained	Dead+Live
1	Down	Def	in	---	---	--	---	---	--

Page | 16
2/9/2024
5:46 PM

STRUCTUREPOINT - spSlab v5. 50
Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-241C3-241C3
F:IStructurePointlspSlabITwo-Way-Joist-Waffle-System-ACI-318-14.slb

Span	Direction	Value	Units	Dead	Live			Total	
					Sustained	Unsustained	Total	Sustained	Dead+Live
		Loc	ft	---	---	---	---	--	---
	Up	Def	in	-0.017	---	-0.017	-0.017	-0.017	-0.034
		Loc	ft	0.000	---	0.000	0.000	0.000	0.000
2	Down	Def	in	0.337	---	0.531	0.531	0.337	0.867
		Loc	ft	15.500	---	15.750	15.750	15.500	15.750
	Up	Def	in	---	---	---	---	---	---
		Loc	ft	---	---	---	---	---	---
3	Down	Def	in	0.116	---	0.107	0.107	0.116	0.222
		Loc	ft	16.500	---	16.500	16.500	16.500	16.500
	Up	Def	in	-0.003	---	-0.001	-0.001	-0.003	-0.004
		Loc	ft	1.325	---	1.079	1.079	1.325	1.079
4	Down	Def	in	0.337	---	0.531	0.531	0.337	0.867
		Loc	ft	17.500	---	17.250	17.250	17.500	17.250
	Up	Def	in	---	---	---	-	---	---
		Loc	ft	---	---	---	---	---	---
5	Down	Def	in	---	---	---	--	---	---
		Loc	ft	---	---	---	---	---	--
	Up	Def	in	-0.017	---	-0.017	-0.017	-0.017	-0.034
		Loc		0.833	---	0.833	0.833	0.833	0.833

3.2.3. Extreme Instantaneous Middle Strip Deflections and Corresponding Locations

Span	Direction	Value	Units	Dead	Live			Total	
					Sustained	Unsustained	Total	Sustained	Dead+Live
1	Down	Def	in	---	--	---	---	---	---
		Loc	ft	---	---	---	---	---	---
	Up	Def	in	-0.017	---	-0.017	-0.017	-0.017	-0.034
		Loc	ft	0.000	---	0.000	0.000	0.000	0.000
2	Down	Def	in	0.189	---	0.254	0.254	0.189	0.443
		Loc	ft	14.500	---	14.750	14.750	14.500	14.750
	Up	Def	in	---	---	---	---	---	---
		Loc	ft	---	---	---	---	---	---
3	Down	Def	in	0.039	---	0.043	0.043	0.039	0.082
		Loc	ft	16.500	---	16.500	16.500	16.500	16.500
	Up	Def	in	-0.005	---	-0.002	-0.002	-0.005	-0.006
		Loc	ft	2.310	---	1.571	1.571	2.310	1.817
4	Down	Def	in	0.189	---	0.254	0.254	0.189	0.443
		Loc	ft	18.500	---	18.250	18.250	18.500	18.250
	Up	Def	in	---	---	---	---	---	---
		Loc	ft	---	---	---	---	---	---
5	Down	Def	in	---	---	---	---	---	---
		Loc	ft	---	---	---	---	---	---
	Up	Def	in	-0.017	---	-0.017	-0.017	-0.017	-0.034
		Loc	ft	0.833	---	0.833	0.833	0.833	0.833

3.3. Long-term Deflections

3.3.1. Long-term Column Strip Deflection Factors

Notes:
Deflection multiplier, Lambda, depends on moment sign at sustained load level and Rho' in given zone.
Rho' is assumed zero because Compression Reinforcement option is NOT selected in Solve Options.
Time dependant factor for sustained loads $=2.000$

Span Zone	$\mathrm{M}_{\text {+ve }}$					M.ve				
	$\mathrm{A}_{\text {s,top }}$	b	d	Rho' \%	Lambda	$\begin{gathered} \mathbf{A}_{\text {s.bot }} \\ \mathrm{in}^{2} \end{gathered}$	bin	d	Rho' \%	Lambda
	in^{2}	in	in					in		
1 Right	----	----	----	0.000	2.000	----	----	----	0.000	2.000
2 Midspan	----	----	----	0.000	2.000	----	----	----	0.000	2.000
3 Midspan	----	----	----	0.000	2.000	----	----	----	0.000	2.000
4 Midspan	----	----	----	0.000	2.000	----	----	----	0.000	2.000
5 Left	----	----	----	0.000	2.000	----	----	----	0.000	2.000

3.3.2. Long-term Middle Strip Deflection Factors

Notes:
Deflection multiplier, Lambda, depends on moment sign at sustained load level and Rho' in given zone. Rho' is assumed zero because Compression Reinforcement option is NOT selected in Solve Options.

Time dependant factor for sustained loads $=2.000$

Span Zone	$M_{\text {+ve }}$					M-ve				
	$A_{\text {s,top }}$	b	d	Rho'	Lambda	$\mathbf{A s}_{\text {s,bot }}$	b	d	Rho'	Lambda
	in ${ }^{2}$	in	in	\%		in ${ }^{2}$	in	in	\%	
1 Right	----	----	----	0.000	2.000	----	----	----	0.000	2.000
2 Midspan	----	----	----	0.000	2.000	----	----	----	0.000	2.000
3 Midspan	----	----	----	0.000	2.000	----	----	----	0.000	2.000
4 Midspan	----	----	----	0.000	2.000	----	----	----	0.000	2.000
5 Left	-	---	----	0.000	2.000	---	----	----	0.000	2.000

3.3.3. Extreme Long-term Column Strip Deflections and Corresponding Locations

Notes:

Span	Direction	Value	Units	cs	cs+lu	cs+1	Total
1	Down	Def	in	---	---	---	---
		Loc	ft	---	---	---	---
	Up	Def	in	-0.033	-0.050	-0.050	-0.067
		Loc	ft	0.000	0.000	0.000	0.000
2	Down	Def	in	0.673	1.204	1.204	1.540
		Loc	ft	15.500	15.750	15.750	15.500
	Up	Def	in	---	---	---	---
		Loc	f	---	---	---	---
3	Down	Def	in	0.231	0.338	0.338	0.454
		Loc	ft	16.500	16.500	16.500	16.500
	Up	Def	in	-0.005	-0.006	-0.006	-0.009
		Loc	$f t$	1.325	1.079	1.079	1.325
4	Down	Def	in	0.673	1.204	1.204	1.540
		Loc	$f t$	17.500	17.250	17.250	17.500
	Up	Def	in	---	---	---	---
		Loc	ft	---	---	---	---
5	Down	Def	in	---	---	---	---

Page | 18
2/9/2024
5:46 PM
STRUCTUREPOINT - spSlab v5.50
Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-241C3-241C3
F:IStructurePointlspSlablTwo-Way-Joist-Waffle-System-ACl-318-14.slb

Span	Direction	Value	Units	cs	cs+lu	cs+l	Total
		Loc	ft	---	--	--	---
	Up	Def	in	-0.033	-0.050	-0.050	-0.067
	Loc	ft	0.833	0.833	0.833	0.833	

3.3.4. Extreme Long-term Middle Strip Deflections and Corresponding Locations

Notes:
Incremental deflections due to creep and shrinkage (cs) based on sustained load level values.
Incremental deflections after partitions are installed can be estimated by deflections due to:

- creep and shrinkage plus unsustained live load (cs+lu), if live load applied before partitions,
- creep and shrinkage plus live load (cs+l), if live load applied after partitions.

Total deflections consist of dead, live, and creep and shrinkage deflections.

Span	Direction	Value	Units	cs	cs+lu	cs+	Total
1	Down	Def	in	---	---	---	-
		Loc	ft	---	---	---	---
	Up	Def	in	-0.033	-0.050	-0.050	-0.067
		Loc	ft	0.000	0.000	0.000	0.000
2	Down	Def	in	0.378	0.632	0.632	0.821
		Loc	ft	14.500	14.500	14.500	14.500
	Up	Def	in	---	---	---	-
		Loc	ft	---	---	---	---
3	Down	Def	in	0.078	0.121	0.121	0.160
		Loc	ft	16.500	16.500	16.500	16.500
	Up	Def	in	-0.009	-0.011	-0.011	-0.015
		Loc	ft	2.310	2.063	2.063	2.063
4	Down	Def	in	0.378	0.632	0.632	0.821
		Loc	ft	18.500	18.500	18.500	18.500
	Up	Def	in	---	---	---	---
		Loc	ft	---	---	---	---
5	Down	Def	in	---	---	---	---
		Loc	ft	---	---	---	---
	Up	Def	in	-0.033	-0.050	-0.050	-0.067
		Loc	ft	0.833	0.833	0.833	0.833

$\begin{array}{lc}\text { STRUCTUREPOINT - spSlab v5.50 } & \text { Page | 19 } \\ \text { Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-241C3-241C3 } & 2 / 9 / 2024\end{array}$
F:IStructurePointlspSlablTwo-Way-Joist-Waffle-System-ACI-318-14.slb 5:46 PM
4. Diagrams
4.1. Loads

$\begin{array}{lc}\text { STRUCTUREPOINT - spSlab v5.50 } & \text { Page | 20 } \\ \text { Licensed to: StructurePoint, LLC. License ID: } 00000-0000000-4-241 \text { C3-241C3 } & 2 / 9 / 2024\end{array}$
$\begin{array}{ll}\text { Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-241C3-241C3 } & \text { 2/9/2024 } \\ \text { F:IStructurePointlspSlablTwo-Way-Joist-Waffle-System-ACl-318-14.slb } & 5: 46 \text { PM }\end{array}$

4.2. Internal Forces

$\begin{array}{lc}\text { STRUCTUREPOINT - spSlab v5.50 } & \text { Page | 21 } \\ \text { Licensed to: StructurePoint, LLC. License ID: } 00000-0000000-4-241 \text { C3-241C3 } & 2 / 9 / 2024\end{array}$
$\begin{array}{ll}\text { Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-241C3-241C3 } & \text { 2/9/2024 } \\ \text { F:IStructurePointlspSlablTwo-Way-Joist-Waffle-System-ACl-318-14.slb } & 5: 46 \text { PM }\end{array}$

4.3. Moment Capacity

4.4. Shear Capacity

$\begin{array}{lc}\text { STRUCTUREPOINT - spSlab v5.50 } & \text { Page | 23 } \\ \text { Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-241C3-241C3 } & 2 / 9 / 2024\end{array}$
$\begin{array}{ll}\text { Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-241C3-241C3 } & \text { 2/9/2024 } \\ \text { F:IStructurePointlspSlablTwo-Way-Joist-Waffle-System-ACI-318-14.slb } & 5: 46 \text { PM }\end{array}$

4.5. Deflection

F:IStructurePointlspSlablTwo-Way-Joist-Waffle-System-ACI-318-14.slb 5:46 PM

4.6. Reinforcement

7. Summary and Comparison of Design Results

		Hassoun (DDM)**	Hand (EFM)	spSlab
Exterior Span				
Column Strip	Exterior Negative*	370.00	328.07	323.84
	Positive	444.00	401.00	400.59
	Interior Negative*	748.00	901.27	907.33
Middle Strip	Exterior Negative*	---	0.00	0.00
	Positive	---	267.33	267.06
	Interior Negative*	---	300.42	302.44
Interior Span				
Column Strip	Interior Negative*	---	818.10	823.68
	Positive	---	184.66	180.35
Middle Strip	Interior Negative*	249.00	272.70	274.56
	Positive	296.00	123.10	120.24
Negative moments are taken at the faces of supports Direct Design Method does not distinguish between interior and exterior spans nor explicitly address the effect of column contribution at joints				

Table 10 - Comparison of Reinforcement Results										
Span Location		Reinforcement Provided for Flexure			Additional Reinforcement Provided for Unbalanced Moment Transfer			Total Reinforcement Provided		
		Hassoun	Hand	spSlab	Hassoun	Hand	spSlab	Hassoun	Hand	spSlab
Exterior Span										
ColumnStrip	Exterior Negative	14-\#6	14-\#6	14-\#6	---	5-\#6	5-\#6	14-\#6	19-\#6	19-\#6
	Positive	$\begin{gathered} 10-\# 8 \\ 2 \text { bars / rib } \end{gathered}$	$\begin{gathered} 10-\# 7 \\ 2 \text { bars / rib } \end{gathered}$	$\begin{gathered} 10-\# 7 \\ 2 \mathrm{bars} / \mathrm{rib} \end{gathered}$	---	n/a	n / a	$\begin{gathered} 10-\# 8 \\ 2 \text { bars / rib } \end{gathered}$	$\begin{gathered} 10-\# 7 \\ 2 \text { bars / rib } \end{gathered}$	$\begin{gathered} 10-\# 7 \\ 2 \mathrm{bars} / \mathrm{rib} \end{gathered}$
	Interior Negative	28-\#6	30-\#6	31-\#6	---	---	---	28-\#6	30-\#6	31-\#6
Middle Strip	Exterior Negative	10-\#6	14-\#6	14-\#6	---	n/a	n / a	10-\#6*	14-\#6	14-\#6
	Positive	$\begin{gathered} 12-\# 7 \\ 2 \text { bars / rib } \end{gathered}$	$\begin{gathered} 12-\# 6 \\ 2 \text { bars / rib } \end{gathered}$	$\begin{gathered} 12-\# 6 \\ 2 \text { bars / rib } \end{gathered}$	---	n/a	n / a	$\begin{gathered} 12-\# 7 \\ 2 \text { bars / rib } \end{gathered}$	$\begin{gathered} 12-\# 6 \\ 2 \text { bars / rib } \end{gathered}$	$\begin{gathered} 12-\# 6 \\ 2 \mathrm{bars} / \mathrm{rib} \end{gathered}$
	Interior Negative	10-\#6	14-\#6	14-\#6	---	n/a	n / a	10-\#6*	14-\#6	14-\#6
Interior Span										
Column Strip	Positive	$\begin{gathered} 10-\# 7 \\ 2 \text { bars / rib } \end{gathered}$	$\begin{gathered} 10-\# 6 \\ 2 \text { bars / rib } \end{gathered}$	$\begin{gathered} 10-\# 6 \\ 2 \mathrm{bars} / \mathrm{rib} \end{gathered}$	---	n/a	n / a	$\begin{gathered} 10-\# 7 \\ 2 \text { bars / rib } \end{gathered}$	$\begin{gathered} 10-\# 6 \\ 2 \text { bars / rib } \end{gathered}$	$\begin{gathered} 10-\# 6 \\ 2 \mathrm{bars} / \mathrm{rib} \end{gathered}$
Middle Strip	Positive	$\begin{gathered} 10-\# 6 \\ 2 \text { bars / rib } \end{gathered}$	$\begin{gathered} 12-\# 6 \\ 2 \text { bars / rib } \end{gathered}$	$\begin{gathered} 12-\# 6 \\ 2 \mathrm{bars} / \mathrm{rib} \end{gathered}$	---	n/a	n / a	$\begin{gathered} 10-\# 6 \\ 2 \text { bars / rib } \end{gathered}$	$\begin{gathered} 12-\# 6 \\ 2 \text { bars / rib } \end{gathered}$	$\begin{gathered} 12-\# 6 \\ 2 \mathrm{bars} / \mathrm{rib} \end{gathered}$
* Max spacing requirement exceeded (not checked)										

Table 11 - Comparison of One-Way (Beam Action) Shear Check Results								
Span	$V_{u} @$ d (kips)		$V_{u} @$ drop panel (kips)		$\phi V_{c} @$ d (kips)		$\phi V_{c} @$ drop panel (kips)	
	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab
Exterior	195.05	195.53	145.69	146.11	336.01	336.01	148.50	148.50
Interior	167.16	167.19	117.81	117.83	337.41	337.41	149.20	149.20
* One-way shear check is not provided in the reference (Hassoun and Al-Manaseer)								

Table 12 - Comparison of Two-Way (Punching) Shear Check Results (around Columns Faces)

Table 12 - Comparison of Two-Way (Punching) Shear Check Results (around Columns Faces)										
Support	b_{1} (in.)		b_{2} (in.)		b_{o} (in.)		V_{u} (kips)		$c_{A B}$ (in.)	
	Hand	spSlab								
Exterior	27.94	27.94	35.88	35.88	91.75	91.75	163.66	174.86	8.51	8.51
Interior	35.88	35.88	35.88	35.88	143.50	143.50	413.34	414.86	17.94	17.94
Corner	27.94	27.94	27.94	27.94	55.88	55.87	91.75	92.43	6.98	6.98
Support	$J_{c}\left(\mathbf{i n .}{ }^{4}\right)$		γ_{v}		$M_{\text {unb }}$ ($\mathbf{f t - k i p s) ~}$		$v_{u}(\mathrm{psi})$		$\phi v_{c}(\mathbf{p s i})$	
	Hand	spSlab								
Exterior	143,997	143,990	0.370	0.370	334.13	316.33	200.1	203.1	212.1	212.1
Interior	512,571	512,570	0.400	0.400	134.12	135.09	204.0	204.8	212.1	212.1
Corner	81,431	81,428	0.400	0.400	181.81	181.19	178.3	178.8	212.1	212.1

Table 14-Comparison of Immediate Deflection Results (in.)								
Column Strip								
Span	D		$\mathbf{D}+\mathbf{L} L_{\text {sus }}$		$\text { D+LL } \mathbf{L}_{\text {full }}$		LL	
	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab
Exterior	0.293	0.337	0.293	0.337	0.863	0.867	0.570	0.531
Interior	0.096	0.116	0.096	0.116	0.206	0.222	0.110	0.107
Middle Strip								
Span	D		$\text { D+LL } L_{\text {sus }}$		$\text { D+LL } L_{\text {full }}$		LL	
	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab
Exterior	0.168	0.189	0.168	0.189	0.501	0.443	0.333	0.254
Interior	0.029	0.039	0.029	0.039	0.061	0.082	0.031	0.043

Table 15-Comparison of Time-Dependent Deflection Results						
Column Strip						
Span	λ_{Δ}		$\Delta_{\text {cs }}$ (in.)		$\Delta_{\text {total }}$ (in.)	
	Hand	spSlab	Hand	spSlab	Hand	spSlab
Exterior	2.0	2.0	0.586	0.673	1.449	1.540
Interior	2.0	2.0	0.192	0.231	0.398	0.454
Middle Strip						
Span	λ_{Δ}		$\Delta_{\text {cs }}$ (in.)		$\Delta_{\text {total }}$ (in.)	
	Hand	spSlab	Hand	spSlab	Hand	spSlab
Exterior	2.0	2.0	0.337	0.378	0.837	0.821
Interior	2.0	2.0	0.058	0.078	0.119	0.160

In all of the hand calculations illustrated above, the results are in close or exact agreement with the automated analysis and design results obtained from the spSlab model. The deflection results from spSlab are, however, more conservative than hand calculations for two main reasons explained previously: 1) Values of I_{g} and $I_{c r}$ at the negative section exclude the stiffening effect of the drop panel and 2) The $I_{e, a v g}$ used by spSlab considers equations for prismatic members.

8. Conclusions \& Observations

A slab system can be analyzed and designed by any procedure satisfying equilibrium and geometric compatibility. Three established methods are widely used. The requirements for two of them are described in detail in $\underline{A C I ~ 318-~}$

14 Chapter 8 (8.2.1).

Direct Design Method (DDM) is an approximate method and is applicable to two-way slab concrete floor systems that meet the stringent requirements of $\boldsymbol{A C I}$ 318-14 (8.10.2). In many projects, however, these requirements limit the usability of the Direct Design Method significantly.

The Equivalent Frame Method (EFM) does not have the limitations of Direct Design Method. It requires more accurate analysis methods that, depending on the size and geometry can prove to be long, tedious, and timeconsuming.

StucturePoint's spSlab software program solution utilizes the Equivalent Frame Method to automate the process providing considerable time-savings in the analysis and design of two-way slab systems as compared to hand solutions using DDM or EFM.

Finite Element Method (FEM) is another method for analyzing reinforced concrete slabs, particularly useful for irregular slab systems with variable thicknesses, openings, and other features not permissible in DDM or EFM. Many reputable commercial FEM analysis software packages are available on the market today such as spMats. Using FEM requires critical understanding of the relationship between the actual behavior of the structure and the numerical simulation since this method is an approximate numerical method. The method is based on several assumptions and the operator has a great deal of decisions to make while setting up the model and applying loads and boundary conditions. The results obtained from FEM models should be verified to confirm their suitability for design and detailing of concrete structures.

The following table shows a general comparison between the DDM, EFM and FEM. This table covers general limitations, drawbacks, advantages, and cost-time efficiency of each method where it helps the engineer in deciding which method to use based on the project complexity, schedule, and budget.

Applicable ACI 318- 14 Provision	Limitations/Applicability	Concrete Slab Analysis Method		
		$\begin{gathered} \text { DDM } \\ \text { (Hand) } \end{gathered}$	$\begin{gathered} \text { EFM } \\ \text { (Hand//spSlab) } \end{gathered}$	$\begin{gathered} \text { FEM } \\ \text { (spMats) } \end{gathered}$
8.10.2.1	Minimum of three continuous spans in each direction	∇		
8.10.2.2	Successive span lengths measured center-tocenter of supports in each direction shall not differ by more than one-third the longer span	\square		
8.10.2.3	Panels shall be rectangular, with ratio of longer to shorter panel dimensions, measured center-to-center supports, not exceed 2.	\square	\square	
8.10.2.4	Column offset shall not exceed 10% of the span in direction of offset from either axis between centerlines of successive columns	∇		
8.10.2.5	All loads shall be due to gravity only	च		
8.10.2.5	All loads shall be uniformly distributed over an entire panel $\left(\mathrm{q}_{\mathrm{u}}\right)$	∇		
8.10.2.6	Unfactored live load shall not exceed two times the unfactored dead load	\square		
8.10.2.7	For a panel with beams between supports on all sides, slab-to-beam stiffness ratio shall be satisfied for beams in the two perpendicular directions.	\square		
8.7.4.2	Structural integrity steel detailing	\square	\square	\checkmark
8.5.4	Openings in slab systems	V	∇	V
8.2.2	Concentrated loads	Not permitted	\square	\checkmark
8.11.1.2	Live load arrangement (Load Patterning)	Not required	Required	Engineering judgment required based on modeling technique
R8.10.4.5*	Reinforcement for unbalanced slab moment transfer to column (M_{sc})	Moments @ support face	Moments @ support centerline	Engineering judgment required based on modeling technique
Irregularities (i.e. variable thickness, non-prismatic, partial bands, mixed systems, support arrangement, etc.)		Not permitted	Engineering judgment required	Engineering judgment required
Complexity		Low	Average	Complex to very complex
Design time/costs		Fast	Limited	Unpredictable/Costly
Design Economy		Conservative (see detailed comparison with spSlab output)	Somewhat conservative	Unknown - highly dependent on modeling assumptions: 1. Linear vs. non-linear 2. Isotropic vs non-isotropic 3. Plate element choice 4. Mesh size and aspect ratio 5. Design \& detailing features
General (Drawbacks)		Very limited applications	Limited geometry	Limited guidance non-standard application (user dependent). Required significant engineering judgment
General (Advantages)		Very limited analysis is required	Detailed analysis is required or via software (e.g. spSlab)	Unlimited applicability to handle complex situations permissible by the features of the software used (e.g. spMats)

* The unbalanced slab moment transferred to the column $M_{s c}\left(M_{u n b}\right)$ is the difference in slab moment on either side of a column at a specific joint. In DDM only moments at the face of the support are calculated and are also used to obtain $M_{s c}\left(M_{u n b}\right)$. In EFM where a frame analysis is used, moments at the column center line are used to obtain $\mathrm{M}_{\mathrm{sc}}\left(\mathrm{M}_{\mathrm{unb}}\right)$.

[^0]: * M_{sc} is taken at the centerline of the support in Equivalent Frame Method solution.

[^1]: Structure Point
 Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spSlab computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the as input for processing by the spSlab computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spSlab program. Although STRUCTUREPOINT has endeavored to produce spSlab error free the program is not and disclaims celle. hill disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spSlab
 program.Licensed to: StructurePoint, LLC. License ID: $00000-0000000-4-241 \mathrm{C} 3-241 \mathrm{C} 3$

