

Reinforced Concrete Continuous Beam Analysis and Design (ACI 318-14)

Reinforced Concrete Continuous Beam Analysis and Design (ACI 318-14)

A structural reinforced concrete continuous beams at an intermediate building floor provides gravity load resistance for the applied dead and live loads.

The continuous beam along grid 3 is selected to demonstrate the analysis and design of continuous T-beams (structural analysis, flexural design, shear design, deflection checks) and the results of hand calculations are then compared with numerical analysis results obtained from the <u>spBeam</u> engineering software program.

Additionally, the boundary conditions for each T-beam (Grids 1 thru 6 and A thru C) are selected to demonstrate and explore in detail the actual interaction between the beam and the supporting members. Similar evaluation is performed using computer software to reflect recommended modeling procedures in <u>spBeam</u> to obtain the most accurate results.

Figure 1 – Reinforced Concrete Continuous Beams at intermediate building floor

Contents

1.	Preliminary Member Sizing
2.	Load and Load combination
3.	Structural Analysis by Moment Distribution
	3.1. Flexural stiffness of beams, K _b
	3.2. Flexural stiffness of column members, K _c
	3.3. Beam joint distribution factors, DF
	3.4. Moment Distribution
	3.5. Factored moments used for Design
4.	Flexural Design
5.	Shear Design
6.	Deflection Control (Serviceability Requirements)
	6.1. Immediate (Instantaneous) Deflections
	6.1.1. PCA Superposition Procedure
	6.1.2. Simplified Superposition Procedure
	6.1.3. PCA Simplified Procedure
	6.2. Time-Dependent (Long-Term) Deflections (Δ_{lt})
7.	Continuous Beam Analysis and Design – spBeam Software
8.	Design Results Comparison and Conclusions
	8.1. T-beam flange width considerations
	8.2. Deflection calculation methods:
9.	Boundary condition effects on continuous beam deflections
	9.1. Beam supported by columns- Grid 3
	9.2. Beam supported by transverse beams - Grid 4
	9.3. Beam supported by transverse walls - Grid 5
	9.4. Beam supported by masonry bearing walls - Grid C
	9.5. Beam supported by longitudinal walls - Grids 1, 6, and A40

spbeam

Code

Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)

Reference

Notes on ACI 318-11 Building Code Requirements for Structural Concrete, Twelfth Edition, 2013 Portland Cement Association Reinforced Concrete Mechanics and Design, 7th Edition, 2016, James Wight, Pearson Reinforced Concrete Structures, 2nd Edition, 2016, David A. Fanella, McGraw-Hill Education <u>spBeam</u> Engineering Software Program Manual v5.00, STRUCTUREPOINT, 2015

Design Data

 f_c ' = 4,000 psi normal weight concrete (w_c = 150 pcf)

$f_y = 60,000 \text{ psi}$

Superimposed dead load, SDL = 20 psf framed partitions, wood studs plaster 2 sides

ASCE/SEI 7-10 (Table C3-1)

Typical Floor Level, Live load, $L_o = 50 \text{ psf}$ (Office building)

ASCE/SEI 7-10 (Table 4-1)

Solution

Figure 2 – Reinforced Concrete Continuous Beam (Grid 3)

CONCRETE SOFTWARE SOLUTIONS

1. Preliminary Member Sizing

Check the minimum beam depth requirement of <u>ACI 318-14 (Table 9.3.1.1)</u> to waive deflection computations. Using the minimum depth for non-prestressed beams in <u>Table 9.3.1.1</u>.

End Span:
$$h = \frac{l}{18.5} = \frac{40 \times 12}{18.5} = 25.94$$
 in. ACI 318-14 (Table 9.3.1.1)

Therefore, since $h_{min} = 25.94$ in. > h = 24 in., the preliminary beam depth does not satisfy the minimum depth requirement, and the beam deflection need to be checked.

2. Load and Load combination

Live Load, L: Calculate the live load reduction per ASCE/SEI 7-10

$$L = L_o \times \left(0.25 + \frac{15}{\sqrt{K_{LL}A_T}} \right)$$
ASCE/SEI 7-10 (Eq. 4-1)

Where:

L = reduced design live load per ft² of area supported by the member

 L_o = unreduced design live load per ft² of area supported by the member = 50 psf

 K_{LL} = live load element factor = 2 for interior beam ASCE/SEI 7-10 (Table 4-2)

$$A_T$$
 = tributary area = 40×16 = 640 ft²

$$L = 50 \times (0.25 + \frac{15}{\sqrt{2 \times 640}}) = 33.46 \text{ psf}$$

Which satisfies 0.5 x L_o requirement for members supporting one floor. ASCE/SEI 7-10 (4.7.2)

 $33.46 \text{ psf} > 0.5 \text{ x } L_o = 25 \text{ psf}$

For the factored Load

$$U = 1.2D + 1.6L$$

$$D = 0.150 \times \left(\frac{8}{12} \times 16 + \frac{24 - 8}{12} \times \frac{16}{12}\right) + 0.02 \times 16 = 2.19 \text{ kips/ft}$$

$$L = 0.03346 \times 16 = 0.54 \text{ kips/ft}$$

$$w_{\mu} = 1.2 \times 2.19 + 1.6 \times 0.54 = 3.48 \text{ kips/ft}$$

3. Structural Analysis by Moment Distribution

The T-beam will be analyzed by hand using the moment distribution method to determine design moment and shear values. Members stiffnesses, carry over factors COF, and fixed-end moments FEM for the beam and column members are determined as follows:

3.1. Flexural stiffness of beams, K_b

$$K_b = 4 \times \frac{E_c I_b}{L_b} = 4 \times \frac{3834.3 \times 40,634}{40 \times 12} = 1,298,357$$
 kip-in.

Where I_b is calculated for the beam as a T-beam section with b_{eff} equals to:

$$E_c = w_c^{1.5} \times 33 \times \sqrt{f_c'} = 150^{1.5} \times 33 \times \sqrt{4000} = 3834 \text{ ksi}$$

Carry-over factor COF = 0.5

Fixed-end moment, $FEM = \frac{w_u \times L_b^2}{12} = \frac{3.48 \times 40^2}{12} = 464.08$ kip-ft

3.2. Flexural stiffness of column members, Kc

For the Top Exterior Column:

$$COF_{c,top} = 0.50$$

$$K_{c,top} = 4 \times \frac{E_c I_c}{L_c} = 4 \times \frac{3834.3 \times 13,333}{13 \times 12} = 1,310,872 \text{ kip-in.}$$
Where $I_c = \frac{c_2 \times c_1^3}{12} = \frac{20 \times 20^3}{12} = 13,333 \text{ in.}^4$

$$E_c = w_c^{1.5} \times 33 \times \sqrt{f_c'} = 150^{1.5} \times 33 \times \sqrt{4000} = 3834 \text{ ksi}$$

$$L_c = 13 \text{ ft}$$
For the Bottom Exterior Column:
 $COF_{c,bottom} = 0.50$

$$K_{c,bottom} = 4 \times \frac{E_c I_c}{L_c} = 4 \times \frac{3834.3 \times 13,333}{15.33 \times 12} = 1,111,633$$
 kip-in.

Where $I_c = \frac{c_2 \times c_1^3}{12} = \frac{20 \times 20^3}{12} = 13,333 \text{ in.}^4$

$$L_c = 15.33 \text{ ft}$$

<u>ACI 318-14 (19.2.2.1.a)</u>

For the Top Interior Column:

$$COF_{c,top} = 0.50$$

$$K_{c,top} = 4 \times \frac{E_c I_c}{L_c} = 4 \times \frac{3834.3 \times 34,560}{13 \times 12} = 3,397,780 \text{ kip-in.}$$
Where $I_c = \frac{c_2 \times c_1^3}{12} = \frac{30 \times 24^3}{12} = 34,560 \text{ in.}^4$

$$L_c = 13 \text{ ft}$$
For the Bottom Interior Column:

$$COF_{c,bottom} = 0.50$$

$$K_{c,bottom} = 4 \times \frac{E_c I_c}{L_c} = 4 \times \frac{3834.3 \times 34,560}{15.33 \times 12} = 2,881,353 \text{ kip-in.}$$
Where $I_c = \frac{c_2 \times c_1^3}{12} = \frac{30 \times 24^3}{12} = 34,560 \text{ in.}^4$

$$L_c = 15.33 \text{ ft}$$

3.3. Beam joint distribution factors, DF

At exterior joint,

$$DF = \frac{1,298,357}{(1,298,357+1,310,872+1,111,633)} = 0.350$$

At interior joint,

$$DF = \frac{1,298,357}{(1,298,357+1,298,357+3,397,780+2,881,353)} = 0.150$$

COF for beams =0.5

3.4. Moment Distribution

Determine negative and positive moments for the continuous beam using the moment distribution method. Since the unfactored live load does not exceed three-quarters of the unfactored dead load, design moments are assumed to occur at all critical sections with full factored live on all spans. <u>ACI 318-14 (6.4.3.2)</u>

$$\frac{L}{D} = \frac{0.54}{2.19} = 0.25 < \frac{3}{4}$$

Moment Distribution computations are shown in the following Table. Counterclockwise rotational moments acting on the member ends are taken as positive. Positive span moments are determined from the following equation:

$$M_{u,midspan} = M_o - \frac{(M_{uL} + M_{uR})}{2}$$

Where M_o is the moment at the midspan for a simple beam.

When the end moments are not equal, the maximum moment in the span does not occur at the midspan, but its value is close to that midspan for this example (see results comparison section).

Positive moment in span 1-2:

$$M_u = 3.48 \times \frac{40^2}{8} - \frac{302.15 + 545.04}{2} = 272.52 \text{ kip-ft}$$

Table	1 - Moment I	Distribution fo	r Continuous	Beam
	<u> </u>	<i>w</i>	2	1111
\bigcap				
(+	1	2	3	
	m	~	m.	nn.
Joint	1	2	2	3
Member	1-2	2-1	2-3	3-2
DF	0.35	0.15	0.15	0.35
COF	0.50	0.50	0.50	0.50
FEM	464.08	-464.08	464.08	-464.08
Dist	-161.93	0.00	0.00	161.93
CO	0.00	-80.97	80.97	0.00
Dist	0.00	0.00	0.00	0.00
M, k-ft	302.15	-545.04	545.04	-302.15
Midspan M, k-ft	272	2.52	272	2.52

The ACI code allows the reduction of factored moments calculated by elastic theory at sections of maximum negative or maximum positive moment in any span of continuous flexural members for any assumed loading arrangement by a percentage equal to $1000 \varepsilon_t$ up to a maximum of 20 percent. ACI 318-14 (6.6.5.3)

The moment redistribution is often utilized for the investigation of existing structures for conditions such as change of use, additional loading, or verifying adequacy for the latest design code. In these conditions, any

reserve capacity from existing reinforcement layout at mid-span (or support) of a span may be utilized to compensate for the inadequacy of the support (or mid-span) of the same span.

The moment redistribution can also be utilized in the design of a new structure. One such example of its application may help reduce the negative moment at an interior support and corresponding top reinforcement while increasing the positive moment at mid-span. The advantage of this may be the alleviation of the congestion of rebar at support top regions.

The calculation of moment redistribution is a tedious process especially while considering live load patterning. The procedure gets far more complicated if point loads or partial line loads are present. The <u>spBeam</u> software program performs the moment redistribution calculations with speed and accuracy.

This example does not cover the moment redistribution. However, a detailed demonstration of this method can be found in "<u>Continuous Beam Design with Moment Redistribution (ACI 318-14)</u>" example.

3.5. Factored moments used for Design

Positive and negative factored moments for the continuous beam are plotted in the following Figure. The negative moments used for design are taken at the faces of supports (rectangle section or equivalent rectangle for circular or polygon sections) but not at distances greater than 0.175 *l* from the centers of supports.

ACI 318-14 (8.11.6.1)

$$\frac{24 \text{ in.}}{12 \times 2} = 1.00 \text{ ft} < 0.175 \times 40 = 7.00 \text{ ft} \text{ (use face of supporting location for interior column)}$$

 $\frac{20 \text{ in.}}{12 \times 2} = 0.83 \text{ ft} < 0.175 \times 40 = 7.00 \text{ ft} \text{ (use face of supporting location for exterior column)}$

Figure 5 - Positive and Negative Design Moments for the Continuous Beam

4. Flexural Design

For this beam, the moment at the exterior face of the interior support governs the design as shown in the previous Figure.

Calculate the required reinforcement to resist the interior support negative moment:

 $M_{u} = 471.13$ kip-ft

Use #8 bars with 1.5 in. concrete cover per <u>ACI 318-14 (Table 20.6.1.3.1)</u>. The distance from extreme compression fiber to the centroid of longitudinal tension reinforcement, d, is calculated below:

$$d = 24 - \left(1.5 + 0.5 \times \frac{8}{8}\right) = 22$$
 in.

To determine the area of steel, assumptions have to be made whether the section is tension or compression controlled, and regarding the distance between the resultant compression and tension forces along the beam section (*jd*). In this example, tension-controlled section will be assumed so the reduction factor φ is equal to 0.9, and *jd* will be taken equal to 0.862*d*. The assumptions will be verified once the area of steel is finalized.

 $jd = 0.862 \times d = 0.862 \times 22 = 18.96$ in.

b = 16 in.

The required reinforcement at initial trial is calculated as follows:

$$A_s = \frac{M_u}{\varphi \times f_y \times jd} = \frac{471.13 \times 12,000}{0.9 \times 60,000 \times 18.96} = 5.52 \text{ in.}^2$$

Recalculate 'a' for the actual $A_s = 5.52 \text{ in.}^2$: $a = \frac{A_s \times f_y}{0.85 \times f'_c \times b} = \frac{5.52 \times 60,000}{0.85 \times 4,000 \times 16} = 6.09 \text{ in.}$

$$c = \frac{a}{\beta_1} = \frac{6.09}{0.85} = 7.17 \text{ in.}$$

$$\varepsilon_t = \left(\frac{0.003}{c}\right) \times d_t - 0.003 = \left(\frac{0.003}{7.17}\right) \times 22 - 0.003 = 0.0062 > 0.005$$

Therefore, the assumption that section is tension-controlled is valid.

$$A_s = \frac{M_u}{\varphi \times f_v \times (d - a/2)} = \frac{471.13 \times 12,000}{0.9 \times 60,000 \times (22 - 6.09/2)} = 5.52 \text{ in.}^2$$

The minimum reinforcement shall not be less than

$$A_{s,\min} = \frac{3 \times \sqrt{f_c}}{f_y} \times b_w \times d = \frac{3\sqrt{4,000}}{60,000} \times 16 \times 22 = 1.11 \text{ in.}^2$$
ACI 318-14 (9.6.1.2(a))

And not less than

$$A_{s,\min} = \frac{200}{f_y} \times b_w \times d = \frac{200}{60,000} \times 16 \times 22 = 1.17 \text{ in.}^2$$

$$\therefore A_{s,\min} = 1.17 \text{ in.}^2$$

Provide 7 - #8 bars:

$$A_{s,prov} = 7 \times 0.79 = 5.53 \text{ in.}^2 > A_{s,req} = 5.52 \text{ in.}^2$$

The reinforcement is selected based on the closest $A_{s,provided}$ to $A_{s,required}$. However, moment redistribution can be used to reduce the A_s (section 3.4). Furthermore, other bar size and detailing options can be selected (e.g. 13 #6 or 10 #7 in one or two layers) to overcome any construction issues or preferences.

Maximum spacing allowed:

Check the requirement for distribution of flexural reinforcement to control flexural cracking:

$$\begin{split} s &= 15 \left(\frac{40000}{f_s} \right) - 2.5c_c \leq 12 \left(\frac{40000}{f_s} \right) & \underline{ACI 318-14 \ (Table \ 24.3.2)} \\ c_c &= 1.5 \text{ in.} \\ \text{Use } f_s &= \frac{2}{3} f_y = 40,000 \text{ psi} & \underline{ACI 318-14 \ (24.3.2.1)} \\ s &= 15 \times \left(\frac{40,000}{40,000} \right) - 2.5 \times 1.5 = 11.25 \text{ in. (Governs)} \\ s &= 12 \times \left(\frac{40,000}{40,000} \right) = 12 \text{ in.} \\ s_{provided} &= \frac{(b-2 \times d_s)}{\#of \ bars - 1} = \frac{(45.8-2 \times 3)}{7-1} = 6.6 \text{ in.} < 11.25 \text{ in.} \\ o.k. \end{split}$$

Where $d_s = 3.0$ in. for #4 stirrup as shown in the following Figure.

CRSI 2002 (Figure 12-9)

Figure 6 - Maximum number of bars in beams

If flanges of T-beams are in tension, part of the bonded flexural tension reinforcement shall be distributed over an effective flange width, but not wider than $l_n/10$. Where l_n is the length of clear span measured face-to-face of supports. <u>ACI 318-14 (24.3.2.1)</u>

$$b = \min \left\{ \frac{b_{eff}}{l_0} = \frac{130.5 \text{ in.}}{10} = \frac{40 \times 12 - 20 / 2 - 24 / 2}{10} = 45.8 \text{ in.} \right\} = 45.8 \text{ in.}$$

Check if s_{provided} is greater than the minimum center to center spacing, s_{min} where

$$s_{\min} = d_b + \max \begin{cases} 1 \\ d_b \\ 1.33 \times \max.agg. \end{cases}$$
CRSI 2002 (Figure 12-9)

Where the maximum aggregate size is $\frac{3}{4}$ "

$$s_{\min} = 1.00 + \max \left\{ \begin{array}{c} 1.00\\ 1.00\\ 1.33 \times 0.75 = 1.00 \end{array} \right\} = 1.00 + 1.00 = 2 \text{ in.}$$

Since the spacing provided is greater than 2 in. Therefore, 7-#8 bars are <u>o.k.</u>

All the values in the following table are calculated based on the procedure outlined above.

Table 2 – Reinforcing Design Summary									
	End Span								
	Exterior Negative	Positive	Interior Negative						
Design Moment, M _u (ft-kips)	250.41	272.52	471.13						
Effective depth, d (in.)	22	22	22						
$A_{s,req}$ (in. ²)	2.71	2.78	5.52						
$A_{s,min}$ (in. ²)	1.17	1.17	1.17						
Reinforcement	5-#8*	4-#8	7-#8						
Spacing provided (in.) 10.0 3.3 6.6									
* Number of bars governed by maximum all	lowable spacing								

CONCRETE SOFTWARE SOLUTIONS

oint

5. Shear Design

Structure P

From the following Figure, the shear value in end span at face of the interior support governs.

Figure 7 - Positive and Negative Design Shears for the Continuous Beam

$$V_u = \frac{-545.04 + 302.15 + \frac{w_u \times l^2}{2}}{l} = -75.68 \text{ kips}$$

The design shear at a distance, d, away from the face of support,

$$V_u = 75.68 - 3.48 \times \frac{24/2 + 22}{12} = 65.82$$
 kips

Shear strength provided by concrete

$$\phi V_c = \phi \times 2 \times \sqrt{f_c} \times b_w \times d$$

$$\phi V_c = 0.75 \times 2 \times \sqrt{4000} \times 16 \times 22 = 33.39 \text{ kips}$$
Since $V_u > \phi V_c/2$, shear reinforcement is required.
Try # 4, Grade 60 two-leg stirrups ($A_v = 0.40 \text{ in.}^2$).

The nominal shear strength required to be provided by shear reinforcement is

$$V_s = V_n - V_c = \frac{V_u}{\phi} - \frac{\phi V_c}{\phi} = \frac{65.82}{0.75} - \frac{33.39}{0.75} = 43.24$$
 kips

If V_s is greater than $8\sqrt{f'_c}b_w d$, then the cross-section has to be revised as <u>ACI 318-14</u> limits the shear capacity to be provided by stirrups to $8\sqrt{f'_c}b_w d$. <u>ACI 318-14 (22.5.1.2)</u>

$$8 \times \sqrt{f'_c} \times b_w \times d = 8 \times \sqrt{4,000} \times 16 \times 22 = 178.1 \text{ kips} \rightarrow \therefore \text{ section is adequate}$$

11

$$\left(\frac{A_v}{s}\right)_{req} = \frac{V_u - \phi V_c}{\phi \times f_{yt} \times d} = \frac{65.82 - 33.39}{0.75 \times 60 \times 22} = 0.0328 \text{ in.}^2 / \text{ in.} \qquad \underline{ACI 318-14 (22.5.10.5.3)}$$

$$s_{req} = \frac{A_v}{\left(\frac{A_v}{s}\right)_{req}} = \frac{0.40}{0.0328} = 12.21 \text{ in.}$$

$$\left(\frac{A_v}{s}\right)_{\min} = \max\left\{\frac{\frac{0.75 \times \sqrt{f_c} \times b_w}{f_{yt}}}{\frac{50 \times b_w}{f_{yt}}}\right\}$$

$$\frac{ACI 318-14 (10.6.2.2)}{ACI 318-14 (10.6.2.2)}$$

$$\left(\frac{A_v}{s}\right)_{\min} = \max\left\{\frac{\frac{0.75 \times \sqrt{4000} \times 16}{60000}}{\frac{50 \times 16}{60000}}\right\} = \max\left\{\frac{0.0126}{0.0133}\right\} = 0.0133 \text{ in.}^2 / \text{in.} < \left(\frac{A_v}{s}\right)_{req} = 0.0328 \text{ in.}^2 / \text{ in.}$$

Check whether the required spacing based on the shear demand meets the spacing limits for shear reinforcement per <u>ACI 318-14 (9.7.6.2.2)</u>.

$$4 \times \sqrt{f_c} \times b_w \times d = 4 \times \sqrt{4,000} \times 16 \times 22 = 89.05 \text{ kips} > V_s = 43.24 \text{ kips}$$

Therefore, maximum stirrup spacing shall be the smallest of *d*/2 and 24 in. <u>ACI 318-14 (Table 9.7.6.2.2)</u>

$$s_{\max} = lesser \ of \begin{bmatrix} d/2\\ 24 \ in. \end{bmatrix} = lesser \ of \begin{bmatrix} 22/2\\ 24 \ in. \end{bmatrix} = lesser \ of \begin{bmatrix} 11 \ in. \\ 24 \ in. \end{bmatrix} = 11 \ in.$$

This value governs over the required stirrup spacing of 12.21 in which was based on the demand. Therefore, s_{max} value is governed by the spacing limit per <u>ACI 318-14 (9.7.6.2.2)</u>, and is equal to 11 in. Use # 4 @ 10.5 in. stirrups

$$\phi V_n = \frac{\phi \times A_v \times f_{yt} \times d}{s} + \phi V_c$$

$$\frac{ACI 318-14 (22.5.1.1 \text{ and } 22.5.10.5.3)}{10.5} + 33.39 = 37.71 + 33.39 = 71.11 \text{ kips} > V_u = 65.82 \text{ kips}$$
o.k.

Compute where $\frac{V_u}{\varphi}$ is equal to $\frac{V_c}{2}$, and the stirrups can be stopped

$$x = \frac{\frac{V_u}{\phi} - \frac{V_c}{2}}{\frac{V_u}{\phi}} \times \frac{l}{2} = \frac{\frac{75.68}{0.75} - \frac{33.39}{0.75 \times 2}}{\frac{75.68}{0.75}} \times \frac{40 \times 12}{2} = 187 \text{ in.}$$

At interior end of the exterior span, use 19-# 4 @ 10.5 in. o.c., Place 1st stirrup 3 in. from the face of the column.

6. Deflection Control (Serviceability Requirements)

Since the preliminary beam depth did not meet minimum depth requirement, the deflection calculations are required. The calculation of immediate and time-dependent deflections are covered in detail in this section for illustration and comparison with spBeam model results for continuous T-beam.

6.1. Immediate (Instantaneous) Deflections

Elastic analysis for three service load levels $(D, D + L_{sustained}, D + L_{full})$ is used to obtain immediate deflections of the continuous T-beam in this example. Other procedures may be used if they result in predictions of deflection in reasonable agreement with the results of comprehensive tests. <u>ACI 318-14 (24.2.3)</u>

The effective moment of inertia (I_e) is used to account for the cracking effect on the flexural stiffness of the beam. I_e for uncracked section ($M_{cr} > M_a$) is equal to I_g . When the section is cracked ($M_{cr} < M_a$), then the following equation should be used:

$$I_e = \left(\frac{M_{cr}}{M_a}\right)^3 I_g + \left[1 - \left(\frac{M_{cr}}{M_a}\right)^3\right] I_{cr} \le I_g \qquad \underline{ACI 318-14 (Eq. 24.2.3.5a)}$$

Where:

 M_a = Maximum moment in member due to service loads at stage deflection is calculated.

The effective moment of inertia procedure described in the Code is considered sufficiently accurate to estimate deflections. The effective moment of inertia, I_e , was developed to provide a transition between the upper and lower bounds of I_g and I_{cr} as a function of the ratio M_{cr}/M_a . For conventionally reinforced (nonprestressed) members, the effective moment of inertia, I_e , shall be calculated by Eq. (24.2.3.5a) unless obtained by a more comprehensive analysis.

 I_e shall be permitted to be taken as the value obtained from Eq. (24.2.3.5a) at midspan for simple and continuous spans, and at the support for cantilevers. ACI 318-14 (24.2.3.7)

For continuous one-way slabs and beams. I_e shall be permitted to be taken as the average of values obtained from Eq. (24.2.3.5a) for the critical positive and negative moment regions. <u>ACI 318-14 (24.2.3.6)</u>

$$I_{e,avg} = 0.85 I_e^+ + 0.15 I_e^- \text{ for end span} \qquad spBeam Manual v5.00 (Eq. 2-104)$$

$$I_{e,avg} = 0.70 I_e^+ + 0.15 (I_{e1}^- + I_{e2}^-) \text{ for end span} \qquad spBeam Manual v5.00 (Eq. 2-103)$$

The values of the maximum moments for the three service load levels are calculated from structural analysis as shown previously. The following Figure shows the maximum moments for the total service load level.

For the negative moment region adjacent to the internal support:

The following calculations are based on considering the negative moment regions as rectangular sections. For T-beam, a T-shaped section can also be used to calculate I_{cr} in the negative moment regions. This approach will impact the calculations of I_g and M_{cr} where it has a slight impact on the instantaneous deflection results since the averaged effective moment of inertia is predominantly dependent on the properties of the mid-span region as can be seen later in this example. The hand calculations are continued with rectangular sections considered at the negative moment regions. A comparison between the two approaches is presented in "Design Results Comparison and Conclusions" section.

 M_{cr} = cracking moment.

$$M_{cr} = \frac{f_r I_g}{y_t} = \frac{474.34 \times 18,432}{12} \times \frac{1}{12 \times 1000} = 60.72 \text{ kip-ft}$$
 ACI 318-14 (Eq. 24.2.3.5b)

 f_r = Modulus of rapture of concrete.

$$f_r = 7.5\lambda \sqrt{f_c'} = 7.5 \times 1.0 \times \sqrt{4000} = 474.34 \text{ psi}$$

 I_g = Moment of inertia of the gross uncracked concrete section

$$I_g = \frac{b \times h^3}{12} = \frac{16 \times 24^3}{12} = 18,432 \text{ in.}^4$$
$$y_t = \frac{h}{2} = \frac{24}{2} = 12 \text{ in.}$$

 I_{cr} = moment of inertia of the cracked section transformed to concrete.

The exterior span near the interior support is reinforced with 7 #8 bars located at 2 in. along the section from the top of the beam as determined previously.

 E_c = Modulus of elasticity of concrete.

$$E_c = w_c^{1.5} 33 \sqrt{f_c'} = 150^{1.5} \times 33 \times \sqrt{4000} = 3834 \times 10^3 \text{ psi}$$

$$n = \frac{E_s}{E_c} = \frac{29000000}{3834000} = 7.56$$
PCA Notes on ACI 318-11 (Table 10-2)

ACI 318-14 (2.2)

$$B = \frac{b}{n A_s} = \frac{16}{7.56 \times (7 \times 0.79)} = 0.38 \text{ in.}^{-1}$$

$$E = \frac{b}{n A_s} = \frac{16}{7.56 \times (7 \times 0.79)} = 0.38 \text{ in.}^{-1}$$

$$E = \frac{\sqrt{2dB + 1} - 1}{B} = \frac{\sqrt{2 \times 22 \times 0.38 + 1} - 1}{0.38} = 8.42 \text{ in.}$$

$$E = \frac{b(kd)^3}{3} + nA_s(d - kd)^2$$

$$E = \frac{16 \times 8.42^3}{3} + 7.56 \times (7 \times 0.79) \times (22 - 8.42)^2 = 10,897 \text{ in.}^4$$

For the exterior span (span with one end continuous) with total service load level:

$$I_{e}^{-} = \left(\frac{M_{cr}}{M_{a}}\right)^{3} I_{g} + \left[1 - \left(\frac{M_{cr}}{M_{a}}\right)^{3}\right] I_{cr} \text{, since } M_{cr} = 60.72 \text{ ft-kips} < M_{a} = 425.29 \text{ ft-kips} \quad \underline{ACI 318-14 (24.2.3.5a)}$$

Where I_e^{-} is the effective moment of inertia for the critical negative moment region (near the support).

As mentioned earlier, midspan stiffness (including the effect of cracking) has a dominant effect on deflections, midspan region is heavily represented in calculation of I_e and this is considered satisfactory in approximate deflection calculations. The averaged effective moment of inertia ($I_{e,avg}$) is given by:

$$I_{e,avg} = 0.85 I_e^+ + 0.15 I_e^- \text{ for end span}$$

$$I_{e,avg} = 0.85 \times (7,561) + 0.15 \times (10,919) = 8,065 \text{ in.}^4$$

$$SpBeam Manual v5.00 (Eq. 2-104)$$

Where:

 I^- = The effective moment of inertia for the critical negative moment section near the support.

 I_e^+ = The effective moment of inertia for the critical positive moment section (midspan).

The following Table provides a summary of the required parameters and calculated values needed for deflection calculation.

	Table 3 – Averaged Effective Moment of Inertia Calculations (Rectangular Sections at Negative Moment Regions)												
~		L.	L _{cr} .		M _a , ft-kip		M _{cr} .		I_e , in. ⁴ $I_{e,avg}$, in. ⁴				
Span	zone	in.4	in.4	D	D +	D +	k-ft	D	D +	D +	D	D +	D +
					LL _{Sus}	L_{full}			LL _{Sus}	L_{full}		LL _{Sus}	L _{full}
	Left	18432	8529	-191.38	-191.38	-238.24	-60.72						
Ext	Midspan	39684	5100	174.04	174.04	216.64	89.77	9847	9847	7561	10011	10011	8065
	Right	18432	10897	-341.64	-341.64	-425.29	-60.72	10939	10939	10919			

	Table 4 – Averaged Effective Moment of Inertia Calculations (<u>T-Shaped</u> Sections at Negative Moment Regions)												
~		I,	L _{cr} ,		M _a , ft-kip		M _{cr} .		I_e , in. ⁴				
Span	zone	in.4	in.4	D	D +	D +	k-ft	D	D +	D +	D	D +	D +
				D	LL _{Sus}	L _{full}		D	LL _{Sus}	L _{full}	D	LL _{Sus}	L _{full}
	Left	39684	8529	-191.38	-191.38	-238.24	-240.36						
Ext	Midspan	39684	5100	174.04	174.04	216.64	89.77	9847	9847	7561	11508	11508	8841
	Right	39684	10897	-341.64	-341.64	-425.29	-240.36	20922	20922	16094			

After obtaining the averaged effective moment of inertia, the maximum span deflections for the continuous beam can be obtained from anyone of the selected three procedures, other procedures can be used too. For the case were the negative moment regions are considered as rectangular sections:

6.1.1. PCA Superposition Procedure:

PCA Notes on ACI 318-11

Flat Plate Design Example

For exterior span - service total load case:

$$\Delta_{fixed} = \frac{w \times l^4}{384 \times E_c \times I_{e,avg}}$$

Where:

 Δ_{fixed} = Deflection of beam assuming fixed end condition.

w = 2.19 + 0.54 = 2.73 kip/ft

 $I_{e,avg}$ = The averaged effective moment of inertia = 8,065 in.⁴

$$E_c = w_c^{1.5} 33 \sqrt{f_c'} = 150^{1.5} \times 33 \times \sqrt{4000} = 3834 \times 10^3 \text{ psi}$$

ACI 318-14 (19.2.2.1.a)

$$\Delta_{fixed} = \frac{2.73 \times 40^4 \times 12^3}{384 \times 3834 \times 8065} = 1.02 \text{ in.}$$

$$\theta_L = \frac{M_{net, L}}{\Sigma K_c}$$

Where:

 θ_L = Rotation of the span left support.

 $M_{net,L} = 236.99$ kip-ft = Net negative moment of the left support.

 $\sum K_c$ = column stiffness = (1.31+1.11) x 10⁶ kip-in. = 2.42 x 10⁶ kip-in. (calculated previously).

$$\theta_L = \frac{236.99}{2.42 \times 10^6 \times 12} = 1.18 \times 10^{-3} \text{ rad}$$

$$\Delta \theta_L = \theta_L \left(\frac{l}{8}\right) \left(\frac{I_g}{I_{e,avg}}\right)$$

Where:

 $\Delta \theta_L$ = Midspan deflection due to rotation of left support.

$$\Delta \theta_L = 1.18 \times 10^{-3} \times \frac{40 \times 12}{8} \times \frac{18432}{8065} = 0.161 \text{ in.}$$
$$\theta_R = \frac{M_{net,R}}{\Sigma K_c} = \frac{0}{\Sigma K_c} = 0 \text{ rad}$$
$$\Delta \theta_R = \theta_R \left(\frac{l}{8}\right) \left(\frac{I_g}{I_{e,avg}}\right) = 0 \text{ in.}$$
$$\Delta_{Total} = \Delta_{fixed} + \Delta \theta_R + \Delta \theta_L$$

 $\Delta_{Total} = 1.02 + 0.0 + 0.161 = 1.181$ in.

Following the same procedure for dead service load level

$$\Delta_{DL} = 0.657 + 0.0 + 0.105 = 0.762$$
 in.

$$\Delta_{LL} = \Delta_{Total} - \Delta_{DL} = 1.18 - 0.76 = 0.42 \text{ in.} < \frac{l}{360} = \frac{40 \times 12}{360} = 1.33 \text{ in. } o.k.$$
 ACI 318-14 (Table 24.2.2)

6.1.2. Simplified Superposition Procedure:

<u>Reinforced Concrete Mechanics and Design – 7th edition – J. Wight (Section9-4)</u>

For exterior span - service total load case:

$$M_{o} = \frac{w \times l^{2}}{8} = \frac{2.73 \times 40^{2}}{8} = 546 \text{ kip-ft}$$

$$M_{m} = M_{o} + \frac{M_{1}}{2} + \frac{M_{2}}{2} = 546 - \frac{236.99}{2} - \frac{425.29}{2} = 214.86 \text{ kip-ft}$$

$$\Delta_{Total} = \frac{5}{48} \times \frac{l^{2}}{E_{c} \times I_{e,avg}} \times \left(M_{m} + 0.1 \times (M_{1} + M_{2})\right)$$

$$5 = -\frac{40^{2}}{2} = -\frac{40^{2}}$$

$$\Delta_{Total} = \frac{5}{48} \times \frac{40^{-7}}{3834 \times 8065} \times (214.86 - 0.1 \times (236.99 + 425.29)) = 1.38 \text{ in}$$

Where:

 M_o = Simple span moment at midspan = $wl^2/8$

- M_1 = Negative moment at the exterior support
- $M_2 = Negative moment at the interior support$

Following the same procedure for dead service load level

$$\Delta_{DL} = 0.890$$
 in.

$$\Delta_{LL} = \Delta_{Total} - \Delta_{DL} = 1.380 - 0.890 = 0.490 \text{ in.} < \frac{l}{360} = \frac{40 \times 12}{360} = 1.33 \text{ in. } \textbf{o.k.} \qquad \underline{ACI 318-14 (Table 24.2.2)}$$

6.1.3. PCA Simplified Procedure:

PCA Notes on ACI 318-11 (9.5)

This procedure is based on elastic equation given in the ACI 318-83 commentary on 9.5.2.4. For continuous beams, the midspan deflection may usually be used as an approximation of the maximum deflection:

$$\Delta = \frac{5}{48} \times K \times \frac{M_a \times l^2}{E_c \times I_{e,avg}}$$

$$K = 1.2 - 0.2 \times \frac{M_o}{M_a}$$
Where:

M_a = Midspan moment for service load level

 $M_o =$ Simple span moment at midspan = $wl^2/8$

For exterior span - service total load case:

$$M_a = 216.64$$
 kip-ft

$$M_o = \frac{w \times l^2}{8} = \frac{2.73 \times 40^2}{8} = 546$$
 kip-ft

$$K = 1.2 - 0.2 \times \frac{546}{216.64} = 0.696$$

$$\Delta_{Total} = \frac{5}{48} \times 0.696 \times \frac{216.64 \times 40^2 \times 12}{3834 \times 8065} = 1.404 \text{ in.}$$

Following the same procedure for dead service load level

$$\Delta_{DL} = 0.910$$
 in.

$$\Delta_{LL} = \Delta_{Total} - \Delta_{DL} = 1.404 - 0.910 = 0.494 \text{ in.} < \frac{l}{360} = \frac{40 \times 12}{360} = 1.33 \text{ in. } \textbf{o.k.} \qquad \underline{ACI 318-14 (Table 24.2.2)}$$

6.2. Time-Dependent (Long-Term) Deflections (Δ_{lt})

The additional time-dependent (long-term) deflection resulting from creep and shrinkage (Δ_{cs}) are estimated as follows. The results obtained from the PCA superposition procedure are used below, the same steps can be repeated to obtain the time-dependent deflections for the two other procedures.

$$\Delta_{cs} = \lambda_{\Delta} \times (\Delta_{sust})_{Inst}$$
PCA Notes on ACI 318-11 (9

The total time-dependent (long-term) deflection is calculated as:

$$\begin{aligned} (\Delta_{total})_{lt} &= (\Delta_{sust})_{lnst} \times (1 + \lambda_{\Delta}) + [(\Delta_{total})_{lnst} - (\Delta_{sust})_{lnst}] \end{aligned}$$
Where:

$$(\Delta_{sust})_{lnst} &= \text{Immediate (instantaneous) deflection due to sustained load, in.} \\ \lambda_{\Delta} &= \frac{\xi}{1 + 50\rho'} \end{aligned}$$

$$(\Delta_{total})_{lt} &= \text{Time-dependent (long-term) total deflection, in.} \\ (\Delta_{total})_{lt} &= \text{Total immediate (instantaneous) deflection, in.} \\ (\Delta_{total})_{ltst} &= \text{Total immediate (instantaneous) deflection, in.} \\ \xi = 2, \text{ consider the sustained load duration to be 60 months or more.} \qquad \underline{ACI 318-14 (Table 24.2.4.1.3)} \\ \rho' &= 0, \text{ conservatively.} \\ \lambda_{\Delta} &= \frac{2}{1 + 50 \times 0} = 2 \\ \Delta_{cs} &= 2 \times 0.762 = 1.52 \text{ in.} \\ \Delta_{cs} + \Delta_{LL} &= 1.52 + 0.49 \approx 2 \text{ in.} \leq \frac{l}{240} = \frac{40 \times 12}{240} = 2 \text{ in. } o.k. \qquad \underline{ACI 318-14 (Table 24.2.2)} \end{aligned}$$

$$(\Delta_{total})_{tt} = 0.762 \times (1+2) + (1.18 - 0.762) = 2.70$$
 in.

The previous deflection calculations are done considering a rectangular section in the negative moment regions. The same procedure can be followed to obtain the deflections values for the case where a T-shaped section is used in negative moment regions. Tables 9 and 10 in the comparison section show a results summary for both options.

7. Continuous Beam Analysis and Design – spBeam Software

<u>spBeam</u> is widely used for analysis, design and investigation of beams, and one-way slab systems (including standard and wide module joist systems) per latest American (ACI 318-14) and Canadian (CSA A23.3-14) codes. <u>spBeam</u> can be used for new designs or investigation of existing structural members subjected to flexure, shear, and torsion loads. With capacity to integrate up to 20 spans and two cantilevers of wide variety of floor system types, <u>spBeam</u> is equipped to provide cost-effective, accurate, and fast solutions to engineering challenges.

<u>spBeam</u> provides top and bottom bar details including development lengths and material quantities, as well as live load patterning and immediate and long-term deflection results. Using the moment redistribution feature engineers can deliver safe designs with savings in materials and labor. Engaging this feature allows up to 20% reduction of negative moments over supports reducing reinforcement congestions in these areas.

Beam analysis and design requires engineering judgment in most situations to properly simulate the behavior of the targeted beam and take into account important design considerations such as: designing the beam as rectangular or T-shaped sections; using the effective flange width or the center-to-center distance between the

beam and the adjacent beams. Regardless which of these options is selected, <u>spBeam</u> provide users with options and flexibility to:

- 1. Design the beam as a rectangular cross-section or a T-shaped section.
- 2. Use the effective or full beam flange width.
- 3. Include the flanges effects in the deflection calculations.

General Information	Span Data	23
General Information Span Control Solve Options	Slabs/Flanges Longitudinal Beams Ribs	
Live load pattern ratio: 2 % Compression Reinforcement Decremental Reinf. Design Kigid beam-column joint Moment Redistribution	Span: 1 Image: Span: Length: 40 ft Width Left: 8 ft Location: Interior Image: Span: Image: Span: Spa	
Torsion Analysis and Design Torsion type © Equilibrium © No	Modify Copy	
C Compatibility C Yes	Span No. Location Length Thickness Width-L Width-R	
Deflection calculation options Sections to use in deflection calculations are	2 Interior 40 8 8 8	
C Gross (uncracked)		
- In negative moment regions, to calculate Ig and Mcr use	Beam will be designed as T-shaped when	
C Rectangular Section	the slab dimensions are defined	
60 months 0 %		
Next > Cancel Help	OK Cancel Help	

Figure 9 - spBeam Modeling and Solve Options

Also two other important options can be used:

- 4. Invoke moment redistribution to lower negative moments
- 5. Using gross (uncracked) or effective (cracked) moment of inertia

For illustration and comparison purposes, the following figures provide a sample of the results obtained from an <u>spBeam</u> model created for the continuous beam on Grid 3 with effective flange width included in analysis, design and deflection calculations.

Figure 10 – Loading (spBeam)

<u>Figure 14 – Immediate Deflection Diagram (spBeam)</u>

CONCRETE SOFTWARE SOLUTIONS

04-12-2018, 11:38:01 AM

Page 1

	0 0	00000 000000 00 0 00 00 00000 00 00 00 00000 00 00 00 00	000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00	00000 00 00 00 00 00000 00 00 00000	00000 0 00 00 00 00 00 00 00 00 00			(TM)
		A Computer Progra Reinforced (Copyrig)	spBea am for Analy Concrete Bea ht © 1992-20 All rig)	am v5.00 (/sis, Desi ams and On 015, STRUC hts reserv	TM) gn, and Inv e-way Slab TUREPOINT, ed	estigatior Systems LLC	ı of	
	Licensee stated be responsible f for processing b any warranty expr by the spBeam pro program is not a analysis, design STRUCTUREPOINT d analysis, design program.	above acknow for either the system of spBeam (essed nor implif gram. Although 1 und cannot be fn and eng isclaims all re- or engineering (wledges th accuracy computer p ed with re: STRUCTUREPO certified : ineering (sponsibility documents p	nat STRU or adequ cogram. F spect to INT has e infallible documents y in cont repared i	CTUREPOINT acy of th urthermore, the correc . The fina is t ract, negli n connectio	(SP) is e materia STRUCTUF tness of o produce l and or he lice gence or n with th	is not al supp REPOINT the ou spBeam hly res ensee's. other he use	and cannot lied as input neither makes tput prepared error free the ponsibility for Accordingly, tort for any of the spBeam
[1] INPU	Г ЕСНО							
General :	Information							
File : Projec Frame Engine Code: Reinfe Mode: Numbe: Floor	name: C:\TSDA\spBe t: Continuous Bea : Grid 3 - 1st flo eer: SP ACI 318-14 proement Database: Design r of supports = 3 System: One-Way/B	am\BCs\Grid 3 - : m Analysis and Do oor ASTM A615 Beam	lst floor.s: esign	Lb				
Live : Defled In ned Long- 0% of Compr Defau Momen Effec Rigid Torsid	load pattern ratio ctions are based o yative moment regi term deflections a live load is sust ession reinforceme ti incremental reb t redistribution N tive flange width beam-column joint on analysis and de) = 0% on cracked section ons, Ig and Mcr : re calculated for an calculations I ar design select OT selected. calculations sel :NOT selected. sign NOT selected.	n propertie: include flam r load durat NOT selected ed. ected. d.	s. gge/slab c tion of 60 d.	ontribution months.	(if avai)	Lable)	
Material	Properties							
wc f'c Ec fr	Slabs Beams = 150 = 4 = 3834.3 = 0.47434	Columns 150 lb/: 4 ksi 3834.3 ksi 0.47434 ksi	ft3					
fy fyt Es	= 60 ks = 60 ks = 29000 ks	si, Bars are not ()i Si	epoxy-coate	i				
Reinforc	ement Database							
Units Size	: Db (in), Ab (in^ Db Ab	2), Wb (lb/ft) Wb Size	Db	Ab	Wb			
#3 #5 #7 #9 #11 #18	0.38 0.11 0.63 0.31 0.88 0.60 1.13 1.00 1.41 1.56 2.26 4.00	0.38 #4 1.04 #6 2.04 #8 3.40 #10 5.31 #14 13.60	0.50 0.75 1.00 1.27 1.69	0.20 0.44 0.79 1.27 2.25	0.67 1.50 2.67 4.30 7.65			

Span Data

CONCRETE SOFTWARE SOLUTIONS

	ani (DCS	\Grid 3	- 1st fl	oor.sl)	b			
Slabs								
Units: L1 Span Loc	, wL,	wR (ft) L1	; t, bEff t	, Hmin wL	(in)	wR bEi	ff Hmi	.n
1 Int 2 Int	40. 40.	000	8.00 8.00	8.000 8.000	8.0 8.0	00 120.0 00 120.0	0.0 00 0.0	0
Ribs and	Longit	udinal	Beams					
Units: b,	h, Sp	(in)			-			
Span	b	_Ribsh	Sp		Be b	h h	Span Hm	i <u>in</u>
1 2	0.00	0.00	0.00		16.00 16.00	24.00 24.00	25. 25.	95 *b 95 *b
*b - Spar	depth	is les	s than mi	nimum.	Defle	ction cheo	ck require	d.
upport Data	L							
Columns								
Units: c1 Supp	a, c2a c1a	, c1b, c2a	22b (in); Ha	Ha, H)	b (ft) c1b	c2b	Hb	Red%
1 2 2 2 3 2	0.00 4.00 0.00	20.00 30.00 20.00	13.000 13.000 13.000		20.00 24.00 20.00	20.00 30.00 20.00	15.330 15.330 15.330	100 100 100
Boundary	Condit	ions						
Units: Kz	(kip/	in); Kr	y (kip-in	/rad)				
Supp S	pring	Kz Sp	ring Kry	Far End	d A Fa	r End B		
1 2 3		0 0 0	0 0 0	Fi: Fi: Fi:	xed xed xed	Fixed Fixed Fixed		
oad Data								
Load Case	s and	Combina	tions					
Case Type	SELF DEAD	SDL DEAD	LL LIVE					
U1 1	.200	1.200	1.600					
Area Load	ls							
Units: Wa Case/Patt	 (1b/f Span	t2)	Wa					
SELF	1	1	00.00					
LL	2 1	1	00.00 33.46					
SDL	2 1 2		33.46 20.00 20.00					
Line Load	ls							
Units: Wa Case/Patt	 , Wb (Span	lb/ft),	La, Lb (Wa	ft)	La	W	5	Lb
SELF	1 2	2	66.67 66.67	0.0	000 000	266.67	7 40 7 40	.000
einforcemer	t Crit	eria						
Slabs and	l Ribs							
	-	Top Min	bars Max	Boti M:	tom ba in	Max		
Bar Siz Bar spa	e	#5 1.00	#8 18.00	1.	#5 00	#8 18.00 in		
Reinf r Cover There i	atio s NOT	0.14 1.50 more th	5.00 an 12 in	0.1 1.1 of cond	14 50 crete	5.00 % in below top	bars.	
Beams						-		
	-	Top Min	bars Max	Boti	tom ba in	ns	Stirru Min	ipsMa

04-12-2018, 11:38:01 AM

Page 2

CONCRETE SOFTWARE SOLUTIONS

spBeam v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 66184-1055150-4-2C6B6-2C6B6 C:\TSDA\spBeam\BCs\Grid 3 - 1st floor.slb

Bar spacing	1.00	18.00	1.00	18.00		6.00	18.00	in
Reinf ratio	0.14	5.00	0.14	5.00	8			
Cover	1.50		1.50		in			
Layer dist.	1.00		1.00		in			
No. of legs						2	2	
Side cover						1.50		in
1st Stirrup						3.00		in
There is NOT	more than	12 in of	concrete	below	top	bars.		

04-12-2018, 11:38:01 AM

Page 3

CONCRETE SOFTWARE SOLUTIONS

04-04-2018, 03:59:56 PM

Page 1

				000000						
				00 00						
	(00000 0	000000	00 00	00000	00000	0 000	00000000		
	00	0 0 0	00 00	00 00	00 00	0 00	00	00 00		
	00	0 0	00 00	0000000	00 00	000000	00	00 00		
	(00000 0	00 00	00 00	00 00	00 00	00	00 00		
		00 0	000000	00 00	00000	00 00	00	00 00		
	0	00 0	50	00 00	00 0	00 00	, 00	00 00	(TM)	
		00000 0		0000000	00000	00000	0 00	00 00	(111)	
		A Computer Reinf C	r Program forced Con Copyright acknowle	for Analysi ncrete Beams © 1992-2015 All rights	s and One- s and One- s STRUCT s reserved	n, and In -way Slab UREPOINT, d 	vestigat Systems LLC (SP)	ion of	ot. and	CADDOL
for pro- any war: by the : program analysi STRUCTUI analysi program	cessing bi cessing bi ranty expre spBeam pro is not an s, design REPOINT di s, design	or eithe sp essed nor gram. Alt nd cannot n and isclaims a or engine	c the ad oBeam cor implied though STI be ce: engine all respo sering doo	ccuracy or mputer prog with respe RUCTUREPOINT rtified inf eering doc onsibility i cuments prep	gram. Fu: gram. Fu: ct to f [has end fallible. cuments in contr, pared in	cy of t rthermore the corre deavored The fin is act, negl connecti	ne mate c, STRUC conness to produ al and the 1 igence on with	TUREPOIN of the occ spBe only r icensee' or other the us	ppilea a T neither output p amerror i esponsibil s. Accor tort for e of the	as input r makes prepared free the lity for rdingly, r any spBeam
[2] DESIGN RESULT	TS									
Top Reinforcement Units: Width	t = (ft), Mmax	(k-ft),)	(max (ft)	, As (in^2),	. Sp (in)					
Span Zone	Width	Mmax	Xmax	AsMin	AsMax	AsReq	SpProv	Bars		
1 Left	4.00	252.81	0.833	1.173	6.358	2.742	10.677	5-#8	*5	
Midspan	4.00	0.00	19.917	0.000	6.358	0.000	0.000			
Right	4.00	469.95	39.000	1.173	6.358	5.507	7.118	7-#8		
2 Left	4.00	469.95	1.000	1.173	6.358	5.507	7.118	7-#8		
Midspan	4.00	0.00	20.083	0.000	6.358	0.000	0.000			
Right	4.00	252.81	39.167	1.173	6.358	2.742	10.677	5-#8	*5	
NOTES:										
*5 - Number o:	f bars gove	erned by m	naximum a	llowable spa	acing.					
	-	-		-	-					

Top Bar Details === _____

Units: Length (ft)

	-	Left			Conti	nuous	Right				
Span	Bars 1	Length	Bars	Length	Bars	Length	Bars	Length	Bars	Length	
1	3-#8	8.18	2-#8*	3.20			4-#8	11.78	3-#8*	5.53	
2	4-#8	11.78	3-#8*	5.53			3-#8	8.18	2-#8*	3.20	
NOTES: * - Bar	cut-off	flocation	does	not meet	. ACT 318	. 12.10.	5.1. Revi	se locati	on.		

unless the requirements of either 12.10.5.2 or 12.10.5.3 are manually checked and satisfied.

Top Bar Development Lengths

Units: Length (in)

	-	Left Continuous Ri						Rig	ght		
Span	Bars	Length	Bars	DevLen	Bars	DevLen	Bars	DevLen	Bars	DevLen	
1	3-#8	24.70	2-#8	24.70			4-#8	35.43	3-#8	35.43	
2	4-#8	35.43	3-#8	35.43			3-#8	24.70	2-#8	24.70	

Bottom Reinforcement

Units: Span	Width (ft) Width	, Mmax (Mmax	k-ft), Xmax Xmax	(ft), AsMin	As (in^2), AsMax	Sp (in) AsReq	SpProv	Bars	
1	1.33	277.02	18.390	1.173	47.685	2.825	3.569	4-#8	
2	1.33	277.02	21.610	1.173	47.685	2.825	3.569	4-#8	
									1

Bottom Bar Details _____

Units: Start (ft), Length (ft) _____Long Bars_____Short Bars____

CONCRETE SOFTWARE SOLUTIONS

Page 2

04-04-2018, 03:59:56 PM

spBeam v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 66184-1055150-4-2C6B6-2C6B6 C:\TSDA\spBeam\Grid 3 - 1st floor.slb

 - Bar cut-off location does not meet ACI 318, 12.10.5.1. Revise location, unless the requirements of either 12.10.5.2 or 12.10.5.3 are manually checked and satisfied.

Bottom Bar Development Lengths

Units:	DevLer	1 (in)		_
Span -	Long Bars	DevLen	Short Bars	Bars DevLen
1	2-#8	35.64	2-#8	35.64
2	2-#8	35.64	2-#8	35.64

Flexural Capacity

Units: x (ft), As (in^2), PhiMn, Mu (k-ft)

				Top	p			Bottom					
Span	x	AsTop	PhiMn-	Mu-	Comb	Pat	Status	AsBot	PhiMn+	Mu+	Comb	Pat	Status
1	0.000	3.95	-352.33	-304.63	U1	A11		1.58	155.59	0.00	U1	A11	
	0.833	3.95	-352.33	-252.81	U1	A11	OK	1.58	155.59	0.00	U1	A11	OK
	1.147	3.95	-352.33	-233.98	U1	A11	OK	1.58	155.59	0.00	U1	A11	OK
	3.205	2.37	-220.69	-118.61	U1	A11	OK	1.58	155.59	0.00	U1	A11	OK
	6.122	2.37	-220.69	0.00	U1	A11	OK	1.58	155.59	19.69	U1	A11	OK
	6.959	1.41	-134.29	0.00	U1	A11	OK	1.58	155.59	53.92	U1	A11	OK
	8.180	0.00	0.00	0.00	U1	A11	OK	2.23	219.08	99.41	U1	A11	OK
	9.930	0.00	0.00	0.00	U1	A11	OK	3.16	309.54	155.59	U1	A11	OK
	14.192	0.00	0.00	0.00	U1	A11	OK	3.16	309.54	247.92	U1	A11	OK
	18.390	0.00	0.00	0.00	U1	A11	OK	3.16	309.54	277.02	U1	A11	OK
	20.000	0.00	0.00	0.00	U1	A11	OK	3.16	309.54	271.86	U1	A11	OK
	25.642	0.00	0.00	0.00	U1	A11	OK	3.16	309.54	182.78	U1	A11	OK
	26.634	0.00	0.00	0.00	U1	A11	OK	3.16	309.54	155.59	U1	A11	OK
	28.218	0.00	0.00	0.00	U1	A11	OK	2.32	227.63	105.19	U1	A11	OK
	29.604	1.48	-141.39	0.00	U1	A11	OK	1.58	155.59	53.90	U1	A11	OK
	31.170	3.16	-288.06	-12.10	U1	A11	OK	1.58	155.59	0.00	U1	A11	OK
	34.468	3.16	-288.06	-178.94	U1	A11	OK	1.58	155.59	0.00	U1	A11	OK
	37.421	5.53	-471.58	-360.44	U1	A11	OK	1.58	155.59	0.00	U1	A11	OK
	39.000	5.53	-471.58	-469.95	U1	A11	OK	1.58	155.59	0.00	U1	A11	OK
	39.250	5.53	-471.58	-488.09	U1	A11		1.58	155.59	0.00	U1	A11	
	40.000	5.53	-471.58	-543.80	U1	A11		1.58	155.59	0.00	U1	A11	
2	0.000	5.53	-471.58	-543.80	U1	A11		1.58	155.59	0.00	U 1	A11	
	0.750	5.53	-471.58	-488.09	U1	A11		1.58	155.59	0.00	U1	A11	
	1.000	5.53	-471.58	-469.95	U1	A11	OK	1.58	155.59	0.00	U1	A11	OK
	2.579	5.53	-471.58	-360.44	U1	A11	OK	1.58	155.59	0.00	U1	A11	OK
	5.532	3.16	-288.06	-178.94	U1	A11	OK	1.58	155.59	0.00	U1	A11	OK
	8.830	3.16	-288.06	-12.10	U1	A11	OK	1.58	155.59	0.00	U1	A11	OK
	10.396	1.48	-141.39	0.00	U1	A11	OK	1.58	155.59	53.90	U1	A11	OK
	11.782	0.00	0.00	0.00	U1	A11	OK	2.32	227.63	105.19	U1	A11	OK
	13.366	0.00	0.00	0.00	U1	A11	OK	3.16	309.54	155.59	U1	A11	OK
	14.358	0.00	0.00	0.00	U1	A11	OK	3.16	309.54	182.78	U1	A11	OK
	20.000	0.00	0.00	0.00	U1	A11	OK	3.16	309.54	271.86	U1	A11	OK
	21.610	0.00	0.00	0.00	U1	A11	OK	3.16	309.54	277.02	U1	A11	OK
	25.808	0.00	0.00	0.00	U1	A11	OK	3.16	309.54	247.92	U1	A11	OK
	30.070	0.00	0.00	0.00	U1	A11	OK	3.16	309.54	155.59	U1	A11	OK
	31.820	0.00	0.00	0.00	U1	A11	OK	2.23	219.07	99.40	U1	A11	OK
	33.041	1.41	-134.29	0.00	U1	A11	OK	1.58	155.59	53.92	U1	A11	OK
	33.878	2.37	-220.69	0.00	U1	A11	OK	1.58	155.59	19.69	U1	A11	OK
	36.795	2.37	-220.69	-118.61	U1	A11	OK	1.58	155.59	0.00	U1	A11	OK
	38.853	3.95	-352.33	-233.98	U1	A11	OK	1.58	155.59	0.00	U1	A11	OK
	39.167	3.95	-352.33	-252.81	U1	A11	OK	1.58	155.59	0.00	U1	A11	OK
	40.000	3.95	-352.33	-304.63	U1	A11		1.58	155.59	0.00	U1	A11	

Longitudinal Beam Transverse Reinforcement Demand and Capacity

Sectio	n Prope:	rties						
Units: Span	d (in) d	, Av/s (in^ (Av/s)min	2/in), Ph: PhiVc	iVc (kip)				
1 2	22.00	0.0133 0.0133	33.39 33.39					
Beam T	ransver	se Reinforc	ement Dema	and				
Units:	Start,	End, Xu (i	n), Vu (fi	t), Av/s Recui	(kip/in^2))	Demand	
Span	Start	End -	Xu	Vu C	omb/Patt	Av/s	Av/s	
1	1.083 7.595	7.595 12.524	2.667 7.595	54.35 37.20	U1/A11 U1/A11	0.0212 0.0038	0.0212 0.0133	*8

CONCRETE SOFTWARE SOLUTIONS

04-04-2018, 03:59:56 PM

Page 3

spBeam v5 Licensed t C:\TSDA\sp	.00 © Str to: Struc pBeam\Gri	ucturePoin turePoint, d 3 - 1st	nt , License floor.slb	ID: 66184	-1055150-	4-2C6B6-20	C6B6	
	12.524	17.452	12.524	20.04	U1/A11	0.0000	0.0133	*8
	17.452	22.381	22.381	14.27	U1/A11	0.0000	0.0000	
	22.381	27.310	27.310	31.42	U1/A11	0.0000	0.0133	*8
	27.310	32.238	32.238	48.58	U1/A11	0.0153	0.0153	
	32.238	38.750	37.167	65.73	U1/A11	0.0327	0.0327	
2	1.250	7.762	2.833	65.73	U1/A11	0.0327	0.0327	
	7.762	12.690	7.762	48.58	U1/A11	0.0153	0.0153	
	12.690	17.619	12.690	31.42	U1/A11	0.0000	0.0133	*8
	17.619	22.548	17.619	14.27	U1/A11	0.0000	0.0000	
	22.548	27.476	27.476	20.04	U1/A11	0.0000	0.0133	*8
	27.476	32.405	32.405	37.20	U1/A11	0.0038	0.0133	*8
	32.405	38.917	37.333	54.35	U1/A11	0.0212	0.0212	

NOTES:

*8 - Minimum transverse (stirrup) reinforcement governs.

Beam Transverse Reinforcement Details Units: spacing & distance (in). Span Size Stirrups (2 legs each unless otherwise noted) ---- ----

1 #4 19 @ 10.6 + <-- 59.1 --> + 19 @ 10.6 2 #4 19 @ 10.6 + <-- 59.1 --> + 19 @ 10.6

Beam Transverse Reinforcement Capacity

Units: Start, End, Xu (ft), Vu, PhiVn (kip), Av/s (in^2/in), Av (in^2), Sp (in)

			Required					Provided				
Span	Start	End	Xu	Vu	Comb/Patt	Av/s	Av	Sp	Av/s	PhiVn		
1	0.000	1.083	2.667	54.35	U1/All							
	1.083	17.452	2.667	54.35	U1/A11	0.0212	0.40	10.6	0.0377	70.69		
	17.452	22.381	22.381	14.27	U1/A11	0.0000				16.70		
	22.381	38.750	37.167	65.73	U1/A11	0.0327	0.40	10.6	0.0377	70.69		
	38.750	40.000	37.167	65.73	U1/A11							
2	0.000	1.250	2.833	65.73	U1/A11							
	1.250	17.619	2.833	65.73	U1/A11	0.0327	0.40	10.6	0.0377	70.69		
	17.619	22.548	17.619	14.27	U1/A11	0.0000				16.70		
	22.548	38.917	37.333	54.35	U1/A11	0.0212	0.40	10.6	0.0377	70.69		
	38.917	40.000	37.333	54.35	U1/All							

Slab Shear Capacity

Units: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b d Vratio PhiVc Vu Xu Xu 1 --- Not checked ---2 --- Not checked ---

Material Takeoff

Reinforcement in the Direction of Analysis

Top Bars:	505.6	lb	<=>	6.32	lb/ft	<=>	0.395	lb/ft^2
Bottom Bars:	669.0	lb	<=>	8.36	lb/ft	<=>	0.523	lb/ft^2
Stirrups:	287.7	lb	<=>	3.60	lb/ft	<=>	0.225	lb/ft^2
Total Steel:	1462.3	lb	<=>	18.28	lb/ft	<=>	1.142	lb/ft^2
Concrete:	995.6	ft^3	<=>	12.44	ft^3/ft	<=>	0.778	ft^3/ft^2

CONCRETE SOFTWARE SOLUTIONS

spBeam v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 66184-1055150-4-2C6B6-2C6B6 C:\TSDA\spBeam\BCs\Grid 3 - 1st floor.slb

04-12-2018, 11:26:54 AM

Page 1

			00000	0						
			00	00						
	0000	0 00 00 0	0 00	00 00	00 0	0000	0 000	00000	00	
	00	00 0	0 00000	00 00	00 0	00000	00	00	00	
	0000	o oo o oo ooonnn	0 00	00 00	00 00		00	00	00	
	0	00 00	00	00 00	0 00	00	00	00	00	
	0000	00 00	00000	000 000	00 0	00000 0	00	00	00	(TM)
	A Co:	mputer Prog Reinforced Copyri	s ram for A Concrete ght © 199 All ========	pBeam v5.0 nalysis, D Beams and 2-2015, ST rights res	0 (TM) esign, a One-way RUCTUREP erved	nd Inv Slab OINT,	estigat Systems LLC	ion c)f	
Licensee be respo for proc any warr by the s program analysis STRUCTUR analysis program.	stated a nsible for essing by t anty expresse pBeam program is not and c , design EPOINT discl , design or	bove ackn either the he spBeam d nor impl . Although annot be and en aims all r engineering	owledges accurac computer ied with STRUCTUR certifie gineering esponsibi document	that S ry or ad respect EPOINT has d infalli documen lity in c s prepared	TRUCTURE equacy Furthe to the endeav ble. The ts i ontract, in con	POINT of the ermore, corred to e fina .s ti neglio nectio	(SP) e mate STRUC tness o produ l and he l gence n with	is erial CTUREE of th ace s only licens or ot h the	no sup POINT ne o spBea y re see's cher use	t and cannot pplied as input neither makes utput prepared merror free the sponsibility for Accordingly, tort for any of the spBeam
131 DEFLECTION RE	SULTS									
Section Propertie	5									
	=									
Frame Section	Properties									
Units: Ig, Icr	(in^4), Mcr	(k-ft)								
Span Zone	Ia	M+ve	Mor	Ta	M-ve	Ter	Mer	-		
								_		
1 Left	39684	4120	89.77	39684		8529	-240.36	5		
Midspan	39684	5100	89.77	39684	4	0	-240.36	5		
Right 2 Jeft	39684	4120	89.77	39684	1	0897	-240.36	5		
Midsnan	39684	5100	89 77	39684	1	0057	-240.36	5		
Right	39684	4120	89.77	39684		8529	-240.36	5		
NOTES: M+ve va M-ve va	lues are for ; lues are for ;	positive mo negative mo	ments (te ments (te	ension at b ension at t	ottom fa op face)					
Frame Effectiv	e Section Pro	perties								
Units: Ie, Ie,	avg (in^4), M	max (k-ft)								
		P		Load Lev	el		Deeder			
Span Zone	Weight .	Dead Mmax	Ie	Sustain Mmax	ea Te	Mm.	vead+Li ax	.ve	Ie	
1 Middle	0.850 17	4.04	9847 1	.74.04	9847	216.	64	75	61	
Right Span Avg	0.150 -34	1.64	20922 -3 11508		20922	-425.	29	160	94 41	
2 Left	0.150 -34	1.64	20922 -3	41.64	20922	-425	29	1.60	94	
Middle	0.850 17	4.04	9847 1	74.04	9847	216.	64	75	61	
Span Avg			11508		11508			88	41	
Instantaneous Def										
	lections									
Extreme Instan	lections ====== taneous Frame	Deflection	s and Cor	responding	Locatio	ns				
Extreme Instan Units: Def (i	lections ======= taneous Frame n), Loc (ft)	Deflection	s and Cor	responding	Locatio	ons				
Extreme Instan Units: Def (i	lections taneous Frame n), Loc (ft)	Deflection	s and Cor	responding Live	Locatio	ons		Total		

					Live	Total		
Span	Direction	Value	Dead	Sustained	Unsustained	Total	Sustained	Dead+Live
1	Down	Def	0.582		0.324	0.324	0.582	0.905
	Up	Loc Def	19.153		19.535	19.535	19.153	19.535
		Loc						
2	Down	Def	0.582		0.324	0.324	0.582	0.905
	Up	Def	20.047		20.405	20.405	20.047	20.405
		Loc						

Long-term Deflections

spBeam v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 66184-1055150-4-2C6B6-2C6B6 C:\TSDA\spBeam\BCs\Grid 3 - 1st floor.slb

Long-term Deflection Factors

Time dependant factor for sustained loads = 2.000 Units: Astop, Asbot (in^2), b, d (in), Rho' (%), Lambda (-)

onics.	ASCOP,	A3000 (11	. 2), D, U M	+ve	110 (%)	, Lambo	la (-)	M-	ve		
Span	Zone	Astop	d	d	Rho'	Lambda	Asbot	d	d	Rho'	Lambda
1 M	idspan				0.000	2.000				0.000	2.000
2 M	idspan				0.000	2.000				0.000	2.000

NOTES: Deflection multiplier, Lambda, depends on moment sign at sustained load level and Rho' in given zone. Rho' is assumed zero because Compression Reinforcement option is NOT selected in Solve Options.

Extreme Long-term Frame Deflections and Corresponding Locations

Units: Def (in), Loc (ft)

Span	Direction	Value	CS	cs+lu	cs+l	Total
1	Down	Def	1.164	1.487	1.487	2.069
		Loc	19.153	19.153	19.153	19.153
	Up	Def				
		Loc				
2	Down	Def	1.164	1.487	1.487	2.069
		Loc	20.847	20.847	20.847	20.847
	Up	Def				
		Loc				

NOTES: Incremental deflections due to creep and shrinkage (cs) based on sustained load level values. Incremental deflections after partitions are installed can be estimated by deflections due to: - creep and shrinkage plus unsustained live load (cs+lu), if live load applied before partitions, - creep and shrinkage plus live load (cs+l), if live load applied after partitions. Total deflections consist of dead, live, and creep and shrinkage deflections.

04-12-2018, 11:26:54 AM

Page 2

Structure Point CONCRETE SOFTWARE SOLUTIONS

8. **Design Results Comparison and Conclusions**

Table 5 - Comparison of Moments and Flexural Reinforcement										
Location	M _u *, kip)-ft	A _{s,req} , ii	n.	Reinforcement					
Location	Hand	<u>spBeam</u>	Hand	<u>spBeam</u>	Hand	<u>spBeam</u>				
Exterior Negative	250.41	252.81	2.71	2.74	5-#8	5-#8				
Positive	272.52	277.02	2.78	2.83	4-#8	4-#8				
Interior Negative	471.13	469.95	5.52	5.51	7-#8	7-#8				
* negative moments are taken at the faces of supports										

The following tables show the comparison between hand results and <u>spBeam</u> model results.

Table 6 - Comparison of Shear and lateral Reinforcement								
Location	vu [*] , kip			$(A_v/s)_{req}$, in. ² /in.		cement	φV _n , kip	
Location	Hand	<u>spBeam</u>	Hand	<u>spBeam</u>	Hand	<u>spBeam</u>	Hand	<u>spBeam</u>
Interior Negative	rior gative 65.82 65.73 0.0328 0.0327 19-#4@10.5 19-#4@10.6 71.11 70.69							
* Shear values are taken at distance d from the faces of supports								

Table 7 - Comparison of Section Properties (Rectangular Negative Moment Regions)										
	I _{cr} , in	.4		I _{e.avg} , in. ⁴						
Location	Hand	on Doom	Hand			<u>spBeam</u>				
	Hand	<u>spBeam</u>	DL	DL+LL _{sus}	Total	DL	DL+LL _{sus}	Total		
Exterior Negative	8,529	8,529								
Positive	5,100	5,100	10,011	10,011	8,065	10,011	10,011	8,065		
Interior Negative	10,897	10,897								

Table 8 - Comparison of Section Properties (<u>T-shaped</u> Negative Moment Regions)										
	I _{cr} , in. ⁴		I _{e.avg} , in. ⁴							
Location	Hand	<u>spBeam</u>	Hand			<u>spBeam</u>				
	Hand		DL	DL+LL _{sus}	Total	DL	DL+LL _{sus}	Total		
Exterior Negative	8,529	8,529								
Positive	5,100	5,100	11,508	8 11,508	8,841	11,508	11,508	8,841		
Interior Negative	10,897	10,897								

Table 9 - Comparison of Maximum Deflection (Rectangular Negative Moment Regions)						
Procedure	Δ_{inst} , in.	$\Delta_{\rm lt}$, in.				
<u>spBeam</u>	0.98	2.29				
PCA Superposition	1.18 (+20.4 %)	2.70				
Simplified Superposition	1.38 (+40.8 %)	3.04				
PCA Simplified	1.40 (+40.9 %)	3.22				

Table 10 - Comparison of Maximum Deflection (<u>T-shaped</u> Negative Moment Regions)						
Procedure	Δ_{inst} , in.	$\Delta_{\rm lt}$, in.				
<u>spBeam</u>	0.91	2.07				
PCA Superposition	1.24 (+36.3 %)	2.77				
Simplified Superposition	1.26 (+38.5 %)	2.84				
PCA Simplified	1.28 (+40.7 %)	2.84				

The results of all the hand calculations used illustrated above are in agreement with the automated exact results obtained from the <u>spBeam</u> program except for deflection (see section 8.2 for detailed discussion).

8.1. T-beam flange width considerations

In ACI 318-11 and earlier editions, the width of the slab effective as a T-beam flange was limited to one-fourth the beam span (center to center). In the 2014 revisions to ACI 318, the effective width was changed to become one-eighth of the clear span on each side of the beam web. This was intended to simplify Table 6.3.2.1 in the ACI 318-14 and according to the code commentary; this change has negligible impact on the designs. The use of one-fourth the span to limit the T-beam effective flange width has been used in earlier cycles of the ACI code and StructurePoint software was not changed to reflect this revision since the earlier provisions are more exact. A summary of the changes discussed here are given in the table below:

Table 11 – Comparison of beff Effects on Design Results								
Location	b _{eff} , in.		M _u [*] , kip-ft		A _{s,req} , in.		Reinforcement	
	318-14	318-11	318-14	318-11	318-14	318-11	318-14	318-11
	Hand	spBeam	Hand	spBeam	Hand	spBeam	Hand	spBeam
Exterior Negative			250.41	252.81	2.71	2.74	5-#8	5-#8
Positive	130.5	120.0	272.52	277.02	2.78	2.83	4-#8	4-#8
Interior Negative			471.13	469.95	5.52	5.51	7-#8	7-#8
* negative moments are taken at the faces of supports								

spbeam

8.2. Deflection calculation methods:

Deflections calculations in reinforced concrete structures can be very tedious and time consuming because of the difficulty of accounting for the actual end boundary conditions in a building frame. As a result, numerous methods to estimate the deflection and the member stiffness have been presented in literature. It is important to note that these methods can only estimate deflections within an accuracy range of 20% to 40% as can be seen in Tables 9 and 10. It is important for the designer to be aware of this broad range of accuracy, especially in the modeling, design, and detailing of deflection-sensitive members.

<u>spBeam</u> uses elastic analysis (stiffness method) to obtain deflections along the beam span by discretizing the beam span into 110 elements. It also takes into account the adjacent spans effects, shape effects, supporting members stiffnesses above and below the beam, and cracked section effects based on the applied forces. This level of detail provides the maximum accuracy possible compared with other approximate methods used to calculate deflections.

In tables 9 and 10, the deflection value calculated by <u>spBeam</u> is lower than all the other values calculated by the approximate methods. This can be expected since approximate methods have a built-in conservatism to accommodate a wide range of applications and conditions. The designer can use <u>spBeam</u> and exploit its numerous features to get a closer deflection estimate and optimize the depth and size of the beam or slab under consideration.

9. Boundary condition effects on continuous beam deflections

Boundary conditions can have significant effects on the behavior of continuous beams especially deflections. This section focuses on investigating boundary conditions commonly found in building and used with continuous beams. In each section we will explore when to use each condition, and how to properly model them using spBeam.

The following discussion provides recommendations for each of the grids in the building floor system under consideration, observations on the impact of the condition, and the proper modeling method in <u>spBeam</u>.

9.1. Beam supported by columns- Grid 3

The length and size of the columns above and below the beam are modeled allowing <u>spBeam</u> to calculate the rotational stiffness for each member at the joint to correctly determine the beam end moments.

In the support date, the stiffness % of 100 indicates full utilization of the column and beam geometry. Whereas a value of 999 will impose a fixed support condition and a value of zero will impose a pinned support condition ignoring the supporting columns entirely.

9.2. Beam supported by transverse beams - Grid 4

To model transverse beam as a support, the cross-sectional dimensions and length **<u>should not</u>** be entered as shown below since this tab is reserved for two-way slab systems with beams between all supports.

Alternately, the designer should enter a value for the rotational stiffness for the supporting transverse beams calculated by an external method if desired and to provide additional flexibility for special cases as the boundary conditions tab shown below.

The ACI code approximates the moment at transverse beam end support to 2/3 the moment at column end support. This can be used as a reference to find the rotational stiffness of transverse beams by trial and error.

ACI 318-14 (Table 6.5.2)

For Grid 4, adding the approximated rotational stiffnesses shown in the following Figure will result in (204.6 kip-ft) negative moment at the end support which is 2/3 the negative moment at the end support for Grid 3 (304.6 kip-ft).

Support Data						x
Columns Colu	mn Capitals Trar	nsverse Beams Bounda	ry Conditions			
Support:	1	Support Springs Vertical Kz: 0 Rotation Kry: 1e+006	kip/in kip-in/rad	Column Abo Column Bel	Far End ove: Fixed ow: Fixed	•
Modify	Copy					
Sup. No	Kz	Клу	Far End	d - Above	Far End - Below	
1	0	1e+006	Fixed		Fixed	
23	0 0	1.2e+006 1e+006	Fixed Fixed		Fixed Fixed	
			ОК	Cance	el Help	

Figure 18 - Beam Supported by Transverse Beams - Defining Supports Stiffnesses (spBeam)

<u>spBeam</u> designs the beam for the moment at the center of the support when a rotation stiffness is defined. To design the beam for moments at the face of the supporting transverse beam, a dummy column can be defined with all parameters equals to zero except c_1 where it should be set equal to the width of the transverse beam. spBeam will obtain shear and moment values at critical sections and use them for design.

In Grid 2, a combination of the boundary conditions shown in grids 3 and 4 should be utilized where the end columns are modeled for support 1 and 3 and a transverse beam is modeled for support 2 as shown below.

9.3. Beam supported by transverse walls - Grid 5

In this model the beam is cast monolithically with the shear wall, the wall define as an elongated column.

9.4. Beam supported by masonry bearing walls - Grid C

The wall can be modeled as pin support with a stiffness percent of zero.

9.5. Beam supported by longitudinal walls - Grids 1, 6, and A

The beam can be modeled up to the face of the wall. At the face of the wall the beam should be restrained by a fixed support and the wall width can be ignored.

To illustrate the effects of boundary conditions, beams along grids 2, 3, 4 and 5 in Figure 1 are modeled using <u>spBeam</u> and deflections obtained from these models are compared.

	Table 12 - Comparison of Continuous Beams with Different Boundary Conditions (Deflections)						
Grid #	$(\Delta_{\text{inst}})_{\text{total}},$ in.	$\Delta_{\rm cs}$, in.	$\Delta_{\rm lt}$, in.	Notes			
3	0.90	1.16	2.07	All columns are modeled with the exact geometry			
5	0.69 (-23.3 %)	0.82 (-29.8 %)	1.51 (-27.0 %)	Transverse shear wall is modeled with the exact geometry for the right span			
2*	0.90 (0.0 %)	1.16 (0.0 %)	2.07 (0.0 %)	The middle support is modeled as transverse beam using rotational stiffness with dummy column to obtain shear and moment values at the critical sections.			
$4 \qquad \begin{array}{c c} 0.92 \\ (+2.7 \%) \\ \end{array} \begin{array}{c} 1.31 \\ (+12.5 \%) \\ \end{array} \begin{array}{c} 2.24 \\ (+8.2 \%) \\ \end{array} \begin{array}{c} \text{All supports are modeled as transverse beams using rotational} \\ \text{stiffness with dummy columns to obtain shear and moment} \\ \text{values at the critical sections.} \end{array}$							
* The interior support boundary condition has slight effect on results due to symmetry for the case of continuous beam with two spans							

