

Beam on Elastic Foundation

Beam on Elastic Foundation

In some applications such as grade beams in prefabricated buildings and combined footings for industrial tanks and equipment, the member subjected to loads is supported on continuous elastic foundations such as soil or flowable fill. That is the reactions due to external loading is distributed along the length of the member. The figure below shows a general footing and load data, the loads are factored and may be obtained from building column reactions or an equipment vendor loading data. In this example, the loads are from a horizontal tank supports and are the full width of the footing. The finite element analysis results in the Reference are compared with results obtained from <u>spBeam</u> engineering software program from <u>StructurePoint</u>.

Span / Element	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	10-11	11-12	12-13
Length, m	0.20	0.20	0.30	0.61	1.07	1.07	0.91	0.61	0.23	0.23	0.45	0.50

	Figure	1 –	Footing	Cross-Section
--	--------	-----	---------	---------------

Contents

1.	Beam on Elastic Foundation Analysis - Finite Element Method	1
2.	Beam on Elastic Foundation Analysis and Design - spBeam Software	5
3.	Comparison of Design Results	11
4.	Observations	13
	4.1 Beam on Elastic Foundation – Flexural Reinforcement Design and Detailing	13
	4.2 Beam on Elastic Foundation – Beam Shear Strength	17
5.	Conclusions	18
6.	Appendix – spBeam Detailed Results Output	19

Code

Building Code Requirements for Structural Concrete (ACI 318M-14) and Commentary (ACI 318RM-14)

Reference

Foundation Analysis and Design, 5th Edition, 1997, Joseph E. Bowles, McGraw-Hill Companies, Example 9-6 spBeam Engineering Software Program Manual v5.50, StructurePoint, 2018

Design Data

 $f_c = 21 \text{ MPa}$ $E_c = 21500 \text{ MPa}$ $k_s = 22000 \text{ kN/m}^3 \text{ (Soil Subgrade Modulus)}$ Footing length = 6.38 m
Footing width = 2.64 m
Loading: $P_{u1} = 1350 \text{ kN}$ $M_{u1} = -108 \text{ kN-m}$ $P_{u2} = 2025 \text{ kN}$ $M_{u2} = 81 \text{ kN-m}$

Solution

1. Beam on Elastic Foundation Analysis - Finite Element Method

The reference mentions that the finite-element method (FEM) is one of the most efficient means for analyzing a beam-on-elastic foundation problem. It is easy to account for boundary conditions (such as a point where there is no rotation or translation), beam weight, and nonlinear soil effects. The reference used a FEM computer program to obtain text results output shown below.

DATA SET FOR EXAMPLE 9-6 SI-UNITS

++++++++++++++++++ THIS OUTPUT FOR DATA FILE: EXAM96.DTA

SOLUTION FOR BEAM ON ELASTIC FOUNDATION--ITYPE = 0 +++++++

NO OF NP = 26 NO OF	ELËMENTS,	NM = 12 NO	OF NON-ZERO P, NNZP =	4
NO OF LOAD CASES, NLC	= 1		NO OF CYCLES NCYC =	1
NODE SOIL STARTS JTSOIL	= 1			
NONLINEAR (IF > 0)	= 1	NO OF	BOUNDARY CONDIT NZX =	0
MODULUS KCODE	= 1		LIST BAND IF > 0 =	0
			IMET (SI > 0) =	1

MOD OF ELASTICITY E = 21500. MPA

MEMNO	NP1	NP2	NP 3	NP4	LENGTH	WIDTH	INERTIA, M**4
1	1	2	3	4	. 200	2.640	.47520E-01
2	3	4	5	6	. 200	2.640	.47520E-01
3	5	6	7	8	. 300	2.640	.47520E-01
4	7	8	9	10	.610	2.640	.47520E-01
5	9	10	11	12	1.070	2.640	.47520E-01
6	11	12	13	14	1.070	2.640	47520E-01
7	13	14	15	16	.910	2.640	.47520E-01
8	15	16	17	18	.610	2.640	.47520E-01
9	17	18	19	20	.230	2.640	.47520E-01
10	19	20	21	22	.230	2.640	.47520E-01
11	21	22	23	24	.450	2.640	.47520E-01
12	23	24	25	26	. 500	2.640	.47520E-01

THE INITIAL INPUT P-MATRIX ENTRIES

NP	LC	P(NP,LC)
3	1	-108.000
4	1	1350.000
19	1	81,000
20	1	2025.000

THE ORIGINAL P-MATRIX WHEN NONLIN > 0 ++++++

1	.00			
2	-108.00	1350.00		
3	.00	.00		
4	.00	.00		
5	.00	.00		
6	.00	.00		
7	.00	.00		
8	.00	.00		
9	.00	.00		
10	81.00	2025.00		
11	.00	.00		
12	.00	.00		
13	.00	.00		
THE NODE	SOIL MODULUS,	SPRINGS AND M	AX DEFL:	
NODE	SOIL MODULUS	SPRING, KN/M	MAX DEFL, N	ł
1	22000.0	11616.0	.0500	
2	22000.0	11616.0	.0500	
3	22000.0	14520.0	.0500	
4	22000.0	26426.4	.0500	
5	22000.0	48787.2	.0500	

6	22000.0	62145.6	.0500
7	22000.0	57499.2	.0500
8	22000.0	44140.8	.0500
9	22000.0	24393.6	.0500
10	22000.0	13358.4	.0500
11	22000.0	19747.2	.0500
12	22000.0	27588.0	.0500
13	22000.0	29040.0	.0500

BASE SUM OF NODE SPRINGS = 370550.4 KN/M NO ADJUSTMENTS * = NODE SPRINGS HAND COMPUTED AND INPUT

MEMB	ER MOMENTS, NOI	DE REACTIONS,	DEFLECTIONS,	SOIL PRESSURE	AND LAST USED	P-MATRIX	FOR LC = 1		
EMNO	MOMENTSNEAR	END 1ST, KN-)	m node sp	G FORCE, KN	ROT, RADS	DEFL, M	SOIL Q, KPA	P-, KN-M	P-, KN
1	.014	-27.486	1	137.35	00253	.01182	260.12	.00	.00
2	-80.742	297.008	2	131.47	00253	.01132	248.99	-108.00	1350.00
3	-297.074	574.550	3	157.02	00250	.01081	237.91	.00	.00
4	-574.568	976.292	4	266.45	00237	.01008	221.82	.00	.00
5	-976.300	1223.258	5	427.76	00190	.00877	192.89	.00	.00
6	-1223.256	983.240	6	455.11	00075	.00732	161.11	.00	.00
7	-983.243	404.543	7	411.62	.00040	.00716	157.49	.00	.00
8	-404.557	-194.635	8	346.31	.00102	.00785	172.60	.00	.00
9	194.540	-468.397	9	207.48	.00108	.00851	187.13	.00	.00
10	549.286	-384.339	10	116.85	.00101	.00875	192.45	81.00	2025.00
11	384.351	-141.243	11	177.07	.00090	.00897	197.27	.00	.00
12	141.230	004	12	257.77	.00079	.00934	205.56	.00	.00
			13	282.44	.00075	.00973	213.97	.00	.00
SUM	SPRING FORCES :	= 3374.71	VS SUM APPLIED	FORCES =	3375.00 KN				

(*) = SOIL DISPLACEMENT > XMAX SO SPRING FORCE AND Q = XMAX*VALUE +++++++++ NOTE THAT P-MATRIX ABOVE INCLUDES ANY EFFECTS FROM X > XMAX ON LAST CYCLE ++++++++++

FOLLOWING IS DATA SAVED TO DATA FILE: BEAM1.PLT

REFER TO "READ" STATEMENT 2040 FOR FORMAT TO USE FOR PLOT PROGRAM ACCESS

					SHEAR V	[I,1),V(I,2)	MOMENT MOM	<pre>[I,1),MOM(I,2)</pre>
NODE	LENGTH	KS	COMP X, MM	XMAX	LT OR 1	RTORB	LT OR T	RT OR B
1	.000	22000.0	11.824 50	.000	.00	-137.36	.0	.0
2	. 200	22000.0	11.318 50	.000	-137.36	1081.33	-27.5	80.7
3	.400	22000.0	10.814 50	.000	1081.33	924.92	297.0	297.1
4	.700	22000.0	10.083 50	.000	924.92	658.56	574.6	574.6
5	1.310	22000.0	8.768 50	.000	658.56	230.80	976.3	976.3
6	2.380	22000.0	7.323 50	.000	230.80	-224.31	1223.3	1223.3
7	3.450	22000.0	7.159 50	.000	-224.31	-635.93	983.2	983.2
8	4.360	22000.0	7.846 50	.000	-635.93	-982.28	404.5	404.6
9	4.970	22000.0	8.506 50	.000	-982.28	-1190.68	-194.6	-194.5
10	5.200	22000.0	8.748 50	.000	-1190.68	717.16	-468.4	-549.3
11	5.430	22000.0	8.967 50	.000	717.16	540.24	-384.3	-384.4
12	5.880	22000.0	9.344 50	.000	540.24	282.45	-141.2	-141.2
13	6.380	22000.0	9.726 50	.000	282.45	.00	.0	.0

Structure Point

CONCRETE SOFTWARE SOLUTIONS

2. Beam on Elastic Foundation Analysis and Design - spBeam Software

<u>spBeam</u> is widely used for analysis, design and investigation of beams, one-way slab systems (including standard and wide module joist systems) and beams on elastic foundations per latest American (ACI 318) and Canadian (CSA A23.3) codes. <u>spBeam</u> can be used for new designs or investigation of existing structural members subjected to flexure, shear, and torsion loads. With capacity to integrate up to 20 spans and two cantilevers of wide variety of floor system types, <u>spBeam</u> is equipped to provide cost-effective, accurate, and fast solutions to engineering challenges.

<u>spBeam</u> provides top and bottom bar details including development lengths and material quantities, as well as live load patterning and immediate and long-term deflection results. Using the moment redistribution feature engineers can deliver safe designs with savings in materials and labor. Engaging this feature allows up to 20% reduction of negative moments over supports reducing reinforcement congestions in these areas.

Beam analysis and design requires engineering judgment in most situations to properly simulate the behavior of the targeted beam and take into account important design considerations such as: designing the beam as rectangular or T-shaped sections; using the effective flange width or the center-to-center distance between the beam and the adjacent beams. Regardless which of these options is selected, <u>spBeam</u> provide users with options and flexibility to:

- 1. Design the beam as a rectangular cross-section or a T-shaped section.
- 2. Use the effective or full beam flange width.
- 3. Include the flanges effects in the deflection calculations.
- 4. Invoke moment redistribution to lower negative moments
- 5. Using gross (uncracked) or effective (cracked) moment of inertia
- 6. Design the beam as singly or doubly reinforced section.
- 7. Analyze and Design beams on elastic foundations.

For illustration and comparison purposes, the following figures provide a sample of the results obtained from an <u>spBeam</u> analysis model created for the beam on elastic foundation covered in this case study. Note that the vertical support spring constant, K_z , input in <u>spBeam</u> is calculated as the soil subgrade modulus, k_s , given in the reference multiplied by the tributary area of the node. For end nodes (node 1 and 13), the vertical support spring constants are doubled to comply with the recommendation in the reference for a beam on elastic foundation problem.

Highlights of the resulting output are shown below. Detailed output is provided in the Appendix.

CASE: LC1

Figure 2 – Applied Loads (spBeam)

LEGEND: — Envelope

Figure 3 – Internal Forces Diagrams (spBeam)

LEGEND:
Envelope Curve
Capacity Curve
Support Centerline
Face of Support
Zone Limits

Figure 4 - Moment Capacity Diagram (spBeam)

Figure 5 – Shear Capacity Diagram (spBeam)

LEGEND: —— Dead Load Sustained Load Live Load —— Total Deflection

3. Comparison of Design Results

Table 1 - Comparison of Results (Shear and Bending Moment)												
Casa	Nada		Shear, kN		Bending Moment, kN-m							
Span	Node	Reference*	<u>spBeam</u>	Difference, %	Reference*	<u>spBeam</u>	Difference, %					
1.2	1	-137.36	137.21	-0.11	0.00	0.00	0.00					
1-2	2	-137.36	137.21	-0.11	-27.50	27.44	-0.22					
2.2	2	1081.33	-1081.45	0.01	80.70	-80.56	-0.17					
2-3	3	1081.33	-1081.45	0.01	297.00	-296.85	-0.05					
2.4	3	924.92	-924.57	-0.04	297.10	-296.85	-0.08					
3-4	4	924.92	-924.57	-0.04	574.60	-574.22	-0.07					
15	4	658.56	-658.31	-0.04	574.60	-574.22	-0.07					
4-5	5	658.56	-658.31	-0.04	976.30	-975.79	-0.05					
5.0	5	230.80	-230.82	0.01	976.30	-975.79	-0.05					
5-6	6	230.80	-230.82	0.01	1223.30	-1222.77	-0.04					
67	6	-224.31	224.21	-0.04	1223.30	-1222.77	-0.04					
6-7	7	-224.31	224.21	-0.04	983.20	-982.87	-0.03					
7.0	7	-635.93	635.94	0.00	983.20	-982.87	-0.03					
/-8	8	-635.93	635.94	0.00	404.60	-404.17	-0.11					
	8	-982.28	982.45	0.02	404.60	-404.17	-0.11					
8-9	9	-982.28	982.45	0.02	-194.60	195.12	0.27					
0.10	9	-1190.68	1190.05	-0.05	-194.50	195.12	0.32					
9-10	10	-1190.68	1190.05	-0.05	-468.40	468.83	0.09					
10.11	10	717.16	-717.99	0.12	-549.30	549.83	0.10					
10-11	11	717.16	-717.99	0.12	-384.30	384.70	0.10					
11.10	11	540.24	-540.75	0.09	-384.40	384.70	0.08					
11-12	12	540.24	-540.75	0.09	-141.20	141.36	0.11					
10.10	12	282.45	-282.72	0.10	-141.20	141.36	0.11					
12-13	13	282.45	-282.72	0.10	0.00	0.00	0.00					
* Shear an	d Moment D	iagrams sign conventio	on is based on the	e downward force bei	ng positive in the refere	ence						

	Struc	SOFTWARE	Point solutions						
	Table 2 - Comparison of Results (Deflections and Support Reactions)								
ĺ	Guan	Nada	D	eflections, mn	1	Supp	Support Rea		
	Span	Node	Reference	<u>spBeam</u>	Difference, %	Reference	<u>spBe</u>		
	1.2	1	11.82	11.81	-0.08	137.35	137		
	1-2	2	11.22	11 21	0.00	131 47	121		

Sman	Noda	D	eflections, mn	1	Support Reactions, kN		
Span	Node	Reference	<u>spBeam</u>	Difference, %	Reference	<u>spBeam</u>	Difference, %
1.2	1	11.82	11.81	-0.08	137.35	137.21	-0.10
1-2	2	11.22	11 21	0.00	121 47	121.24	0.10
23	2	11.52	11.51	-0.09	131.47	131.34	-0.10
2-3	3	10.81	10.80	-0.09	157.02	156.88	, kN Difference, % -0.10 -0.10 -0.09 -0.07 -0.06 -0.02 0.03 0.06 0.06 0.06 0.09 0.10
3-4	3	10.01	10.00	-0.07	157.02	150.00	-0.07
5 4	4	10.08	10.07	-0.10	266.45	266.26	S, KIN Difference, % -0.10 -0.10 -0.09 -0.07 -0.06 -0.02 0.03 0.06 0.06 0.09 0.10 0.10 0.10
4-5	4	10.00	10.07	0.10	200.15	200.20	0.07
1.5	5	8.77	8.76	-0.11	427.76	427.49	-0.06
5-6	5	0.77	0170			/>	Difference, % -0.10 -0.10 -0.10 -0.09 -0.07 -0.06 -0.02 0.03 0.06 0.06 0.09 0.10 0.10 0.10
	6	7.32	7.32	0.00	455.11	455.03	-0.02
6-7	6						-0.02
	7	7.16	7.16	0.00	411.62	411.73	0.03
7-8	7						
	8	7.85	7.85	0.00	346.31	346.51	0.06
8-9	8						
	9	8.51	8.51	0.00	207.48	207.61	0.06
9-10	9						
	10	8.75	8.75	0.00	116.85	116.96	0.09
10-11	10						
	11	8.97	8.97	0.00	177.07	177.24	0.10
11-12	12						
	12	9.34	9.35	0.11	257.77	258.02	0.10
12-13	12	9.73	9.74	0.10	282.44	282.72	0.10
<u> </u>	10	,		Σ	3374 7	3375	0.01
					557117	5515	5.01

The results of the reference used illustrated above are in precise agreement with the automated results obtained from the <u>spBeam</u> program.

4. Observations

4.1 Beam on Elastic Foundation - Flexural Reinforcement Design and Detailing

For this example, multiple spans are assigned in the <u>spBeam</u> model to capture the location of all the nodes the reference used in their finite element model. Using this approach leads to the minimum reinforcement required for each of the theoretical model spans. Investigation mode in <u>spBeam</u> allows the user to adjust the minimum required reinforcement (as designed) to meet detailing requirement (as detailed) as shown below:

Figure 7 - As Designed Flexural Reinforcement - Design Mode (spBeam)

Figure 8 - Moment Capacity for As Designed Flexural Reinforcement - Design Mode (spBeam)

32-#16(200)c	32-#16(200)c	32-#16(300)c		32-#16(1070)c	32-#16(1070)c	32-#16(910)c	32-#16(610)c				32-#16(450)c
-1000/0111 01	16-#16(200)C	16-#16(300)c	16#16(610)c	16-#16(1070)c	16-#16(1070)c	16-#16(910)c	16#16(610)c	16-#16(230)c	16-#16(230)c	16-#16(450)c	16-#16(500)c

Figure 9 - As Detailed Flexural Reinforcement - Investigation Mode (spBeam)

Figure 10 – Moment Capacity for As Detailed Flexural Reinforcement – Investigation Mode (spBeam)

4.2 Beam on Elastic Foundation - Beam Shear Strength

<u>spBeam</u> shows that this beam on elastic foundation has insufficient one-way shear strength near the piers as indicated by the capacity curve (brown line). The following options among others can be used to increase the one-way (beam) shear capacity:

- 1. Adding transverse reinforcement (shear stirrups).
- 2. Increase the beam thickness and/or width.
- 3. Increase the concrete compressive strength.
- 4. Refine the loading and load application.

LEGEND: Envelope Curve Capacity Curve - - - Support Centerline Face of Support - - - Critical Section

Figure 11 - Beam on Elastic Foundation Shear Strength (spBeam)

5. Conclusions

Simple, quick, yet accurate analysis results of <u>spBeam</u> Program for internal forces (Shear & Bending Moment), deflections, and support reactions are in agreement with the Finite Element Method analysis by Bowles. Similarly, as shown below, <u>spMats</u> engineering software program from StructurePoint can be utilized to model the beam on elastic foundation and use the Finite Element Method. A sample of spMats FEM analysis results is given below for the displacement contours showing close agreement with spBeam results and reference values.

Figure 12 - Displacement View for the Combined Footing (spMats)

6. Appendix – spBeam Detailed Results Output

spBeam v5.50 A Computer Program for Analysis, Design, and Investigation of Reinforced Concrete Beams and One-way Slab Systems Copyright - 1988-2020, STRUCTUREPOINT, LLC. All rights reserved

Structure Point

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spBeam computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spBeam program. Although STRUCTUREPOINT has endeavored to produce spBeam error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spBeam program.Licensed to: StructurePoint. License ID: 72371-1071678-4-1DCAA-1DCAA

STRUCTUREPOINT - spBeam v5.50	Page 2
Licensed to: StructurePoint. License ID: 72371-1071678-4-1DCAA-1DCAA	7/21/2020
C:\StructurePoint Design Examples\Beams_on_Elastic_Foundations.slb	3:12 PM

Contents

1. Input Echo	3
1.1. General Information	3
1.2. Solve Options	3
1.3. Material Properties	3
1.3.1. Concrete: Slabs / Beams	3
1.3.2. Concrete: Columns	3
1.3.3. Reinforcing Steel	3
1.4. Reinforcement Database	4
1.5. Span Data	4
1.5.1. Slabs	4
1.6. Support Data	4
1.6.1. Columns	4
1.6.2. Boundary Conditions	4
1.7. Load Data	5
1.7.1. Load Cases and Combinations	5
1.7.2. Point Forces	5
1.7.3. Point Moments	5
1.8. Reinforcement Criteria	5
1.8.1. Slabs and Ribs	5
1.8.2. Beams	5
2. Design Results	6
2.1. Top Reinforcement	6
2.2. Top Bar Details	7
2.3. Top Bar Development Lengths	7
2.4. Bottom Reinforcement	8
2.5. Bottom Bar Details	8
2.6. Bottom Bar Development Lengths	9
2.7. Flexural Capacity	9
2.8. Slab Shear Capacity	11
2.9. Material TakeOff	11
2.9.1. Reinforcement in the Direction of Analysis	
3. Deflection Results: Summary	
3.1. Section Properties	
311 Frame Section Properties	11
3.2 Instantaneous Deflections	
3.2.1 Extreme Instantaneous Frame Deflections and Corresponding Locations	12
3.3 Long-term Deflections	13
3.3.1 Long-term Deflection Factors	
3.3.2 Extreme Long-term Frame Deflections and Corresponding Locations	14
4. Diagrams	
4.1. Loads.	
4.2 Internal Forces	16
4.3. Moment Capacity	
4.4 Shear Capacity	18
4.5 Deflection	19
4.6. Reinforcement	

1. Input Echo

1.1. General Information

File Name	C:\StructureP\Beams_on_Elastic_Foundations. slb
Project	Beams_on_Elastic_Foundations
Frame	
Engineer	SP
Code	ACI 318M-14
Reinforcement Database	ASTM A615M
Mode	Design
Number of supports =	13
Floor System	One-Way/Beam

1.2. Solve Options

Live load pattern ratio = 100%	
Deflections are based on gross section properties.	
Long-term deflections are calculated for load duration of 60 months.	
0% of live load is sustained.	
Compression reinforcement calculations NOT selected.	
Default incremental rebar design selected.	
Moment redistribution NOT selected.	
Effective flange width calculations selected.	
Rigid beam-column joint NOT selected.	
Torsion analysis and design NOT selected.	

1.3. Material Properties

1.3.1. Concrete: Slabs / Beams

Wc	2400	kg/m ³	
f'c	21	MPa	
Ec	21500	MPa	
fr	3.2078	MPa	

1.3.2. Concrete: Columns

Wc	2400	kg/m³
f'c	21	MPa
Ec	21500	MPa
f _r	3.2078	MPa

1.3.3. Reinforcing Steel

f _y	413.69	MPa
f _{yt}	413.69	MPa
Es	199950	MPa
Epoxy coated bars	No	

Page 4
7/21/2020
3:12 PM

1.4. Reinforcement Database

Size	Db	Ab	Wb	Size	Db	Ab	Wb
	mm	mm ²	kg/m		mm	mm ²	kg/m
#10	10	71	1	#13	13	129	1
#16	16	199	2	#19	19	284	2
#22	22	387	3	#25	25	510	4
#29	29	645	5	#32	32	819	6
#36	36	1006	8	#43	43	1452	11
#57	57	2581	20				

1.5. Span Data

1.5.1. Slabs

Span	Loc	L1	t	wL	wR	bE _{ff}	H _{min}
		m	mm	m	m	mm	mm
1	Int	0.200	600	1.320	1.320	2640	8
2	Int	0.200	600	1.320	1.320	2640	7
3	Int	0.300	600	1.320	1.320	2640	11
4	Int	0.610	600	1.320	1.320	2640	22
5	Int	1.070	600	1.320	1.320	2640	38
6	Int	1.070	600	1.320	1.320	2640	38
7	Int	0.910	600	1.320	1.320	2640	32
8	Int	0.610	600	1.320	1.320	2640	22
9	Int	0.230	600	1.320	1.320	2640	8
10	Int	0.230	600	1.320	1.320	2640	8
11	Int	0.450	600	1.320	1.320	2640	16
12	Int	0.500	600	1.320	1.320	2640	21

1.6. Support Data

1.6.1. Columns

Support	c1a	c2a	Ha	c1b	c2b	Hb	Red %
	mm	mm	m	mm	mm	m	
1	0	0	0.000	0	0	0.000	100
2	0	0	0.000	0	0	0.000	100
3	0	0	0.000	0	0	0.000	100
4	0	0	0.000	0	0	0.000	100
5	0	0	0.000	0	0	0.000	100
6	0	0	0.000	0	0	0.000	100
7	0	0	0.000	0	0	0.000	100
8	0	0	0.000	0	0	0.000	100
9	0	0	0.000	0	0	0.000	100
10	0	0	0.000	0	0	0.000	100
11	0	0	0.000	0	0	0.000	100
12	0	0	0.000	0	0	0.000	100
13	0	0	0.000	0	0	0.000	100

ſ

1.6.2. Boundary Conditions

Support	Spri	ng	Far End			
	Kz	K _{ry}	Above	Belo		
	kN/mm	kN-mm/rad				
1	11.616	0	Fixed	Fixe		
2	11.616	0	Fixed	Fixe		
3	14.52	0	Fixed	Fixe		
4	26.43	0	Fixed	Fixe		
5	48.79	0	Fixed	Fixe		

Where:

k_s the is soil subgrade modulus (kN/mm³)

 A_T is the node tributary area (mm²)

 $K_z = \begin{cases} k_s \times A_T \\ 2 \times k_s \times A_T \end{cases}$

Kz is the vertical support spring constant (kN/mm)

for Interior Nodes

Page | **5** 7/21/2020 3:12 PM

STRUCTUREPOINT - spBeam v5.50 Licensed to: StructurePoint. License ID: 72371-1071678-4-1DCAA-1DCAA C:\StructurePoint Design Examples\Beams_on_Elastic_Foundations.slb

Support	Sprii	ng	Far End		
	Kz	K _{ry}	Above	Below	
	kN/mm	kN-mm/rad			
6	62.15	0	Fixed	Fixed	
7	57.5	0	Fixed	Fixed	
8	44.14	0	Fixed	Fixed	
9	24.39	0	Fixed	Fixed	
10	13.36	0	Fixed	Fixed	
11	19.75	0	Fixed	Fixed	
12	27.59	0	Fixed	Fixed	
13	29.04	0	Fixed	Fixed	

Wa

kN

1350.00

2025.00

1.7. Load Data

1	.7.1.	Load	Cases	and	Combinations

Case	LC1
Туре	DEAD
U1	1.000

1

9

 $K_{z} = \begin{cases} k_{s} \times A_{T} & \text{for Interior Nodes} \\ 2 \times k_{s} \times A_{T} & \text{for End Nodes} \end{cases}$

Where:

La

m

0.200

0.230

 k_s is the soil subgrade modulus (kN/mm³)

 A_T is the node tributary area (mm²)

K_z is the vertical support spring constant (kN/mm)

1.7.3. Point Moments

1.7.2. Point Forces

Case/Patt Span

LC1

Case/Patt	Span	Wa	La
		kNm	n
LC1	1	108.00	0.200
	9	-81.00	0.230

1.8. Reinforcement Criteria

1.8.1. Slabs and Ribs

	Units	Top Ba	ars	Bottom Bars		
		Min.	Max.	Min.	Max.	
Bar Size		#16	#25	#16	#25	
Bar spacing	mm	25	457	25	457	
Reinf ratio	%	0.14	5.00	0.14	5.00	
Clear Cover	mm	38		38		

1.8.2. Beams

	Units	Тор Ва	ars	Bottom I	Bars	Stirrups	
		Min.	Max.	Min.	Max.	Min.	Max.
Bar Size		#16	#25	#16	#25	#10	#16
Bar spacing	mm	25	457	25	457	152	457
Reinf ratio	%	0.14	5.00	0.14	5.00		
Clear Cover	mm	38		38			
Layer dist.	mm	25		25			
No. of legs						2	6
Side cover	mm					38	
1st Stirrup	mm					76	

There is NOT more than 300 mm of concrete below top bars.

Page | **6** 7/21/2020 3:12 PM

2. Design Results

2.1. Top Reinforcement

Notes: *3 - Design governed by minimum reinforcement.

Span	Zone	Width	M _{max}	X _{max}	$A_{s,min}$	A _{s,max}	A _{s,req}	SpProv	Bars	
		m	kNm	m	mm ²	mm ²	mm ²	mm		
1	Left	2.64	0.00	0.000	0	20114	0	0		
	Midspan	2.64	0.00	0.100	0	20114	0	0		
	Right	2.64	0.00	0.200	3168	20114	0	165	16-#16	*3
2	Left	2.64	156.26	0.070	3168	20114	762	165	16-#16	*3
	Midspan	2.64	221.15	0.130	3168	20114	1082	165	16-#16	*3
	Right	2.64	296.85	0.200	3168	20114	1456	165	16-#16	*3
3	loft	2.64	303 03	0 105	3168	20114	1940	165	16-#16	*2
5	Midenan	2.04	477 14	0.105	2169	20114	2257	165	16 #16	*2
	Pight	2.04	574 22	0.195	3169	20114	2007	120	22 #16	*2
	Right	2.04	574.22	0.300	3100	20114	2040	120	22-#10	3
4	Left	2.64	714.77	0.214	3168	20114	3566	120	22-#16	
	Midspan	2.64	835.24	0.397	3168	20114	4189	120	22-#16	
	Right	2.64	975.79	0.610	3168	20114	4923	88	30-#16	
F	1.00	2.64	1060.04	0.275	2460	20114	5200	00	20 #16	
5	Leit	2.64	1002.24	0.375	3100	20114	5360	00	30-#10	
	Dist	2.04	1130.33	0.090	3108	20114	5774	00	30-#10	
	Right	2.04	1222.17	1.070	3108	20114	6237	83	32-#16	
6	Left	2.64	1222.77	0.000	3168	20114	6237	83	32-#16	
	Midspan	2.64	1138.81	0.375	3168	20114	5787	88	30-#16	
	Right	2.64	1066.84	0.696	3168	20114	5404	88	30-#16	
7	Loff	2.64	092 97	0.000	3168	20114	4960	88	30 #16	
1	Midenan	2.04	780 33	0.310	3168	20114	3004	132	20-#16	
	Pight	2.04	606 72	0.513	3169	20114	2014	132	20-#10	*2
	Right	2.04	000.72	0.392	5100	20114	3014	152	20-#10	3
8	Left	2.64	404.17	0.000	3168	20114	1991	132	20-#16	*3
	Midspan	2.64	194.42	0.214	3168	20114	950	165	16-#16	*3
	Right	2.64	14.63	0.397	3168	20114	71	165	16-#16	*3
0	1-4	2.64	0.00	0.000	2460	20111	0	405	40 #40	*0
9	Leit	2.64	0.00	0.000	3100	20114	0	105	16 #16	3
	Diabt	2.64	0.00	0.115	2460	20114	0	165	10-#10	*2
	Right	2.64	0.00	0.230	3108	20114	0	105	10-#10	-3
10	Left	2.64	0.00	0.000	3168	20114	0	165	16-#16	*3
	Midspan	2.64	0.00	0.115	0	20114	0	0	16-#16	
	Right	2.64	0.00	0.230	3168	20114	0	165	16-#16	*3
11	l off	2.64	0.00	0.000	2169	20114	0	165	16 #16	*2
11	Leit	2.04	0.00	0.000	3100	20114	0	105	10-#10	3
	Diabt	2.04	0.00	0.225	2169	20114	0	105	16 #10	*2
	Right	2.04	0.00	0.450	3108	20114	U	105	10-#16	3
12	Left	2.64	0.00	0.000	3168	20114	0	165	16-#16	*3
	Midspan	2.64	0.00	0.250	0	20114	0	0		
	Right	2.64	0.00	0.500	0	20114	0	0		

Page | **7** 7/21/2020 3:12 PM

2.2. Top Bar Details

		Left			Conti	nuous		Righ	t	
Span	Bars	Length	Bars	Length	Bars	Length	Bars	Length	Bars	Length
		m		m		m		m		m
1					(222)		16-#16	0.20		
2					16-#16	0.20				
3					16-#16	0.30	6-#16	0.30		
4					22-#16	0.61	8-#16	0.61		
5					30-#16	1.07	2-#16	0.77		
6	2-#16	0.78			30-#16	1.07				
7	10-#16	0.85			20-#16	0.91				
8	4-#16	0.55			16-#16	0.61				
9					16-#16	0.23				
10					16-#16	0.23				
11					16-#16	0.45				
12	16-#16	0.50								

2.3. Top Bar Development Lengths

	Left			Continuous		Right				
Span	Bars	DevLen	Bars	DevLen	Bars	DevLen	Bars	DevLen	Bars	DevLen
		mm		mm		mm		mm		mm
1							16-#16	300.00		
2					16-#16	300.00				
3					16-#16	309.17	6-#16	300.00		
4					22-#16	399.51	8-#16	344.35		
5					30-#16	403.83	2-#16	408.96		
6	2-#16	408.96			30-#16	404.76				
7	10-#16	346.95			20-#16	409.61				
8	4-#16	300.00			16-#16	300.00				
9	1				16-#16	0.00				
10					16-#16	0.00				
11					16-#16	0.00				
12	16-#16	300.00	<u></u>							

Page | **8** 7/21/2020 3:12 PM

2.4. Bottom Reinforcement

Notes: *3 - Design governed by minimum reinforcement.

Span	Width	M _{max}	X _{max}	A _{s,min}	A _{s,max}	A _{s,req}	Sp _{Prov}	Bars	
	m	kNm	m	mm ²	mm ²	mm ²	mm		
1	2.64	27.44	0.200	3168	20114	133	165	16-#16	*3
2	2.64	0.00	0.100	0	20114	0	0		
3	2.64	0.00	0.150	0	20114	0	0		
4	2.64	0.00	0.305	0	20114	0	0		
5	2.64	0.00	0.535	0	20114	0	0		
6	2.64	0.00	0.535	0	20114	0	0		
7	2.64	0.00	0.455	0	20114	0	0		
8	2.64	195.12	0.610	3168	20114	953	165	16-#16	*3
9	2.64	468.83	0.230	3168	20114	2316	165	16-#16	*3
10	2.64	549.83	0.000	3168	20114	2725	165	16-#16	*3
11	2.64	384.70	0.000	3168	20114	1894	165	16-#16	*3
12	2.64	141.36	0.000	3168	20114	689	165	16-#16	*3

2.5. Bottom Bar Details

	L	ong Ba	rs	S	Short Ba	ars
Span	Bars	Start	Length	Bars	Start	Length
		m	m		m	m
1	16-#16	0.00	0.20			
2						
3						
4						
5	0					
6						
7						
8	16-#16	0.00	0.61			
9	16-#16	0.00	0.23			
10	16-#16	0.00	0.23			
11	16-#16	0.00	0.45			
12	16-#16	0.00	0.50			

Page | **9** 7/21/2020 3:12 PM

2.6. Bottom Bar Development Lengths

	Long	g Bars	Sho	rt Bars
Span	Bars	DevLen	Bars	DevLen
		mm		mm
1	16-#16	300.00		
2				
3				
4				
5				
6				
7				
8	16-#16	300.00		
9	16-#16	303.68		
10	16-#16	357.33		
11	16-#16	300.00		
12	16-#16	300.00		

2.7. Flexural Capacity

			1	Гор				Bottom	Ê.		
Span	x	A _{s,top}	ФM _n -	M u-	Comb Pat	Status	A _{s,bot}	ΦM _n +	M _u +	Comb Pat	Status
	m	mm ²	kNm	kNm			mm ²	kNm	kNm		
1	0.000	3184	-640.12	0.00	U1 All	OK	3184	640.12	0.00	U1 All	OK
	0.070	3184	-640.12	0.00	U1 All	OK	3184	640.12	9.60	U1 All	OK
	0.100	3184	-640.12	0.00	U1 All	OK	3184	640.12	13.72	U1 All	OK
	0.130	3184	-640.12	0.00	U1 All	OK	3184	640.12	17.84	U1 All	OK
	0.200	3184	-640.12	0.00	U1 All	ок	3184	640.12	27.44	U1 All	OK
2	0.000	3184	-640.12	-80.56	U1 All	ок	0	0.00	0.00	U1 All	OK
	0.070	3184	-640.12	-156.26	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.100	3184	-640.12	-188.70	U1 All	ОК	0	0.00	0.00	U1 All	OK
	0.130	3184	-640.12	-221.15	U1 All	ОК	0	0.00	0.00	U1 All	OK
	0.200	3184	-640.12	-296.85	U1 All	ок	0	0.00	0.00	U1 All	OK
3	0.000	4378	-871.63	-296.85	U1 All	ок	0	0.00	0.00	U1 All	OK
	0.105	4378	-871.63	-393.93	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.150	4378	-871.63	-435.53	U1 All	ОК	0	0.00	0.00	U1 All	OK
	0.195	4378	-871.63	-477.14	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.300	4378	-871.63	-574.22	U1 All	ок	0	0.00	0.00	U1 All	OK
4	0.000	5970	-1173.05	-574.22	U1 All	ок	0	0.00	0.00	U1 All	OK
	0.214	5970	-1173.05	-714.77	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.305	5970	-1173.05	-775.01	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.344	5970	-1173.05	-800.91	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.397	5970	-1173.05	-835.24	U1 All	OK	0	0.00	0.00	U1 All	OK

				Тор			Bottom				
Span	x	$A_{s,top}$	ΦM _n -	Mu-	Comb Pat	Status	A _{s,bot}	ФМ _n +	M u+	Comb Pat	Status
	m	mm ²	kNm	kNm			mm ²	kNm	kNm		
	0.610	5970	-1173.05	-975.79	U1 All	ОК	0	0.00	0.00	U1 All	OK
5	0.000	5970	-1173.05	-975.79	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.301	5970	-1173.05	-1045.18	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.375	6042	-1186.47	-1062.24	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.535	6198	-1215.56	-1099.28	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.696	6354	-1244.57	-1136.33	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.710	6368	-1247.11	-1139.58	U1 All	OK	0	0.00	0.00	U1 All	OK
	1.070	6368	-1247.11	-1222.77	U1 All	OK	0	0.00	0.00	U1 All	OK
6	0.000	6368	-1247.11	-1222.77	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.367	6368	-1247.11	-1140.54	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.375	6360	-1245.71	-1138.81	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.535	6204	-1216.71	-1102.82	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.696	6048	-1187.62	-1066.84	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.776	5970	-1173.05	-1048.85	U1 All	OK	0	0.00	0.00	U1 All	OK
	1.070	5970	-1173.05	-982.87	U1 All	OK	0	0.00	0.00	U1 All	OK
7	0.000	5970	-1173.05	-982.87	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.319	5970	-1173.05	-780.33	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.455	5970	-1173.05	-693.52	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.502	5970	-1173.05	-663.34	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.592	5459	-1077.26	-606.72	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.849	3980	-794.98	-442.70	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.910	3980	-794.98	-404.17	U1 All	OK	0	0.00	0.00	U1 All	OK
8	0.000	3980	-794.98	-404.17	U1 All	OK	3184	640.12	0.00	U1 All	OK
	0.214	3980	-794.98	-194.42	U1 All	OK	3184	640.12	0.00	U1 All	OK
	0.254	3980	-794.98	-154.68	U1 All	OK	3184	640.12	0.00	U1 All	OK
	0.305	3845	-768.77	-104.52	U1 All	OK	3184	640.12	0.00	U1 All	OK
	0.397	3602	-721.65	-14.63	U1 All	OK	3184	640.12	0.00	U1 All	OK
	0.554	3184	-640.12	0.00	U1 All	OK	3184	640.12	140.06	U1 All	OK
	0.610	3184	-640.12	0.00	U1 All	OK	3184	640.12	195.12	U1 All	OK
9	0.000	3184	-640.12	0.00	U1 All	OK	3184	640.12	195.12	U1 All	OK
	0.081	3184	-640.12	0.00	U1 All	OK	3184	640.12	290.92	U1 All	OK
	0.115	3184	-640.12	0.00	U1 All	OK	3184	640.12	331.98	U1 All	OK
	0.150	3184	-640.12	0.00	U1 All	OK	3184	640.12	373.04	U1 All	OK
	0.230	3184	-640.12	0.00	U1 All	OK	3184	640.12	468.83	U1 All	OK
											~ ~ ~
10	0.000	3184	-640.12	0.00	U1 All	OK	3184	640.12	549.83	U1 All	OK
	0.081	3184	-640.12	0.00	U1 All	OK	3184	640.12	492.04	U1 All	OK
	0.115	3184	-640.12	0.00	U1 All	OK	3184	640.12	467.27	U1 All	OK
	0.150	3184	-640.12	0.00	U1 All	OK	3184	640.12	442.50	U1 All	OK
	0.230	3184	-640.12	0.00	U1 All	OK	3184	640.12	384.70	U1 All	OK
	0.000	0404	010 10	0.00		01/	0404	010.10	004 70		014
11	0.000	3184	-640.12	0.00	U1 All	OK	3184	640.12	384.70	U1 All	OK
	0.158	3184	-640.12	0.00	U1 All	OK	3184	640.12	299.53	U1 All	OK
	0.225	3184	-640.12	0.00	U1 All	OK	3184	640.12	263.03	U1 All	OK
	0.293	3184	-640.12	0.00	U1 All	OK	3184	640.12	226.53	U1 All	OK
	0.450	3184	-640.12	0.00	U1 All	UK	3184	640.12	141.36	U1 All	UK
10	0.000	2404	640.40	0.00	114 AU	OK	2404	640 12	141 26	114 . A.P.	OK
12	0.000	3104	-040.12	0.00		OK	2104	640.12	01.90		OK
	0.110	0104	-040.1/	0.00		UN	3104	040.1/	31.05		UN

Page | **10** 7/21/2020 3:12 PM

			То	р					Bottom	ı	
Span	x	$A_{s,top}$	ФМ _n -	M _u -	Comb Pat	Status	A _{s,bot}	ΦM _n +	M _u +	Comb Pat	Status
	m	mm ²	kNm	kNm			mm ²	kNm	kNm		
	0.200	3184	-640.12	0.00	U1 All	OK	3184	640.12	84.82	U1 All	OK
	0.250	3184	-640.12	0.00	U1 All	OK	3184	640.12	70.68	U1 All	OK
	0.325	3184	-640.12	0.00	U1 All	OK	3184	640.12	49.48	U1 All	OK
	0.500	3184	-640.12	0.00	U1 All	ок	3184	640.12	0.00	U1 All	OK

2.8. Slab Shear Capacity

Span	b	d	V_{ratio}	ΦV _c	Vu	Xu	
	mm	mm		kN	kN	m	
1	2640	554	1.000	854.47	137.21	0.00	
2	2640	554	1.000	854.47	0.00	0.00	
3	2640	554	1.000	854.47	0.00	0.00	
4	2640	554	1.000	854.47	0.00	0.00	
5	2640	554	1.000	854.47	0.00	0.00	
6	2640	554	1.000	854.47	0.00	0.00	
7	2640	554	1.000	854.47	0.00	0.00	
8	2640	554	1.000	854.47	0.00	0.00	
9	2640	554	1.000	854.47	1190.05	0.00	*EXCEEDED
10	2640	554	1.000	854.47	0.00	0.00	
11	2640	554	1.000	854.47	0.00	0.00	
12	2640	554	1.000	854.47	0.00	0.00	

2.9. Material TakeOff

2.9.1. Reinforcement in the Direction of Analysis

Top Bars	248.0 kg	<=>	38.88 kg/m	<=>	14.726 kg/m ²	1
Bottom Bars	55.1 kg	<=>	8.64 kg/m	<=>	3.273 kg/m ²	
Stirrups	0.0 kg	<=>	0.00 kg/m	<=>	0.000 kg/m ²	
Total Steel	303.2 kg	<=>	47.52 kg/m	<=>	17.999 kg/m ²	
Concrete	10.1 m ³	<=>	1.58 m ³ /m	<=>	0.600 m ³ /m ²	

3. Deflection Results: Summary

3.1. Section Properties

3.1.1. Frame Section Properties

Notes:

M+ve values are for positive moments (tension at bottom face). M-ve values are for negative moments (tension at top face).

		M _{+ve}			M. _{ve}	
Span Zone	lg	I _{cr}	M _{cr}	lg	I _{cr}	Mc
	mm ⁴	mm ⁴	kNm	mm ⁴	mm ⁴	kNm
1 Left	4.752e+010	6.9818e+009	508.12	4.752e+010	0	-508.12
Midspan	4.752e+010	6.9818e+009	508.12	4.752e+010	6.9818e+009	-508.12
Right	4.752e+010	6.9818e+009	508.12	4.752e+010	6.9818e+009	-508.12
2 Left	4.752e+010	0	508.12	4.752e+010	6.9818e+009	-508.12
Midspan	4.752e+010	0	508.12	4.752e+010	6.9818e+009	-508.12
Right	4.752e+010	0	508.12	4.752e+010	6.9818e+009	-508.12
3 Left	4.752e+010	0	508.12	4.752e+010	6.9818e+009	-508.12
Midspan	4.752e+010	0	508.12	4.752e+010	9.1828e+009	-508.12
Right	4.752e+010	0	508.12	4.752e+010	9.1828e+009	-508.12
4 Left	4.752e+010	0	508.12	4.752e+010	9.1828e+009	-508.12
Midspan	4.752e+010	0	508.12	4.752e+010	1.1909e+010	-508.12
Right	4.752e+010	0	508.12	4.752e+010	1.1909e+010	-508.12

Page | **12** 7/21/2020 3:12 PM

			M _{+ve}			M.ve	
Span	Zone	l _g	I _{cr}	M _{cr}	lg	I _{cr}	M _{cr}
		mm ⁴	mm ⁴	kNm	mm ⁴	mm ⁴	kNm
5	Left	4.752e+010	0	508.12	4.752e+010	1.1909e+010	-508.12
	Midspan	4.752e+010	0	508.12	4.752e+010	1.2282e+010	-508.12
	Right	4.752e+010	0	508.12	4.752e+010	1.2558e+010	-508.12
6	Left	4.752e+010	0	508.12	4.752e+010	1.2558e+010	-508.12
	Midspan	4.752e+010	0	508.12	4.752e+010	1.2293e+010	-508.12
	Right	4.752e+010	0	508.12	4.752e+010	1.1909e+010	-508.12
7	Left	4.752e+010	0	508.12	4.752e+010	1.1909e+010	-508.12
	Midspan	4.752e+010	0	508.12	4.752e+010	1.1909e+010	-508.12
	Right	4.752e+010	0	508.12	4.752e+010	8.4658e+009	-508.12
8	Left	4.752e+010	6.9818e+009	508.12	4.752e+010	8.4658e+009	-508.12
	Midspan	4.752e+010	6.9818e+009	508.12	4.752e+010	8.2181e+009	-508.12
	Right	4.752e+010	6.9818e+009	508.12	4.752e+010	6.9818e+009	-508.12
9	Left	4.752e+010	6.9818e+009	508.12	4.752e+010	6.9818e+009	-508.12
	Midspan	4.752e+010	6.9818e+009	508.12	4.752e+010	6.9818e+009	-508.12
	Right	4.752e+010	6.9818e+009	508.12	4.752e+010	6.9818e+009	-508.12
10	Left	4.752e+010	6.9818e+009	508.12	4.752e+010	6.9818e+009	-508.12
	Midspan	4.752e+010	6.9818e+009	508.12	4.752e+010	6.9818e+009	-508.12
	Right	4.752e+010	6.9818e+009	508.12	4.752e+010	6.9818e+009	-508.12
11	Left	4.752e+010	6.9818e+009	508.12	4.752e+010	6.9818e+009	-508.12
	Midspan	4.752e+010	6.9818e+009	508.12	4.752e+010	6.9818e+009	-508.12
	Right	4.752e+010	6.9818e+009	508.12	4.752e+010	6.9818e+009	-508.12
12	Left	4.752e+010	6.9818e+009	508.12	4.752e+010	6.9818e+009	-508.12
	Midspan	4.752e+010	6.9818e+009	508.12	4.752e+010	6.9818e+009	-508.12
	Right	4.752e+010	6.9818e+009	508.12	4.752e+010	0	-508.12

3.2. Instantaneous Deflections

3.2.1. Extreme Instantaneous Frame Deflections and Corresponding Locations

						Live		Tota	al
Span	Direction	Value	Units	Dead	Sustained	Unsustained	Total	Sustained	Dead+Live
1	Down	Def	mm	11.81				11.81	11.81
		Loc	m	0.000				0.000	0.000
	Up	Def	mm						
		Loc	m	8					
2	Down	Def	mm	11.31				11.31	11.31
		Loc	m	0.000				0.000	0.000
	Up	Def	mm						
		Loc	m						
3	Down	Def	mm	10.80				10.80	10.80
		Loc	m	0.000				0.000	0.000
	Up	Def	mm		1000				
		Loc	m						
4	Down	Def	mm	10.07				10.07	10.07
		Loc	m	0.000				0.000	0.000
	Up	Def	mm						
		Loc	m						
5	Down	Def	mm	8.76				8.76	8.76
		Loc	m	0.000				0.000	0.000
	Up	Def	mm						
		Loc	m						
6	Down	Def	mm	7.32				7.32	7.32
		Loc	m	0.000	1			0.000	0.000
	Up	Def	mm						
		Loc	m		1000				

Page | **13** 7/21/2020 3:12 PM

					Live			Tota	al
Span	Direction	Value	Units	Dead	Sustained	Unsustained	Total	Sustained	Dead+Live
7	Down	Def	mm	7.85				7.85	7.85
		Loc	m	0.910				0.910	0.910
	Up	Def	mm						
		Loc	m						
8	Down	Def	mm	8.51				8.51	8.51
		Loc	m	0.610				0.610	0.610
	Up	Def	mm						
		Loc	m						
9	Down	Def	mm	8.75				8.75	8.75
		Loc	m	0.230				0.230	0.230
	Up	Def	mm						
		Loc	m						
10	Down	Def	mm	8.97				8.97	8.97
		Loc	m	0.230	()			0.230	0.230
	Up	Def	mm						
		Loc	m						
11	Down	Def	mm	9.35				9.35	9.35
		Loc	m	0.450				0.450	0.450
	Up	Def	mm						
		Loc	m						
12	Down	Def	mm	9.74				9.74	9.74
		Loc	m	0.500				0.500	0.500
	Up	Def	mm						
		Loc	m						

3.3. Long-term Deflections

3.3.1. Long-term Deflection Factors

Notes: Deflection multiplier, Lambda, depends on moment sign at sustained load level and Rho' in given zone. Rho' is assumed zero because Compression Reinforcement option is NOT selected in Solve Options.

Time dependant factor for sustained loads = 2.000

		M _{+ve}					M.ve				
Span	Zone	$A_{s,top}$	b	d	Rho'	Lambda	A _{s,bot}	b	d	Rho'	Lambda
		mm ²	mm	mm	%		mm ²	mm	mm	%	
1	Midspan				0.000	2.000				0.000	2.000
2	Midspan				0.000	2.000				0.000	2.000
3	Midspan				0.000	2.000				0.000	2.000
4	Midspan				0.000	2.000				0.000	2.000
5	Midspan				0.000	2.000				0.000	2.000
6	Midspan				0.000	2.000				0.000	2.000
7	Midspan				0.000	2.000				0.000	2.000
8	Midspan				0.000	2.000				0.000	2.000
9	Midspan				0.000	2.000				0.000	2.000
10	Midspan				0.000	2.000				0.000	2.000
11	Midspan				0.000	2.000				0.000	2.000
12	Midspan				0.000	2.000				0.000	2.000

Page | **14** 7/21/2020 3:12 PM

3.3.2. Extreme Long-term Frame Deflections and Corresponding Locations Notes:

Notes: Incremental deflections due to creep and shrinkage (cs) based on sustained load level values. Incremental deflections after partitions are installed can be estimated by deflections due to: - creep and shrinkage plus unsustained live load (cs+lu), if live load applied before partitions, - creep and shrinkage plus live load (cs+l), if live load applied after partitions. Total deflections consist of dead, live, and creep and shrinkage deflections.

Span	Direction	Value	Units	CS	cs+lu	cs+l	Total
1	Down	Def	mm	23.62	23.62	23.62	35.44
		Loc	m	0.000	0.000	0.000	0.000
	Up	Def	mm		2220	1222	
		Loc	m				
2	Down	Def	mm	22.61	22.61	22.61	33.92
		Loc	m	0.000	0.000	0.000	0.000
	Up	Def	mm				
		Loc	m				
3	Down	Def	mm	21.61	21.61	21.61	32.41
		Loc	m	0.000	0.000	0.000	0.000
	Up	Def	mm				
		Loc	m				
4	Down	Def	mm	20.15	20.15	20.15	30.22
	1000	Loc	m	0.000	0.000	0.000	0.000
	Up	Def	mm				()
-	-	Loc	m				
5	Down	Def	mm	17.52	17.52	17.52	26.29
		Loc	m	0.000	0.000	0.000	0.000
	Up	Der	mm				
c	Dawn	Loc	m	14 64	14.64	14 64	21.06
0	Down	Der	mm	14.04	14.04	14.04	21.90
	Lin	Dof	mm	0.000	0.000	0.000	0.000
	Oþ	Loc	m				
7	Down	Def	mm	15 70	15 70	15 70	23 55
'	Down	Loc	m	0.910	0.910	0.910	0.910
	Un	Def	mm	0.010	0.010	0.010	0.010
	Op	Loc	m				
8	Down	Def	mm	17.02	17.02	17.02	25.54
		Loc	m	0.610	0.610	0.610	0.610
	Up	Def	mm				
		Loc	m				
9	Down	Def	mm	17.51	17.51	17.51	26.26
		Loc	m	0.230	0.230	0.230	0.230
	Up	Def	mm				
		Loc	m				
10	Down	Def	mm	17.95	17.95	17.95	26.92
		Loc	m	0.230	0.230	0.230	0.230
	Up	Def	mm		<u></u>		
		Loc	m		<u>8000</u> 21		
11	Down	Def	mm	18.70	18.70	18.70	28.06
		Loc	m	0.450	0.450	0.450	0.450
	Up	Def	mm				
		Loc	m			2.000	
12	Down	Def	mm	19.47	19.47	19.47	29.21
		Loc	m	0.500	0.500	0.500	0.500
	Up	Def	mm				
		Loc	m				

Page | **15** 7/21/2020 3:12 PM

4. Diagrams 4.1. Loads

Page | **16** 7/21/2020 3:12 PM

4.2. Internal Forces

Page | **17** 7/21/2020 3:12 PM

4.3. Moment Capacity

Page | **18** 7/21/2020 3:12 PM

4.4. Shear Capacity

4.5. Deflection

Page | **20** 7/21/2020 3:12 PM

4.6. Reinforcement

