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Two-Way Concrete Floor Slab with Beams Design and Detailing (CSA A23.3-14) 

Design the slab system shown in Figure 1 for an intermediate floor where the story height = 3.7 m, column cross-

sectional dimensions = 450 mm × 450 mm, edge beam dimensions = 350 mm × 700 mm, interior beam dimensions = 

350 mm x 500 mm, and unfactored live load = 4.8 kN/m2. The lateral loads are resisted by shear walls. Normal weight 

concrete with ultimate strength (fc’= 25 MPa) is used for all members, respectively. And reinforcement with Fy = 400 

MPa is used. Use the Elastic Frame Method (EFM) and compare the results with spSlab model results. 

 

Figure 1 – Two-Way Slab with Beams Spanning between all Supports 
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Code 

Design of Concrete Structures (CSA A23.3-14) and Explanatory Notes on CSA Group standard A23.3-14 

“Design of Concrete Structures”  

References 

CAC Concrete Design Handbook, 4th Edition, Cement Association of Canada 

Notes on ACI 318-11 Building Code Requirements for Structural Concrete, Twelfth Edition, 2013 Portland 

Cement Association. 

Design Data 

Floor-to-Floor Height = 3.7 m (provided by architectural drawings) 

Columns = 450 × 450 mm  

Interior beams = 350 × 500 mm  

Edge beams = 350 × 700 mm  

wc = 24 kN/m3 

 fc’ = 25 MPa  

fy = 400 MPa  

Live load, Lo = 4.8 kN/m2 

Solution 

1. Preliminary Slab Thickness Sizing 

Control of deflections. CSA A23.3 (13.2.5)  

In lieu of detailed calculation for deflections, CSA A23.3 Code gives minimum thickness for two-way slab 

with beams between all supports on all sides in Clause 13.2.5.  

Ratio of moment of inertia of beam section to moment of inertia of a slab (α) is computed as follows: 

b

s

I

I
    CSA A23.3 (13.2.5) 

 

The moment of inertia for the effective beam and slab sections can be calculated as follows: 
3

2.5 1
12

w s

b

b h h
I

h

  
   

  
  CSA A23.3 (Eq. 13.4) 

 

The preliminary thickness of 155 mm is assumed and it will be checked in next steps.  

 

Edge Beams: 

The effective beam and slab sections for the computation of stiffness ratio for edge beam is calculated as 

follows: 
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For North-South Edge Beams: 

3
10 4350 700 155

2.5 1 1.95 10  mm
12 700

bI
   

      
  

 

3
9 46,500 155

2.02 10  mm
12

sI


    

10

9

1.95 10
9.65

2.02 10



 


 

For East-West Edge Beams: 

3
10 4350 700 155

2.5 1 1.95 10  mm
12 700

bI
   

      
  

 

.
3

9 45,500 155
1.71 10  mm

12
sI


   . 

10

9

1.95 10
11.41

1.71 10



 


 

 

Interior Beams: 

For North-South Interior Beams: 

3
9 4350 500 155

2.5 1 6.29 10  mm
12 500

bI
   

      
  

 

9

9

6.29 10
3.12

2.02 10



 


 

For East-West Interior Beams: 

3
9 4350 500 155

2.5 1 6.29 10  mm
12 500

bI
   

      
  

 

9

9

6.29 10
3.68

1.71 10



 


 

 

 

The average of α for the beams on four sides of exterior and interior panels are calculated as: 

For exterior panels:  
(11.41 3.68 3.12 3.12)

5.33
4

m
  

   

For interior panels:  
(2 3.68 2 3.12)

3.40
4

m
  

   

αm shall not be taken greater than 2.0, then αm = 2.0 for both exterior and interior panels. 
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The minimum slab thickness is given by: 

min

0.6
1,000

30 4

y

n

m

f
l

h


 
 

 



 CSA A23.3-14 (13.2.5)  

 

Where: 

 

clear span in the long direction measured face to face of columns  6.05 m  6050 mmnl     

clear span in the long direction 6500 450
1.182

clear span in the short direction 5500 450



  


 

 

min

400
6,050 0.6

1,000

30 4 1.182 2
h

 
 

 


  
 

 

The assumed thickness is more than the hmin. Use 155 mm slab thickness. 
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2. Two-Way Slab Analysis and Design – Using Elastic Frame Method (EFM) 

EFM (as known as Equivalent Frame Method in the ACI 318) is the most comprehensive and detailed 

procedure provided by the CSA A23.3 for the analysis and design of two-way slab systems where these 

systems may, for purposes of analysis, be considered a series of plane frames acting longitudinally and 

transversely through the building. Each frame shall be composed of equivalent line members intersecting at 

member centerlines, shall follow a column line, and shall include the portion of slab bounded laterally by the 

centerline of the panel on each side. CSA A23.3-14 (13.8.1.1) 

 

Probably the most frequently used method to determine design moments in regular two-way slab systems is 

to consider the slab as a series of two-dimensional frames that are analyzed elastically. When using this 

analogy, it is essential that stiffness properties of the elements of the frame be selected to properly represent 

the behavior of the three-dimensional slab system. 

 

In a typical frame analysis it is assumed that at a beam-column connection all members meeting at the joint 

undergo the same rotation. For uniform gravity loading this reduced restraint is accounted for by reducing 

the effective stiffness of the column by either Clause 13.8.2 or Clause 13.8.3. CSA A23.3-14 (N.13.8) 

Each floor and roof slab with attached columns may be analyzed separately, with the far ends of the columns 

considered fixed. CSA A23.3-14 (13.8.1.2) 

The moment of inertia of column and slab-beam elements at any cross-section outside of joints or column 

capitals shall be based on the gross area of concrete at that section.  CSA A23.3-14 (13.8.2.5) 

An equivalent column shall be assumed to consist of the actual columns above and below the slab- beam plus 

an attached torsional member transverse to the direction of the span for which moments are being determined. 

 CSA A23.3-14 (13.8.2.5) 

2.1. Elastic frame method limitations 

In EFM, live load shall be arranged in accordance with 13.8.4 which requires slab systems to be analyzed 

and designed for the most demanding set of forces established by investigating the effects of live load placed 

in various critical patterns. CSA A23.3-14 (13.8.4) 

Complete analysis must include representative interior and exterior elastic frames in both the longitudinal 

and transverse directions of the floor. CSA A23.3-14 (13.8.1.1) 

Panels shall be rectangular, with a ratio of longer to shorter panel dimensions, measured center-to-center of 

supports, not to exceed 2.  CSA A23.3-14 (3.1a) 

For slab systems with beams between supports, the relative effective stiffness of beams in the two directions 

is not less than 0.2 or greater than 2.  CSA A23.3-14 (3.1b) 

Column offsets are not greater than 20% of the span (in the direction of offset) from either axis between 

centerlines of successive columns.  CSA A23.3-14 (3.1c) 

The reinforcement is placed in an orthogonal grid.  CSA A23.3-14 (3.1d) 
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2.2. Frame members of elastic frame 

Determine moment distribution factors and fixed-end moments for the elastic frame members. The moment 

distribution procedure will be used to analyze the elastic frame. Stiffness factors k , carry over factors COF, 

and fixed-end moment factors FEM for the slab-beams and column members are determined using the design 

aids tables at Appendix 20A of PCA Notes on ACI 318-11. These calculations are shown below.  

 

a. Flexural stiffness of slab-beams at both ends, Ksb. 

1 2

1 2

450 450
0.082, 0.069

5,500 6,500

N Nc c
     

1 2For stiffness factors, 4.15F F NF FNc c k k    PCA Notes on ACI 318-11 (Table A1) 

1 1

Thus, 4.15c sb c sb

sb NF

E I E I
K k   PCA Notes on ACI 318-11 (Table A1)  

Where Isb is the moment of inertia of slab-beam section shown in Figure 2 and can be computed with the 

aid of Figure 3 as follows: 

3 3
9 4350 500

2.72 9.92 10  mm
12 12

w

sb t

b h
I C

   
      

  
 

9

3
 

9.92 10
4.15 7.48 10  N.m

5,500

c

sb c

E
K E

 
    

 

 

Carry-over factor COF = 0.508 PCA Notes on ACI 318-11 (Table A1)  

2

2 1Fixed-end moment FEM 0.0844 uw  PCA Notes on ACI 318-11 (Table A1)  

 
Figure 3 – Coefficient Ct for Gross Moment of Inertia of Flanged Sections 

Figure 2 – Cross-Section of Slab-Beam 
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b. Flexural stiffness of column members at both ends, Kc. 

Referring to Table A7, Appendix 20A: 

For Interior Columns: 

500 155 / 2 422.5 mm , 77.5 mma bt t     

3.7 m 3700 mm,  3700 500 3200 mm,  5.45,  1.16a

c

b c

t H
H H

t H
         

, , Thus, 6.55 and 4.91 by interpolation.c top c bottomk k   

4 4
9 4(450)

3.42 10 mm
12 12

c

c
I      

3.7 m 3,700 mmc    

c cc c

c

c

k E I
K   PCA Notes on ACI 318-11 (Table A7)  

9

3
 ,

6.55 3.42 10
6.05 10 N.m

3,700

c

c top c

E
K E

  
    

9

3
 ,

4.915 3.42 10
4.54 10 N.m

3,700

c

c bottom c

E
K E

  
    

 

For Exterior Columns: 

700 155 / 2 622.5 mm , 77.5 mma bt t     

3.7 m 3,700 mm,  3,700 700 3,000 mm ,  8.0,  1.23a

c

b c

t H
H H

t H
         

, , Thus, 8.45 and 5.47 by interpolation.c top c bottomk k   

4 4
9 4(450)

3.42 10 mm
12 12

c

c
I       

3.7 ft 3,700 mmc     

c cc c

c

c

k E I
K    PCA Notes on ACI 318-11 (Table A7)  

9

3
 ,

8.45 3.42 10
7.80 10 N.m

3,700

c

c top c

E
K E

  
    

9

3

,

5.47 3.42 10
5.05 10

3,700

c

c bottom c

E
K E

  
    
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c. Torsional stiffness of torsional members, Kt. 

32

9

[ (1 ) ]

cs

t

t
t

E C
K

c



  CSA A23.3-14 (13.8.2.8)  

For Interior Columns: 

9

3
 

3

9 4.61 10
9.74 10 N.m

5,500(0.918)

c

t c

E
K E

 
     

Where: 

2 450
1 1 0.918

5,500t

c
     

3

1 0.63
3

x x y
C

y

  
    

  
  CSA A23.3-14 (13.8.2.9) 

x1 = 350 mm x2 = 155 mm x1 = 350 mm x2 = 150 mm 

y1 = 345 mm y2 = 1,040 mm y1 = 500 mm y2 = 345 mm 

C1 = 1.78×109 C2 = 1.17×109 C1 = 3.99×109 C2 = 3.08×108 

∑C = 1.78×109 + 1.17×109 = 2.95×109 mm4 ∑C = 3.99×109 + 3.07×108 = 4.61×109 mm4 

  

 

 

 Figure 4 – Attached Torsional Member at Interior Column 
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For Exterior Columns: 

9

4

3

9 7.41 10
1.57 10  N.m

5,500(0.918)

c

t c

E
K E

 
     

Where: 

2 450
1 1 0.918

5,500t

c
     

3

1 0.63
3

x x y
C

y

  
    

  
  CSA A23.3-14 (13.8.2.9)  

 

x1 = 350 mm x2 = 155 mm x1 = 350 mm x2 = 155 mm 

y1 = 545 mm y2 = 895 mm y1 =700 mm y2 = 545 mm 

C1 = 4.64×109 C2 = 9.90×108 C1 = 6.85×109 C2 = 5.55×109 

∑C = 4.64×109 + 9.90×108 = 5.63×109 mm4 ∑C = 6.85×109+ 5.55×109= 7.41 ×109 mm4 

  

 

                                 

Figure 5 – Attached Torsional Member at Exterior Column 
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d. Increased torsional stiffness due to parallel beams, Kta. 

For Interior Columns: 

 

 

 

 

 

 

 

 

 

 

3 9

4
 

9

9.74 10  9.92 10
4.79 10 N.m

2.02 10

t sb c

ta c

s

K I E
K E

I

  
   


 

Where: 

3 3
9 42 6,500 155

2.02 10 mm
12 12

s

l h
I

 
     

For Exterior Columns: 

4 9

4

9

1.57 10 9.92 10
7.70 10  N.m

2.02 10

t sb c

ta c

s

K I E
K E

I

  
   


 

 

e. Equivalent column stiffness Kec. 

c ta

ec

c ta

K K
K

K K

 

 

 

Where ∑ Kta is for two torsional members one on each side of the 

column, and ∑ Kc is for the upper and lower columns at the slab-

beam joint of an intermediate floor. 

For Interior Columns: 

3 3 4

3

3 3 4

(6.05 10 4.54 10 )(2 4.79 10 )
9.53 10

(6.05 10 4.54 10 ) (2 4.79 10 )

c c c

ec c

c c c

E E E
K E

E E E

    
  

     
 

Figure 6 – Slab-Beam in the Direction of Analysis 

Figure 7 – Equivalent Column 

Stiffness 
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For Exterior Columns: 

3 3 4

4

3 3 4

(7.80 10 5.05 10 )(2 7.70 10 )
1.19 10

(7.80 10 5.05 10 ) (2 7.70 10 )

c c c

ec c

c c c

E E E
K E

E E E

    
  

     
 

f. Slab-beam joint distribution factors, DF. 

At exterior joint, 

3

3 4

7.48 10
0.387

(7.48 10 1.19 10 )

c

c c

E
DF

E E


 

  
 

 

At interior joint, 

3

3 3

7.48 10
0.305

(7.48 10 9.53 10 )

c

c c

E
DF

E E


 

  
 

COF for slab-beam =0.508 

 

2.3. Elastic frame analysis 

Determine negative and positive moments for the slab-beams using the moment  distribution method. 

With an unfactored live-to-dead load ratio: 

4.8 3
1.29

(24 155 /1000) 4

L

D
  


 

The frame will be analyzed for five loading conditions with pattern loading and partial live load as allowed 

by CSA A23.3-14 (13.8.4). 

 

a. Factored load and Fixed-End Moments (FEM’s). 

2Factored dead load 1.25(3.72 0.446) 5.21 kN/mdfw     

Where (0.446 kN/m2 = (0.345 x 0.35) × 24 / 6.5 is the weight of beam stem per foot divided by l2) 

2Factored live load 1.5(4.8) 7.2 kN/mLfw    

2Factored load 12.41kN/mf Df Lfw w w    

2

2 1FEM's for slab-beam NF fm w  PCA Notes on ACI 318-11 (Table A1) 

2FEM due to 0.0844 (12.41 6.5) 5.5 206.02 kN.mDf Lfw w       

23
FEM due to 0.0844 (10.61 6.5) 5.5 176.13 kN.m

4
Df Lfw w       

2FEM due to 0.0844 (5.21 6.5) 5.5 86.47 kN.mDfw       

 

Figure 8 – Slab and Column Stiffness 
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b. Moment distribution.  

Moment distribution for the five loading conditions is shown in Table 1 (The unit for moment values is 

kN.m). Counter-clockwise rotational moments acting on member ends are taken as positive. Positive span 

moments are determined from the following equation: 

( )

( )

2

uL uR

u midspan o

M M
M M


   

Where Mo is the moment at the midspan for a simple beam. 

When the end moments are not equal, the maximum moment in the span does not occur at the midspan, but 

its value is close to that midspan for this example. 

Positive moment in span 1-2 for loading (1): 

25.5 (131.1 232.8)
(12.41 6.5) 123.0 kN.m

8 2
fM  
     

Positive moment span 2-3 for loading (1): 

25.5 (213.5 213.5)
(12.41 6.5) 91.5 kN.m

8 2
fM  
     

 

Table 1 – Moment Distribution for Partial Frame (Transverse Direction) 

Joint 1 2 3 4 

 

Member 1-2 2-1 2-3 3-2 3-4 4-3 

DF 0.387 0.305 0.305 0.305 0.305 0.387 

COF 0.508 0.508 0.508 0.508 0.508 0.508 

 
 

Loading (1) All spans loaded with full factored live load 

FEM 206.0 -206.0 206.0 -206.0 206.0 -206.0 

  

Dist -79.7 0.0 0.0 0.0 0.0 79.7 

CO 0.0 -40.5 0.0 0.0 40.5 0.0 

Dist 0.0 12.4 12.4 -12.4 -12.4 0.0 

CO 6.3 0.0 -6.3 6.3 0.0 -6.3 

Dist -2.4 1.9 1.9 -1.9 -1.9 2.4 

CO 1.0 -1.2 -1.0 1.0 1.2 -1.0 

Dist -0.4 0.7 0.7 -0.7 -0.7 0.4 

CO 0.3 -0.2 -0.3 0.3 0.2 -0.3 

Dist -0.1 0.2 0.2 -0.2 -0.2 0.1 

CO 0.1 -0.1 -0.1 0.1 0.1 -0.1 

Dist 0.0 0.1 0.1 -0.1 -0.1 0.0 

M 131.1 -232.8 213.5 -213.5 232.8 -131.1 

Midspan 

M 
123.0 91.5 123.0 

 



 

12 

 

Loading (2) First and third spans loaded with 3/4 factored live load 

FEM 176.1 -176.1 86.5 -86.5 176.1 -176.1 

 

 

Dist -68.1 27.4 27.4 -27.4 -27.4 68.1 

CO 13.9 -34.6 -13.9 13.9 34.6 -13.9 

Dist -5.4 14.8 14.8 -14.8 -14.8 5.4 

CO -2.9 3.1 3.1 -3.1 -3.1 2.9 

Dist 1.6 -1.5 -1.6 1.6 1.5 -1.6 

CO -0.6 0.9 0.9 -0.9 -0.9 0.6 

Dist 0.5 -0.3 -0.5 0.5 0.3 -0.5 

CO -0.2 0.2 0.2 -0.2 -0.2 0.2 

Dist 0.1 -0.1 -0.1 0.1 0.1 -0.1 

CO -0.1 0.1 0.1 -0.1 -0.1 0.1 

Dist 0.0 0.0 0.0 0.0 0.0 0.0 

M 122.6 -168.8 109.4 -109.4 168.8 -122.6 

Midspan 

M 
115.0 18.6 115.0 

 

Loading (3) Center span loaded with 3/4 factored live load 

FEM 86.5 -86.5 176.1 -176.1 86.5 -86.5 

 

Dist -33.4 -27.4 -27.4 27.4 27.4 33.4 

CO -13.9 -17.0 13.9 -13.9 17.0 13.9 

Dist 5.4 0.9 0.9 -0.9 -0.9 -5.4 

CO 0.5 2.7 -0.5 0.5 -2.7 -0.5 

Dist -0.2 -0.7 -0.7 0.7 0.7 0.2 

CO -0.4 -0.1 0.4 -0.4 0.1 0.4 

Dist 0.1 -0.1 -0.1 0.1 0.1 -0.1 

CO 0.0 0.1 0.0 0.0 -0.1 0.0 

Dist 0.0 0.0 0.0 0.0 0.0 0.0 

M 44.6 -128.0 162.7 -162.7 128.0 -44.6 

Midspan 

M 
41.7 98.0 41.7 

 

Loading (4) First span loaded with 3/4 factored live load and beam-slab assumed fixed at support two spans away 

FEM 176.1 -176.1 86.5 -86.5 

 

 

Dist -68.1 27.4 27.4 0.0 

CO 13.9 -34.6 0.0 13.9 

Dist -5.4 10.6 10.6 0.0 

CO 5.4 -2.7 0.0 5.4 

Dist -2.1 0.8 0.8 0.0 

CO 0.4 -1.1 0.0 0.4 

Dist -0.2 0.3 0.3 0.0 

CO 0.2 -0.1 0.0 0.2 

Dist -0.1 0.0 0.0 0.0 

M 120.2 -175.5 125.6 -66.6 

Midspan 

M 
112.8 31.9 
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Loading (5) First and second spans loaded with 3/4 factored live load 

FEM 176.1 -176.1 176.1 -176.1 86.5 -86.5 

 

Dist -68.1 0.0 0.0 27.4 27.4 33.4 

CO 0.0 -34.6 13.9 0.0 17.0 13.9 

Dist 0.0 6.3 6.3 -5.2 -5.2 -5.4 

CO 3.2 0.0 -2.6 3.2 -2.7 -2.6 

Dist -1.2 0.8 0.8 -0.2 -0.2 1.0 

CO 0.4 -0.6 -0.1 0.4 0.5 -0.1 

Dist -0.2 0.2 0.2 -0.3 -0.3 0.0 

CO 0.1 -0.1 -0.1 0.1 0.0 -0.1 

Dist 0.0 0.1 0.1 0.0 0.0 0.1 

CO 0.0 0.0 0.0 0.0 0.0 0.0 

Dist 0.0 0.0 0.0 0.0 0.0 0.0 

M 77.6 -146.0 139.1 -105.7 84.1 -29.5 

Midspan 

M 
74.3 63.7 28.3 

 

 
 

Max M- 131.1 -232.8 213.5 -213.5 232.8 -131.1 

Max M+ 123.0 98.0 123.0 

 

2.4. Design moments 

Positive and negative factored moments for the slab system in the direction of analysis are plotted in Figure 

9. The negative moments used for design are taken at the faces of supports (rectangle section or equivalent 

rectangle for circular or polygon sections) but not at distances greater than 10.175 from the centers of 

supports. CSA A23.3-14 (13.8.5.1) 

 

450 mm < 0.175 5,500 = 926.5 mm (use face of support location) 
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Figure 9 – Positive and Negative Design Moments for Slab-Beam (All Spans Loaded with Full Factored Live Load 

except as Noted) 

2.5. Distribution of design moments                                                    

Check Applicability of Direct Design Method: 

 

1. There shall be a minimum of three continuous spans in each direction (3 spans) CSA A23.3-14 (13.9.1.2) 

2. Successive span lengths centre-to-centre of supports in each direction shall not differ by more than one- 

third of the longer span (span lengths are equal) CSA A23.3-14 (13.9.1.3) 

3. All loads shall be due to gravity only and uniformly distributed over an entire panel (Loads are uniformly 

distributed over the entire panel) CSA A23.3-14 (13.9.1.4) 

4. The factored live load shall not exceed twice the factored dead load (Factored live-to-dead load ratio of 

1.38 < 2.0) CSA A23.3-14 (13.9.1.4) 

5. For slabs with beams between supports, the relative effective stiffness of beams in the two directions 
2 2

1 2 2 1( / )l l   is not less than 0.2 or greater than 5.0. CSA A23.3-14 (13.9.1.1) 

 

1 23.68 , 5.5 m 5,500 mml     

2 111.41, 5.5m 5,500 mml     

2 2

1 2

2 2

2 1

3.12 6,500
0.45 0.2 0.45 5.0

9.65 5,500

l

l






    


 O.K.   

Since all the criteria are met, Direct Design Method can be utilized. 
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b. Distribute factored moments to column and middle strips: 

The negative and positive factored moments at critical sections may be distributed to the column strip and 

the two half-middle strips of the slab-beam according to the Direct Design Method (DDM) in 13.9, provided 

that limitations in 13.9.1.1 is satisfied. CSA A.23.3-14 (13.2)  

Beams shall be reinforced to resist the following fraction of the positive or interior negative factored moments 

determined by analysis or determined as specified in Clause 13.9.3.  CSA A.23.3-14 (13.12.2.1) 

Portion of design moment resisted by beam:  

1 2

1 1

3.12 6.5
1 1 0.553

0.3 3 0.3 3.12 3 5.5

l

l





   
      

    
  

Factored moments at critical sections are summarized in Table 2. 

Table 2 - Lateral distribution of factored moments 

 
Factored 

Moments  

(kN.m) 

Column Strip Moments in 

Two  

Half-Middle 

Strips* 

 (kN.m)  

Beam Strip 

Percent 

Beam Strip 

Moment  

(kN.m) 

Column Strip  

Percent  

Column Strip 

Moment (kN.m) 

End  

Span 

Exterior 

Negative 
87.39 100 87.39 0.00 0.00 0.00 

Positive 123.05 55.3 68.03 17.4 21.47 33.55 

Interior 

Negative 
180.80 55.3 99.96 17.4 31.55 49.29 

Interior  

Span 

Negative 165.61 55.3 91.56 17.4 28.90 45.15 

Positive 97.98 55.3 54.17 17.4 17.10 26.71 

*That portion of the factored moment not resisted by the column strip is assigned to the two half-middle strips 

2.6. Flexural reinforcement requirements 

a. Determine flexural reinforcement required for strip moments 

The flexural reinforcement calculation for the column strip of end span – interior negative location is 

provided below:  

31.55 kN.mfM    

Column strip width, b = (5,500 /2) - 350 =  2,400 mm 

Use davg = 127 mm 

In this example, jd is assumed equal to 0.98d. The assumption will be verified once the area of steel in 

finalized. 

Assume 0.98 447.3 mmjd d    

Column strip width, b = (5,500 /2) - 350 = 2,400 mm 

Middle strip width, 6,500 2,400 350 3,750 mmb        
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6
231.55 10

207.5 mm
0.85 400 447.3

f

s

s y

M
A

f jd


  

 
 

'

1 0.85 0.0015 0.81 0.67cf      CSA A23.3-14 (10.1.7) 

2

1

0.85 207.5 400
Recalculate ' '  for the actual 207.5 mm 15.26 mm

' 0.65 0.81 35 2,400

s s y

s

c c

A f
a A a

f b



 

 
    

  
 

1

15.26
16.8 mm

0.91

a
c


    

The tension reinforcement in flexural members shall not be assumed to reach yield unless: 

700

700 y

c

d f



 CSA A23.3-14 (10.5.2) 

16.8
0.13 0.64

127
   

0.98
2

ajd d d     

2 2

,min 0.002 2400 155 744 mm  > 207.5 mmsA      CSA A23.3-14 (7.8.1) 

2774 mmAs   

Maximum spacing: CSA A23.3-14 (13.10.4) 

- Negative reinforcement in the band defined by bb: 1.5 232.5 mm 250 mmsh    

- Remaining negative moment reinforcement: 3 465 mm 500 mmsh    

Provide 6 – 15M  bars with As = 200 mm2 and s = 2,400/6 = 400 mm ≤  smax 

The flexural reinforcement calculation for the beam strip of end span – interior negative location is provided 

below: 

99.96 kN.mfM   

Beam strip width, b = 350 mm 

Use d = 468 mm 

 jd is assumed equal to 0.948d. The assumption will be verified once the area of steel in finalized. 

Assume 0.948 443.6 mmjd d    

6
299.96 10

662.6 mm
0.85 400 443.6

f

s

s y

M
A

f jd


  

 
 

'

1 0.85 0.0015 0.81 0.67cf      CSA A23.3-14 (10.1.7) 

'

1 0.97 0.0025 0.91 0.67cf      CSA A23.3-14 (10.1.7) 

2

1

0.85 662.6 400
Recalculate ' '  for the actual 662.6 mm 48.75 mm

' 0.65 0.81 35 350

s s y

s

c c

A f
a A a

f b



 

 
    

  
 

1

48.75
53.7 mm

0.91

a
c


    

The tension reinforcement in flexural members shall not be assumed to reach yield unless: 

700

700 y

c

d f



 CSA A23.3-14 (10.5.2) 

48.75
0.115 0.64

472
   
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0.948
2

ajd d d     

'
2

,min

0.2 0.2 25
350 500 437.5 mm

400

c
ts

y

f
A b h

f



       CSA A23.3-14 (10.5.1.2) 

2662.6 mmsA   

Provide 2 – 25M bars with As = 500 mm2  

 

All the values on Table 3 are calculated based on the procedure outlined above. 

Table 3 - Required Slab Reinforcement for Flexure [Elastic Frame Method (EFM)] 

Span Location 
Mf 

(kN.m) 

b *  

(mm) 

d **  

(mm) 

As  Req’d  

for flexure  

(mm2) 

Min As
†  

 (mm2) 

Reinforcement  

Provided 

As  Prov.  

for 

flexure  

(mm2) 

End Span 

Beam 

Strip 

Exterior 

Negative 
87.39 350 468 575.1 437.5 2 – 25M 1,000 

Positive 68.03 350 458 443.5 437.5 2 – 25M  1,000 

Interior 

Negative 
99.96 350 468 662.6 437.5 2 – 25M  1,000 

Column 

Strip 

Exterior 

Negative 
0.00 2,400 127 0.0 744 6 – 15M 1,200 

Positive 21.47 2,400 127 135.3 744 6 – 15M  1,200 

Interior 

Negative 
31.55 2,400 127 200.0 744 6 – 15M  1,200 

Middle 

Strip 

Exterior 

Negative 
0.00 3,750 127 0.0 1,162.5 9 – 15M  1,800 

Positive 33.55 3,750 127 212.9 1,162.5 9 – 15M  1,800 

Interior 

Negative 
49.29 3,750 127 316.0 1,162.5 9 – 15M  1,800 

Interior Span 

Beam 

Strip 
Positive 54.17 350 457 437.5 437.5 2 – 25M  1,000 

Column 

Strip 
Positive 17.10 2,400 127 107.5 744 6 – 15M  1,200 

Middle 

Strip 
Positive 26.71 3,750 127 168.8 1,162.5 9 – 15M  1,800 

* Column strip width, b = (5,500/2) - 350 = 2,400 mm 

* Middle strip width, b = 6,500-2,400-350 = 3,750 mm 

* Beam strip width, b = 350 mm 

** Use average d = 155 – 20 – 7 = 127 mm for Column and Middle strips 

** Use average d = 500 - 30 -13 = 457 mm for Beam strip Positive moment regions 

** Use average d = 500 - 20 - 12 = 468 mm for Beam strip Negative moment regions 

† Min. As = 0.002 × b × h = 0.31 × b for Column and Middle strips                                                           CSA A23.3-14 (7.8.1) 

† Min. As = (0.2(fc')^0.5/fy*b*d for Beam strip                                                                                       CSA A23.3-14 (10.5.1.2) 

 

b. Calculate additional slab reinforcement at columns for moment transfer between slab and column by 

flexure 
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Portion of the unbalanced moment transferred by flexure is γf × Mf 

Where: 

1 2

1

1 (2 / 3) /
f

b b
 

 
 CSA A23.3-14 (13.10.2) 

1b Width width of the critical section for shear measured in the direction of the span for which moments 

are determined according to CSA A23.3-14, clause 13 (see Figure 10). 

2b   Width of the critical section for shear measured in the direction perpendicular to b1 according to CSA 

A23.3-14, clause 13 (see Figure 10). 

b
b = Effective slab width =

2
3 sc h   CSA A23.3-14 (3.2) 

 

For Exterior Column: 

1 1 2 2 2

127
450 513.5 mm , 450 127 577 mm , 3 450 3 (155) 915 mm

2 2
b

d
b c b c d b c h              

1
0.614

1 (2 / 3) 513.5 / 577
f  

 
 

 

Figure 10 – Critical Shear Perimeters for Columns 

, 0.614 131.1 80.48 kN.mf f netM      

,2

, ' '

' 20.81

0.81

f f netc c b

s req d

s y c c b

Mf b
A d d

f f b



 

   
   
    
 

 

6
2 2

, '

0.65 0.81 25 915 2 80.48 10
117 117 3,507 mm

0.85 400 0.65 0.81 25 915
s req dA

     
    
    
 

 

2 2

,min 0.002 2400 155 744 mm  < 3,507 mmsA      CSA A23.3-14 (7.8.1) 

2

, ' 3,507 mms req dA   
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, , ( ) , ( )( ) ( )s provided s provided beam s provided b b
b beam

A A A     

2 2

, , '

915 350
2 500 6 200 1283 mm  < 3,507 mm

2,400
s provided s req dA A


         

Additional slab reinforcement at the exterior column is required. 

2

' , 3507 1283 2224.5 mmreq d addA     

2 2

, ' , Use 12 - 15M  12 200 2,400 in. > 2,224.5 mmprovided add req d addA A       

Table 4 - Additional Slab Reinforcement at columns for moment transfer between slab and column [Elastic Frame Method (EFM)] 

Span Location 

Effective 

slab width, 

bb  (mm) 

d  

(mm) 
γf 

Mu
*  

(kN.m) 

γf Mu  

(kN.m) 

As req’d 

within bb 

(mm2) 

As prov. for  

flexure within 

bb (mm2) 

Add’l 

Reinf. 

End Span 

Column 

Strip 

Exterior 

Negative 
915 117 0.614 131.1 80.48 3,507 1,283 12-15M 

Interior 
Negative 

915 117 0.600 59.4 35.64 1,022 1,283 - 

*Mf is taken at the centerline of the support in Elastic Frame Method solution. 

 

b. Determine transverse reinforcement required for beam strip shear  

The transverse reinforcement calculation for the beam strip of end span – exterior location is provided 

below.  

 
Figure 11 – Shear at critical sections for the end span (at distance dv from the face of the column) 

 (0.9 ,0.72 )  (0.9 457,0.72 500) 411.7mmvd Max d h Max       CSA A23.3-14 (3.2) 

The required shear at a distance d from the face of the supporting column Vu_d= 152 kN (Figure 11).  

,max 0.25 0.65 25 350 411.7 /1000 585.5 kN section is adequaterV         CSA A23.3-14 (11.3.3) 

'
vc c c wV f b d   CSA A23.3-14 (Eq. 11.5) 
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0.65 1 0.18 25 350 411.7 /1,000 84.21 kN<152 kNcV        ∴ Stirrups are required.  

Distance from the column face beyond which minimum reinforcement is required: 

_s f d cV V V   ACI 318-14 (22.5.10.1)  

152 84.21 67.8 kNsV     

267.8 1000
0.338  mm / mm

cot 0.85 400 411.7 cot 35

f cv

yt vreq

V VA

s f d 

  
   

      
  CSA A23.3-14 (11.3.5.1) 

Where 35   CSA A23.3-14 (11.3.6.2) 

'

min

0.06 c wv

yt

f bA

s f

  
 

 
 CSA A23.3-14 (11.2.8.2) 

2

min

0.06 25 350
0.263 mm /mm

400

vA

s

  
  

 
 

  

2 100
590.9 mm

0.263

v
req

v

req

A
s

A

s


  
 
 
 

 

Check whether the required spacing based on the shear demand meets the spacing limits for shear 

reinforcement per CSA A23.3-14 (11.3.8). 

'0.125 292.73vc c w ff b d V    CSA A23.3-14 (11.3.8.3) 

Therefore, maximum stirrup spacing shall be the smallest of 0.7dv and 600 mm. CSA A23.3-14 (11.3.8.1) 

max

0.7 0.7 411.7 288 mm
288 mm

600 mm 600 mm600 mm

vd
s lesser of lesser of lesser of

     
        

    

'Since use req d max maxs s s     

Select sprovided = 280 mm – 10M stirrups with first stirrup located at distance 140 mm from the column 

face. 

The distance where the shear is zero is calculated as follows: 

,

, ,

5.5
203.3 2.52 m  2,520 mm

203.3 240.3
u L

f L f R

l
x V

V V
     

 
 

The distance at which no shear reinforcement is required is calculated as follows: 

1

2.52
2.52 84.21 1.48 m 1,480 mm

203.3
c

f

x
x x V

V
         

1

1 450 280
1,480

2 2 2 2# 1 1 6 use 6 stirrups
280

provided

provided

sc
x

of stirrups
s

   

       
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All the values on Table 5 are calculated based on the procedure outlined above. 

Table 5 - Required Beam Reinforcement for Shear 

Span Location 
Av,min/s 

mm2/mm 

Av,req'd/s 

mm2/mm 

sreq'd 

mm 

smax 

mm 

Reinforcement  

Provided 

End Span 

Exterior  0.263 0.338 590 288 6 – 10M @ 280 mm 

Interior  0.263 0.535 373 288 6 – 10M @ 280 mm 

Interior Span 

Interior  0.263 0.431 464 288 8 – 10M @ 280 mm 
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2.7. Column design moments 

The unbalanced moment from the slab-beams at the supports of the frame are distributed to the actual 

columns above and below the slab-beam in proportion to the relative stiffness of the actual columns. 

Referring to Fig. 9, the unbalanced moment at joints 1 and 2 are: 

Joint 1 = +131.1 kN.m 

Joint 2 = -204.0 + 194.6 = -9.45 kN.m 

The stiffness and carry-over factors of the actual columns and the distribution of the unbalanced moments 

to the exterior and interior columns are shown in Fig 12. 

 

Figure 12 - Column Moments (Unbalanced Moments from Slab-Beam) 
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In summary: 

Design moment in exterior column = 59.57 kN.m 

Design moment in interior column = 5.40 kN.m 

The moments determined above are combined with the factored axial loads (for each story) and factored 

moments in the transverse direction for design of column sections. A detailed analysis to obtain the moment 

values at the face of interior, exterior, and corner columns from the unbalanced moment values can be found 

in the “Two-Way Flat Plate Concrete Floor Slab Design” example. 

3. Design of Interior, Edge, and Corner Columns 

The design of interior, edge, and corner columns is explained in the “Two-Way Flat Plate Concrete Floor Slab 

Design” example. 

4.  Two-Way Slab Shear Strength 

Shear strength of the slab in the vicinity of columns/supports includes an evaluation of one-way shear (beam 

action) and two-way shear (punching) in accordance with CSA A23.3-14 clause 13. 

4.1. One-Way (Beam action) Shear Strength  

One-way shear is critical at a distance dv from the face of the column. Figure 13 shows the Vf at the critical 

sections around each column. Since there is no shear reinforcement, the design shear capacity of the section 

equals to the design shear capacity of the concrete: 

r c s p cV V V V V       ,     ( 0)s pV V   CSA A23.3-14 (Eq. 11.4) 

Where: 

'

c c c w vV f b d   CSA A23.3-14 (Eq. 11.5) 

1   for normal weight concrete 

          0.21   for slabs with overall thickness not greater than 350 mm  CSA A23.3-14 (11.3.6.2) 

          Max (0.9 ,0.72 ) Max (0.9 127,0.72 155) 114 mmv avgd d h       CSA A23.3-14 (3.2) 

         
' 5 MPa 8 MPacf    CSA A23.3-14 (11.3.4)  

114
0.65 1 0.21 25 5,500 427.92 kN > 

1000
c fV V        

Because 
r fV V at all the critical sections, the slab has adequate one-way shear strength. 

https://www.structurepoint.org/publication/pdf/Two-Way-Flat-Plate-Concrete-Floor-Slab-Design-Detailing_CSA23.3-14.pdf
https://www.structurepoint.org/publication/pdf/Two-Way-Flat-Plate-Concrete-Floor-Slab-Design-Detailing_CSA23.3-14.pdf
https://www.structurepoint.org/publication/pdf/Two-Way-Flat-Plate-Concrete-Floor-Slab-Design-Detailing_CSA23.3-14.pdf
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Figure 13 – One-way shear at critical sections (at distance dv from the face of the supporting column) 

4.2. Two-Way (Punching) Shear Strength  

Two-way shear is critical on a rectangular section located at dslab/2 away from the face of the column. The 

factored shear force Vf in the critical section is calculated as the reaction at the centroid of the critical section 

minus the self-weight and any superimposed surface dead and live load acting within the critical section.  

The factored unbalanced moment used for shear transfer, Munb, is calculated as the sum of the joint moments to 

the left and right. Moment of the vertical reaction with respect to the centroid of the critical section is also taken 

into account. 

 

For the exterior column: 

 

f 6

514 578
V 203.2 12.41 199.5 kN

10

 
   

 
  

unb

20.5 9.09 18 / 2
M 93.1 43.56 84.37 ft-kip

12

  
   

 
 

 

For the exterior column in Figure 14, the location of the 

centroidal axis z-z is: 

moment of area of the sides about AB

area of the sides
ABc   

 

 

 

 

2(350 672 (514 350 / 2) ((514 350) 127 (514 350) / 2)
230.4 mm

2 (350 672 (514 350) 127) 350 472 (577 514) 127
ABc

       
 

         
 

Figure 14 – Critical section of exterior 

support of interior frame 
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5 22 (350 672 127 (514 350)) 127 (577 350) 350 472 7.05 10 mmcA               

The polar moment Jc of the shear perimeter is: 
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10 4J 3.94 10  mmc    

v fγ 1 γ 1 0.614 0.386      CSA A23.3-14 (Eq. 13.8) 

The length of the critical perimeter for the exterior column: 

ob 2 (450 127 / 2) (450 127) 1604 mm       

v unbf
f

o

γ M eV
v = +

b ×d J
 CSA A23.3-14 (Eq.13.9) 

f 5 10

199.5 1000 0.386 43.7 1000 230.4
v 0.538 MPa

7.05 10 3.94 10

   
  

 
  

The factored resisting shear stress, Vr shall be the smallest of: CSA A23.3-14 (13.3.4.1) 

a) '

r c

2 2
v = v 1 0.19 1 0.19 0.65 25 1.85 MPa

1
c c

c

f


   
         

  
  

b) '

r c

3 127
v = v 0.19 0.19 1 0.65 25 1.39 MPa

1604

s

c c

o

d
f

b




   
          

  
  

c) '

r cv = v 0.38 0.38 1 0.65 25 1.24 MPac cf       

In this example, since the davg = 440.1 mm around the joint for two-way shear, exceeds 300 mm, therefore the 

value of vc obtained above shall be multiplied by 1300/(1000+d).  CSA A23.3-14 (13.3.4.3) 
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c

1300 1300
v 1.24 1.24=1.115 MPa

(1000 ) (1000 440.1)d
   

 
  

Since frv v at the critical section, the slab has adequate two-way shear strength at this joint.  

 

For the interior column: 

f 6

577 577
V 240.3 221.8 12.41 458 kN

10

 
    

 
 

unbM 232.8 213.8 458(0) 19.0 kN.m     

For the interior column in Figure 15, the location of the centroidal 

axis z-z is: 

1,

AB

577
c 288.5 mm

2 2

Intb
    

5 2

cA 4 (350 472 (577 350) 127) 7.76 10 mm

       

       
 

 

 

 

The polar moment Jc of the shear perimeter is: 
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Figure 15 – Critical section of interior 

support of interior frame 
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10 4J 4.5 10 mmc    

v fγ 1 γ 1 0.600 0.400      ACI 318-14 (Eq. 8.4.4.2.2) 

The length of the critical perimeter for the exterior column: 

ob 4 (450 127) 2,308 mm     

v unbf
f

o

γ M eV
v = +

b ×d J
 CSA A23.3-14 (Eq.13.9) 

f 5 10

458 1,000 0.4 19.0 1,000 288.5
v 0.639 MPa

7.76 10 4.5 10

   
  

 
 

The factored resisting shear stress, Vr shall be the smallest of: CSA A23.3-14 (13.3.4.1) 

a) '

r c

2 2
v = v 1 0.19 1 0.19 0.65 25 1.85 MPa

1
c c

c

f


   
         

  
  

b) '

r c

4 127
v = v 0.19 0.19 1 0.65 25 1.33 MPa

2,308

s

c c

o

d
f

b




   
          

  
  

c) '

r cv = v 0.38 0.38 1 0.65 25 1.24 MPac cf       

In this example, since the davg = 336.3 mm around the joint for two-way shear, exceeds 300 mm, therefore the 

value of vc obtained above shall be multiplied by 1300/(1000+d).  CSA A23.3-14 (13.3.4.3) 

c

1300 1300
v 1.24 1.24=1.201 MPa

(1000 ) (1000 336.3)d
   

 
 

Since frv v at the critical section, the slab has adequate two-way shear strength at this joint.  

 

5. Two-Way Slab Deflection Control (Serviceability Requirements) 

Since the slab thickness was selected based on the minimum slab thickness equations in CSA A23.3-14, the 

deflection calculations are not required. However, the calculations of immediate and time-dependent deflections 

are covered in this section for illustration and comparison with spSlab model results. 

5.1. Immediate (Instantaneous) Deflections  

The calculation of deflections for two-way slabs is challenging even if linear elastic behavior can be assumed. 

Elastic analysis for three service load levels (D, D + Lsustained, D+LFull) is used to obtain immediate deflections 

of the two-way slab in this example. However, other procedures may be used if they result in predictions of 

deflection in reasonable agreement with the results of comprehensive tests. ACI 318-14 (24.2.3)  

The effective moment of inertia (Ie) is used to account for the cracking effect on the flexural stiffness of the 

slab. Ie for uncracked section (Mcr > Ma) is equal to Ig. When the section is cracked (Mcr < Ma), then the 

following equation should be used: 

http://www.spslab.com/
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 
3

cr
e cr g cr g

a

M
I I I I I

M


 
   

 
 CSA A23.3-14 (Eq.9.1)  

Where: 

Ma = Maximum moment in member due to service loads at stage deflection is calculated.  

The values of the maximum moments for the three service load levels are calculated from structural analysis as 

shown previously in this document. These moments are shown in Figure 16. 

 

 
Figure 16 – Maximum Moments for the Three Service Load Levels 

For positive moment (midspan) section of the exterior span: 

Cracking moment.crM   

  9

6
3.00 / 2 (9.95 10 )

10 37.73 kN.m
395.74

r g

cr

t

f I
M

Y


 

     CSA A23.3-14 (Eq.9.2)  
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fr should be taken as half of Eq.8.3  CSA A23.3-14 (9.8.2.3) 

fr = Modulus of rapture of concrete. 

'0.6 0.6 1.0 25 3.00 MPar cf f      CSA A23.3-14 (Eq.8.3)  

 Ig = Moment of inertia of the gross uncracked concrete section 

9 4
 9.95 10  mm for T-section (see Figure 21)gI    

yt = Distance from centroidal axis of gross section, neglecting reinforcement, to tension face, in. 

395.74 mm (see Figure 17)
t

y   

 

Figure 17 – Ig calculations for slab section near support 

= Moment of inertia of the cracked section transformed to concrete.crI   

 CAC Concrete Design Handbook 4th Edition (5.2.3) 

As calculated previously, the positive reinforcement for the end span frame strip is 15 – 15M bars located at 20 

mm along the slab section from the bottom of the slab and 2 – 25M bars located at 30 mm along the beam 

section from the bottom of the beam. Three of the slab section bars are not continuous and will be excluded 

from the calculation of Icr. Figure 18 shows all the parameters needed to calculate the moment of inertia of the 

cracked section transformed to concrete at midspan. 

 

 
Figure 18 – Cracked Transformed Section (positive moment section) 

Ecs = Modulus of elasticity of slab concrete. 

          

1.5 1.5

' 2,447
(3,300 6,900) (3,300 25 6,900) 25,684 MPa

2,300 2,300

c

cs cE f
   

       
   

 CSA A23.3-14(8.6.2.2) 

200,000
7.79

25,684

s

cs

E
n

E
    CAC Concrete Design Handbook 4th Edition (Table 6.2a)  
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6,500
3,250 mm

2 2

b
a     

    2

, ,  7.79 2 500 7.79 12 200 26,476.1mms beam s slabb n A n A          

       6 3

, , , ,1   1 7.79 2 500 457 7.79 12 200 127 5.93 10 mms beam s beam s slab s slabc n A d n A d                 

2 2 64 26,476.1 26,476.1 4 3,250 5.93 10
38.84 mm

2 3,2502

b b ac
kd

a

        
  


   

3
2 2

, ,

( )
( ) ( )

3
cr s slab slab s beam beam

b kd
I nA d kd nA d kd        

     
3

2 2 9 46,500 (38.84)
7.79 12 200 127 38.84 7.79 2 500 457 38.84 1.63 10 mm

3
crI


             

For negative moment section (near the interior support of the end span): 

The negative reinforcement for the end span frame strip near the interior support is 27 #4 bars located at 1.0 in. 

along the section from the top of the slab. 

  9

6
3.00 / 2 (3.65 10 )

10 21.88 kN.m
250

r g

cr

t

f I
M

Y


 

     CSA A23.3-14 (Eq.9.2)  

'0.6 0.6 1.0 25 3.00 MPar cf f      CSA A23.3-14 (Eq.8.3)  

9 43.65 10  mmgI     

250 mmty   

 

Figure 19 – Ig calculations for slab section near support 

 

          

1.5 1.5

' 2,447
(3,300 6,900) (3,300 25 6,900) 25,684 MPa

2,300 2,300

c

cs cE f
   

       
   

 CSA A23.3-14(8.6.2.2) 
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200,000
7.79

25,684

s

cs

E
n

E
    CAC Concrete Design Handbook 4th Edition (Table 6.2a)  

 
1

,

350
0.011 mm

 7.79 15 200 2 500

beam

s total

b
B

n A

  
   

  

 CAC Concrete Design Handbook 4th Edition (Table 6.2a)  

2 1 1 2 468 0.011 1 1
213 mm

468

dB
kd

B

     
     

 CAC Concrete Design Handbook 4th Edition (Table 6.2a)  

3
2

,

( )
( )

3

beam
cr s total

b kd
I nA d kd     CAC Concrete Design Handbook 4th Edition (Table 6.2a) 

   
3

2 9 4350 (213)
7.79 15 200 2 500 468 213 3.15 10 mm

3
crI


            

 
Figure 20 – Cracked Transformed Section (interior negative moment section for end span) 

The effective moment of inertia procedure described in the Code is considered sufficiently accurate to estimate 

deflections. The effective moment of inertia, Ie, was developed to provide a transition between the upper and 

lower bounds of Ig and Icr as a function of the ratio Mcr/Ma. For conventionally reinforced (nonprestressed) 

members, the effective moment of inertia, Ie, shall be calculated by by Eq. (9.1) in CSA A23.3-14 unless 

obtained by a more comprehensive analysis.  

For continuous prismatic members, the effective moment of inertia may be taken as the weighted average of 

the values obtained from Eq. (9.1) in CSA A23.3-14 for the critical positive and negative moment sections.  

 CSA A23.3-14(9.8.2.4) 

For the exterior span (span with one end continuous) with service load level (D+LLfull): 

 
3

 , 21.88 kN.m < =179.92 kN.mcr
e cr g cr cr a

a

M
I I I I M M

M




 
   

 
 

 ACI 318-14 (24.2.3.5a) 

Where Ie
- is the effective moment of inertia for the critical negative moment section (near the support). 

 
3

9 9 9 9 421.88
3.15 10 3.65 10 3.15 10 3.15 10 mm

179.92
eI   
        

 
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For positive moment section (midspan): 

 
3

 , 37.73 kN.m < = 39.07 kN.mcr
e cr g cr cr a

a

M
I I I I M M

M




 
   

 
 

Where Ie
+ is the effective moment of inertia for the critical positive moment section (midpan). 

 
3

9 9 9 9 437.73
1.63 10 9.95 10 1.63 10 2.39 10 mm

84.08
eI   
        

 
  

Where Ie
+ is the effective moment of inertia for the critical positive moment section (midspan).                        

Since midspan stiffness (including the effect of cracking) has a dominant effect on deflections, midspan section 

is heavily represented in calculation of Ie and this is considered satisfactory in approximate deflection 

calculations. The averaged effective moment of inertia (Ie,avg) is given by: 

, 0.85 0.15 for end spane avg
e e

I I I    CSA A23.3-14 (9.8.2.4) 

   9 9 9 4

, 0.85 2.39 10 0.15 3.15 10 2.50 10  mme avgI         

Where:  

= The effective moment of inertia for the critical negative moment section near the support.
e

I   

 = The effective moment of inertia for the critical positive moment section (midspan).
e

I    

For the interior span (span with both ends continuous) with service load level (D+LLfull): 

 
3

 , 21.88 kN.m < =163.49 kN.mcr
e cr g cr cr a

a

M
I I I I M M

M




 
   

 
 

 ACI 318-14 (24.2.3.5a) 

 
3

9 9 9 9 421.88
3.15 10 3.65 10 3.15 10 3.15 10 mm

163.49
eI   
        

 
  

 For positive moment section (midspan): 

 
3

 , 37.73 kN.m < = 56.88 kN.mcr
e cr g cr cr a

a

M
I I I I M M

M




 
   

 
 

Where Ie
+ is the effective moment of inertia for the critical positive moment section (midpan). 

 
3

9 9 9 9 437.73
1.63 10 9.95 10 1.63 10 4.06 10 mm

56.88
eI   
        

 
  

The averaged effective moment of inertia (Ie,avg) is given by: 

 ,
, ,

0.70 0.15 for interior spane avg
e e l e r

I I I I       CSA A23.3-14 (9.8.2.4)

   9 9 9 9 4

, 0.70 4.06 10 0.15 3.15 10 3.15 10 3.79 10 mme avgI           
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Where:  

,
= The effective moment of inertia for the critical negative moment section near the left support.

e l
I   

,
= The effective moment of inertia for the critical negative moment section near the right support.

e R
I   

Table 6 provides a summary of the required parameters and calculated values needed for deflections for exterior 

and interior equivalent frame. It also provides a summary of the same values for column strip and middle strip 

to facilitate calculation of panel deflection. 

Table 6 – Averaged Effective Moment of Inertia Calculations 

For Frame Strip  

Span zone 
Ig,  

mm4 

(×109) 

Icr, 

mm4 

(×109) 

Ma, kN.m 
Mcr, 

kN.m 

Ie, mm4 (×109) Ie,avg, mm4 (×109) 

D 
D + 

LLSus 

D + 

Lfull 
D 

D + 

LLSus 

D + 

Lfull 
D 

D + 

LLSus 

D + 

Lfull 

Ext 

Left 3.65 3.15 -44.85 -44.85 -96.52 21.88 3.21 3.21 3.16 

8.23 8.23 2.50 Midspan 9.95 1.63 39.07 39.07 84.08 37.73 9.13 9.13 2.39 

Right 3.65 3.15 -83.60 -83.60 -179.92 21.88 3.16 3.16 3.15 

Int 

Left 3.65 3.15 -75.96 -75.96 -163.49 21.88 3.16 3.16 3.15 

7.92 7.92 3.79 Mid 9.95 1.63 26.43 26.43 63.56 37.73 9.95 9.95 4.06 

Right 3.65 3.15 -75.96 -75.96 -163.49 21.88 3.16 3.16 3.15 

 

Deflections in two-way slab systems shall be calculated taking into account size and shape of the panel, 

conditions of support, and nature of restraints at the panel edges. For immediate deflections two-way slab 

systems the midpanel deflection is computed as the sum of deflection at midspan of the column strip or column 

line in one direction (Δcx or Δcy) and deflection at midspan of the middle strip in the orthogonal direction (Δmx 

or Δmy). Figure 21 shows the deflection computation for a rectangular panel. The average Δ for panels that have 

different properties in the two direction is calculated as follows: 

 

( ) ( )

2

cx my cy mx    
   PCA Notes on ACI 318-11 (9.5.3.4 Eq. 8)                        
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Figure 21 – Deflection Computation for a rectangular Panel 

To calculate each term of the previous equation, the following procedure should be used. Figure 22 shows the 

procedure of calculating the term Δcx. same procedure can be used to find the other terms. 

 
Figure 22 –Δcx calculation procedure 

For exterior span - service dead load case: 

4

,

,384
frame fixed

c frame averaged

wl

E I
   PCA Notes on ACI 318-11 (9.5.3.4 Eq. 10)  

Where: 
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,  = Deflection of column strip assuing fixed end condition.frame fixed   

24 155 24 (500 155) 350
slab weight + beam weight = (6.5) 27.08 kN/m

1000 6.5 1000
w

    
   

 
 

1.5 1.5

' 2,447
(3,300 6,900) (3,300 25 6,900) 25,684 MPa

2,300 2,300

c

cs cE f
   

       
   

  

  CSA A23.3-14(8.6.2.2) 

Iframe,averaged = The averaged effective moment of inertia (Ie,avg) for the frame strip for service dead load case 

from Table 6 = 8.23 x 109 mm4 

  

  

4

, 9

27.08 5500 450
0.217 mm

384 25,684 8.23 10
frame fixed


  


 

, ,

frame

c fixed c frame fixed

c g

I
LDF

I

 
    

 
 PCA Notes on ACI 318-11 (9.5.3.4 Eq. 11) 

Where LDFc is the load distribution factor for the column strip. The load distribution factor for the column 

strip can be found from the following equation: 

2

2

l R

c

LDF LDF
LDF

LDF

 
 


  

And the load distribution factor for the middle strip can be found from the following equation: 

1m cLDF LDF   

For the end span, LDF for exterior negative region (LDFL¯), interior negative region (LDFR¯), and positive 

region (LDFL
＋

) are 1.00, 0.727, and 0.727, respectively (From Table 2 of this document). Thus, the load 

distribution factor for the column strip for the end span is given by: 

1.00 0.727
0.727

2 0.795
2

cLDF




   

Ic,g =  The gross moment of inertia (Ig) for the column strip (for T section) = 7.93 x 109 mm4 

Iframe,g =  The gross moment of inertia (Ig) for the frame strip (for T section) = 9.95 x 109 mm4 

9

, 9

9.95 10
0.795 0.217 0.217 mm

7.93 10
c fixed


    


 

 ,

,

net L frame

c L

ec

M

K
   PCA Notes on ACI 318-11 (9.5.3.4 Eq. 12) 

Where: 
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, = Rotation of the span left support.c L  

 
7

,( ) 4.49 10  N.mm = Net frame strip negative moment of the left support.net L frameM    

 

Kec  = effective column stiffness for exterior column. 

 = 3.05 x 1011 N.mm/rad (calculated previously). 

 
7

, 11

4.49 10
0.00015 rad

3.05 10
c L


 


       

, ,  
8

c L c L

frame

g

e

I
l

I
 

 
      

  
 

 PCA Notes on ACI 318-11 (9.5.3.4 Eq. 14) 

 

Where: 

 

, = Midspan deflection due to rotation of left support.c L   

 

= Gross-to-effective moment of inertia ratio for frame strip.
g

e frame

I

I

 
 
 

 

9

, 9

5500 450 9.95 10
0.00015 0.112 mm

8 8.23 10
c L

 
    


 

7
,

, 11

( ) (8.36 7.60) 10
0.00003 rad

2.45 10

net R frame

c R

ec

M

K


 
  


 

Where 

 

, = Rotation of the end span right support.c R  

 

,( ) Net frame strip negative moment of the right support.net R frameM   

 

Kec  = effective column stiffness for interior column. 

 = 2.45 x 1011 N.mm/rad (calculated previously). 

 

 

9

, , 9

5500 450 9.95 10
0.00003 0.024 mm

8 8 8.23 10

g

c R c R

e frame

Il

I
 

    
       

  
 

 

Where: 
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, = Midspan delfection due to rotation of right support.c R  

 

, ,,cx cx R cx Lcx fixed        PCA Notes on ACI 318-11 (9.5.3.4 Eq. 9) 

 

0.217 0.112 0.024 0.353 mmcx      

 

Following the same procedure, Δmx can be calculated for the middle strip. This procedure is repeated for the 

equivalent frame in the orthogonal direction to obtain Δcy, and Δmy for the end and middle spans for the other 

load levels (D+LLsus and D+LLfull). 

Assuming square panel, Δcx = Δcy= 0.009 in. and Δmx = Δmy= 0.021 in. 

The average Δ for the corner panel is calculated as follows: 

   
    0.009 0.021 0.030 in.

2

cx my cy mx

cx my cy mx

    
          
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Table 7 - Instantaneous Deflections 

                  

Column Strip  Middle Strip 

                  

Span LDF 

D  

LDF 

D 

Δframe-fixed, 

 mm 

Δc-fixed, 

 mm 

θc1, 

 rad 

θc2, 

 rad 

Δθc1, 

mm 

Δθc2, 

 mm 

Δcx, 

 mm 
 Δframe-fixed, 

 mm 

Δm-fixed, 

 mm 

θm1, 

 rad 

θm2, 

 rad 

Δθm1, 

 mm 

Δθm2, 

 mm 

Δmx, 

 mm 

Ext 0.795 0.217 0.217 0.00015 0.00003 0.112 0.024 0.353  0.205 0.217 0.381 0.00015 0.00003 0.112 0.024 0.517 

Int 0.727 0.225 0.206 0.00003 0.00003 0.025 0.025 0.156  0.273 0.225 0.528 0.00003 0.00003 0.025 0.025 0.479 

                  

Span LDF 

D+LLsus 
 

LDF 

D+LLsus 

Δframe-fixed, 

 mm 

Δc-fixed, 

 mm 

θc1, 

 rad 

θc2, 

 rad 

Δθc1, 

 mm 

Δθc2, 

 mm 

Δcx, 

 mm 
 Δframe-fixed, 

 mm 

Δm-fixed, 

 mm 

θm1, 

 rad 

θm2, 

 rad 

Δθm1, 

 mm 

Δθm2, 

 mm 

Δmx, 

 mm 

Ext 0.795 0.217 0.217 0.00015 0.00003 0.112 0.024 0.353  0.205 0.217 0.381 0.00015 0.00003 0.112 0.024 0.517 

Int 0.727 0.225 0.206 0.00003 0.00003 0.025 0.025 0.156  0.273 0.225 0.528 0.00003 0.00003 0.025 0.025 0.479 

                  

Span LDF 

D+LLfull 
 

LDF 

D+LLfull 

Δframe-fixed, 

 mm 

Δc-fixed, 

 mm 

θc1, 

 rad 

θc2, 

 rad 

Δθc1, 

 mm 

Δθc2, 

 mm 

Δcx, 

 mm 
 Δframe-fixed, 

 mm 

Δm-fixed, 

 mm 

θm1, 

 rad 

θm2, 

 rad 

Δθm1, 

 mm 

Δθm2, 

 mm 

Δmx, 

 mm 

Ext 0.795 1.537 1.534 0.00032 0.00007 0.795 0.168 2.497  0.205 1.537 2.700 0.00032 0.00007 0.795 0.168 3.663 

Int 0.727 1.014 0.925 0.00007 0.00007 0.111 0.111 0.703  0.273 1.014 2.375 0.00007 0.00007 0.111 0.111 2.153 

                  

Span LDF 

LL        

LDF 

LL       

Δcx, 

 mm 
       Δmx, 

 mm 
      

Ext 0.795 2.144        0.205 3.146       

Int 0.727 0.547        0.273 1.674       
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5.2. Time-Dependent (Long-Term) Deflections (Δlt) 

The additional time-dependent (long-term) deflection resulting from creep and shrinkage (Δcs) may be estimated 

as follows: 

 

 ( )cs sust Inst      PCA Notes on ACI 318-11 (9.5.2.5 Eq. 4) 

 

The total time-dependent (long-term) deflection is calculated as: 

 

( ) ( ) (1 ) [( ) ( ) ]total lt sust Inst total Inst sust Inst          CSA A23.3-04 (N9.8.2.5)                                                                                                                             

 

Where: 

 

( )  Immediate (instantaneous) deflection due to sustained load, in.sust Inst   

 

1 50 '





 


 ACI 318-14 (24.2.4.1.1) 

 

( )  Time-dependent (long-term) total delfection, in.total lt   

 

( ) Total immediate (instantaneous) deflection, in.total Inst    

 

For the exterior span 

 

 = 2, consider the sustained load duration to be 60 months or more. ACI 318-14 (Table 24.2.4.1.3)  

 

' = 0, conservatively. 

2
2

1 50 0
  

 
                    

2 0.353 0.706 mmcs     

     0.353 1 2 2.497 0.353 3.203 mmtotal lt
        

Table 8 shows long-term deflections for the exterior and interior spans for the analysis in the x-direction, for 

column and middle strips. 
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Table 8 - Long-Term Deflections 

Column Strip 

Span (Δsust)Inst, mm λΔ Δcs, mm (Δtotal)Inst, mm (Δtotal)lt, mm 

Exterior 0.353 2.000 0.706 2.497 3.203 

Interior 0.156 2.000 0.312 0.703 1.015 

Middle Strip 

Exterior 0.517 2.000 1.034 3.663 4.697 

Interior 0.479 2.000 0.958 2.153 3.111 

 

 

6. spSlab Software Program Model Solution 

spSlab program utilizes the Elastic Frame Method described and illustrated in details here for modeling, analysis 

and design of two-way concrete floor slab systems. spSlab uses the exact geometry and boundary conditions 

provided as input to perform an elastic stiffness (matrix) analysis of the equivalent frame taking into account the 

torsional stiffness of the slabs framing into the column. It also takes into account the complications introduced by 

a large number of parameters such as vertical and torsional stiffness of transverse beams, the stiffening effect of 

drop panels, column capitals, and effective contribution of columns above and below the floor slab using the of 

equivalent column concept (CSA A23.3-14 (13.8.2.6)).  

spSlab Program models the elastic frame as a design strip. The design strip is, then, separated by spSlab into 

column and middle strips. The program calculates the internal forces (Shear Force & Bending Moment), moment 

and shear capacity vs. demand diagrams for column and middle strips, instantaneous and long-term deflection 

results, and required flexural reinforcement for column and middle strips. The graphical and text results will be 

provided from the spSlab model in a future revision to this document.  

  

http://www.spslab.com/
http://www.spslab.com/
http://www.spslab.com/
http://www.spslab.com/
http://www.spslab.com/
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7. Summary and Comparison of Design Results 

Table 9 - Comparison of Moments obtained from Hand (EFM) and spSlab Solution (kN.m) 

  Hand (EFM) spSlab 

Exterior Span 

Beam Strip 

Exterior Negative* 87.39 90.42 

Positive 68.03 64.33 

Interior Negative* 99.96 108.59 

Column Strip 

Exterior Negative* 0.00 0.00 

Positive 21.47 20.30 

Interior Negative* 31.55 34.27 

Middle Strip 

Exterior Negative* 0.00 0.00 

Positive 33.55 31.72 

Interior Negative* 49.29 53.55 

Interior Span 

Beam Strip 
Interior Negative* 91.56 98.62 

Positive 54.17 49.05 

Column Strip 
Interior Negative* 28.90 31.13 

Positive 17.10 15.48 

Middle Strip 
Interior Negative* 45.15 48.64 

Positive 26.71 24.19 

* negative moments are taken at the faces of supports 
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Table 10 - Comparison of Reinforcement Results 

Span Location 

Reinforcement Provided 

for Flexure 

Additional Reinforcement  

Provided for Unbalanced 

Moment Transfer* 

Total 

Reinforcement  

Provided 

Hand spSlab Hand spSlab Hand spSlab 

Exterior Span 

Beam Strip 

Exterior 

Negative 
2 – 15M 2 – 25M  n/a n/a 2 – 15M 2 – 25M  

Positive 2 – 15M  2 – 25M  n/a n/a 2 – 15M  2 – 25M  

Interior 

Negative 
2 – 15M  2 – 25M  --- --- 2 – 15M  2 – 25M  

Column 

Strip 

Exterior 

Negative 
6 – 15M  6 – 15M  12 – 15M 12 – 15M 18 – 15M  18 – 15M  

Positive 6 – 15M  6 – 15M  n/a n/a 6 – 15M  6 – 15M  

Interior 

Negative 
6 – 15M  6 – 15M  --- --- 6 – 15M  6 – 15M  

Middle 

Strip 

Exterior 

Negative 
9 – 15M  9 – 15M  n/a n/a 9 – 15M  9 – 15M  

Positive 9 – 15M  9 – 15M  n/a n/a 9 – 15M  9 – 15M  

Interior 

Negative 
9 – 15M  9 – 15M  n/a n/a 9 – 15M  9 – 15M  

Interior Span 

Beam Strip Positive 2 – 15M  2 – 25M  n/a n/a 2 – 15M  2 – 25M  

Column 

Strip 
Positive 6 – 15M  6 – 15M  n/a n/a 6 – 15M  6 – 15M  

Middle 

Strip 
Positive 9 – 15M  9 – 15M  n/a n/a 9 – 15M  9 – 15M  

 

Table 11 - Comparison of Beam Shear Reinforcement Results 

Span Location 
Reinforcement Provided 

Hand spSlab 

End Span 

Exterior  6 – 10M @ 280 mm 6 – 10M @ 281 mm 

Interior  6 – 10M @ 280 mm 6 – 10M @ 281 mm 

Interior Span 

Interior  8 – 10M @ 280 mm 8 – 10M @ 281 mm 
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Table 12 - Comparison of Two-Way (Punching) Shear Check Results (around Columns Faces) 

Support 
b1, mm b2, mm bo, mm Vf, kN cAB, mm 

Hand spSlab Hand spSlab Hand spSlab Hand spSlab Hand spSlab 

Exterior 514 514 577 577 1604 1604 199.5 215.3 230.4 230.4 

Interior 577 577 577 577 2308 2308 458.0 460.4 288.5 288.5 

 

Support 
Jc, mm4 γv Munb, kN.m vu, MPa vc, MPa 

Hand spSlab Hand spSlab Hand spSlab Hand spSlab Hand spSlab 

Exterior 3.94×1010 3.94×1010 0.386 0.311 113.19 119.09 0.538 0.519 1.115 1.115 

Interior 4.50×1010 4.50×1010 0.400 0.400 19.00 22.74 0.639 0.652 2.201 1.201 

 

Table 13 - Comparison of Immediate Deflection Results (mm) 

Column Strip 

Span 
D D+LLsus D+LLfull LL 

Hand spSlab Hand spSlab Hand spSlab Hand spSlab 

Exterior 0.35 0.36 0.35 0.36 2.50 1.91 2.14 1.54 

Interior 0.16 0.17 0.16 0.17 0.70 0.88 0.55 0.71 

Middle Strip 

Span 
D D+LLsus D+LLfull LL 

Hand spSlab Hand spSlab Hand spSlab Hand spSlab 

Exterior 0.52 0.53 0.52 0.53 3.66 3.07 3.15 2.54 

Interior 0.48 0.50 0.48 0.50 2.15 2.35 1.67 1.85 

 

Table 14 - Comparison of Time-Dependent Deflection Results  

Column Strip 

Span 
λΔ Δcs, in. Δtotal, in. 

Hand spSlab Hand spSlab Hand spSlab 

Exterior 2.0 2.0 0.706 0.73 3.203 2.64 

Interior 2.0 2.0 0.312 0.34 1.015 1.22 

Middle Strip 

Span 
λΔ Δcs, in. Δtotal, in. 

Hand spSlab Hand spSlab Hand spSlab 

Exterior 2.0 2.0 1.03 1.06 4.70 4.13 

Interior 2.0 2.0 0.96 1.01 3.11 3.36 

 

In all of the hand calculations illustrated above, the results are in close or exact agreement with the automated 

analysis and design results obtained from the spSlab model. Excerpts of spSlab graphical and text output are given 

below for illustration. 
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8. Conclusions & Observations 

A slab system can be analyzed and designed by any procedure satisfying equilibrium and geometric compatibility. 

Three established methods are widely used. The requirements for two of them are described in detail in CSA 

A.23.3-14 Clause 13. 

 

Direct Design Method (DDM) is an approximate method and is applicable to two-way slab concrete floor systems 

that meet the stringent requirements of CSA A.23.3-14 (13.9.1). In many projects, however, these requirements 

limit the usability of the Direct Design Method significantly.  

 

The Elastic Frame Method (EFM) does not have the limitations of Direct Design Method. It requires more 

accurate analysis methods that, depending on the size and geometry can prove to be long, tedious, and time-

consuming. 

 

StucturePoint’s spSlab software program solution utilizes the Elastic Frame Method to automate the process 

providing considerable time-savings in the analysis and design of two-way slab systems as compared to hand 

solutions using DDM or EFM.  

 

Finite Element Method (FEM) is another method for analyzing reinforced concrete slabs, particularly useful for 

irregular slab systems with variable thicknesses, openings, and other features not permissible in DDM or EFM. 

Many reputable commercial FEM analysis software packages are available on the market today such as spMats. 

Using FEM requires critical understanding of the relationship between the actual behavior of the structure and 

the numerical simulation since this method is an approximate numerical method. The method is based on several 

assumptions and the operator has a great deal of decisions to make while setting up the model and applying loads 

and boundary conditions. The results obtained from FEM models should be verified to confirm their suitability 

for design and detailing of concrete structures. 

 

The following table shows a general comparison between the DDM, EFM and FEM. This table covers general 

limitations, drawbacks, advantages, and cost-time efficiency of each method where it helps the engineer in 

deciding which method to use based on the project complexity, schedule, and budget.  

 

 

 

 

 

 

http://www.spslab.com/
http://www.spmats.com/
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Applicable 

CSA 

A23.3-14 
Provision 

Limitations/Applicability 

Concrete Slab Analysis Method 

DDM 
(Hand) 

EFM 
(Hand//spSlab) 

FEM 
(spMats) 

13.8.1.1 
13.9.1.1 

Panels shall be rectangular, with ratio of 

longer to shorter panel dimensions, measured 

center-to-center supports, not exceed 2. 
   

13.8.1.1 

13.9.1.1 

For a panel with beams between supports on 

all sides, slab-to-beam stiffness ratio shall be 

satisfied for beams in the two perpendicular 
directions. 

   

13.8.1.1 
13.9.1.1 

Column offset shall not exceed 20% of the 

span in direction of offset from either axis 

between centerlines of successive columns 
   

13.8.1.1 

13.9.1.1 

The reinforcement is placed in an orthogonal 

grid. 
   

13.9.1.2 
Minimum of three continuous spans in each 

direction 
   

13.9.1.3 

Successive span lengths measured center-to-

center of supports in each direction shall not 

differ by more than one-third the longer span 
   

13.9.1.4 All loads shall be due to gravity only     

13.9.1.4 
All loads shall be uniformly distributed over 
an entire panel (qf) 

   

13.9.1.4 
Factored live load shall not exceed two times 

the factored dead load 
   

13.10.6 Structural integrity steel detailing    

13.10.10 Openings in slab systems    

8.2 Concentrated loads Not permitted   

13.8.4.1 Live load arrangement (Load Patterning) Not required Required 
Engineering judgment required 
based on modeling technique 

13.10.2* 
Reinforcement for unbalanced slab moment 

transfer to column (Msc) 

Moments @ 

support face 

Moments @ 

support centerline 

Engineering judgment required 

based on modeling technique  

13.8.2 
Irregularities (i.e. variable thickness, non-
prismatic, partial bands, mixed systems, 

support arrangement, etc.) 

Not permitted Engineering 
judgment required 

Engineering judgment required 

Complexity Low Average Complex to very complex 

Design time/costs Fast Limited Unpredictable/Costly 

Design Economy 

Conservative  

(see detailed 
comparison with 

spSlab output) 

Somewhat 

conservative 

Unknown - highly dependent on 

modeling assumptions: 
1. Linear vs. non-linear 

2. Isotropic vs non-isotropic 

3. Plate element choice 
4. Mesh size and aspect ratio 

5. Design & detailing features 

General (Drawbacks) 

Very limited 

applications 

Limited geometry Limited guidance non-standard 

application (user dependent). 
Required significant engineering 

judgment  

General (Advantages) 

Very limited 
analysis is required 

Detailed analysis is 
required or via 

software 

(e.g. spSlab) 

Unlimited applicability to handle 
complex situations permissible by 

the features of the software used 

(e.g. spMats) 
* The unbalanced slab moment transferred to the column Msc (Munb) is the difference in slab moment on either side of a column at a specific joint. 
In DDM only moments at the face of the support are calculated and are also used to obtain Msc (Munb). In EFM where a frame analysis is used, 

moments at the column center line are used to obtain Msc (Munb).  

 

 

 


