

Two-Way Flat Slab (Concrete Floor with Drop Panels) System Analysis and Design (CSA A23.3-14)

Two-Way Flat Slab (Concrete Floor with Drop Panels) System Analysis and Design (CSA A23.3-14)

Design the concrete floor slab system shown below for an intermediate floor considering partition weight = 1 kN/m^2 , and unfactored live load = 3 kN/m^2 . The lateral loads are independently resisted by shear walls. The use of flat plate system will be checked. If the use of flat plate is not adequate, the use of flat slab system with drop panels will be investigated. Flat slab concrete floor system is similar to the flat plate system. The only exception is that the flat slab uses drop panels (thickened portions around the columns) to increase the nominal shear strength of the concrete at the critical section around the columns. The Elastic Frame Method (EFM) shown in CSA A23.3-14 is used in this example. The hand solution from EFM is also used for a detailed comparison with the model results of <u>spSlab</u> engineering software program.

Contents

1.	Preliminary member sizing	1
2.	Flexural Analysis and Design	12
	2.1. Elastic Frame Method (EFM)	12
	2.1.1. Limitations for use of elastic frame method	13
	2.1.2. Frame members of elastic frame	13
	2.1.3. Elastic frame analysis	17
	2.1.4. Factored moments used for Design	18
	2.1.5. Distribution of design moments	20
	2.1.6. Flexural reinforcement requirements	20
	2.1.7. Factored moments in columns	24
3.	Design of Columns by spColumn	26
	3.1. Determination of factored loads	26
	3.2. Moment Interaction Diagram	28
4.	Shear Strength	31
	4.1. One-Way (Beam action) Shear Strength	31
	4.1.1. At distance d_v from the supporting column	31
	4.1.2. At the face of the drop panel	32
	4.2. Two-Way (Punching) Shear Strength	33
	4.2.1. Around the columns faces	33
	4.2.2. Around drop panels 37	
5.	Serviceability Requirements (Deflection Check)	39
	5.1. Immediate (Instantaneous) Deflections	39
	5.2. Time-Dependent (Long-Term) Deflections (Δ_{lt})	50
6.	spSlab Software Program Model Solution	51
7.	Summary and Comparison of Design Results	72
8.	Conclusions & Observations	75
	8.1. One-Way Shear Distribution to Slab Strips	75
	8.2. Two-Way Concrete Slab Analysis Methods	78

Code

Design of Concrete Structures (CSA A23.3-14) and Explanatory Notes on CSA Group standard A23.3-14 "Design of Concrete Structures"

Reference

CAC Concrete Design Handbook, 4th Edition, Cement Association of Canada

Design Data

Story Height = 4 m (provided by architectural drawings)

Superimposed Dead Load, $SDL = 1 \text{ kN/m}^2$

Live Load, $LL = 3 \text{ kN/m}^2$

 f_c ' = 35 MPa (for slab)

 f_c ' = 42 MPa (for columns)

 $f_y = 400 \text{ MPa}$

Solution

1. Preliminary member sizing

For slabs without Drop Panels

a. <u>Slab minimum thickness – Deflection</u>

CSA A23.3-14 (13.2.3)

CSA A23.3-14 (13.2.1)

CSA A23.3-14 (13.2.1)

In lieu of detailed calculation for deflections, CSA A23.3 Code gives minimum slab thickness for two-way construction without interior beams in *Clause 13.2.3*.

For this flat plate slab systems the minimum slab thicknesses per CSA A23.3-14 are:

l(0.6+	-f/1.000	
Exterior Panels: $h_{s,\min} = 1.1 \times \frac{h(1)}{2}$	$\frac{3}{20} = 311.7 \text{ mm}$	<u>CSA A23.3-14 (13.2.3)</u>
.,	30	

But not less than 120 mm.

Exterior Panels: $h_{s,\min} = \frac{l_n \left(0.6 + f_y / 1,000\right)}{30} = 283.3 \text{ mm}$ CSA A23.3-14 (13.2.3)

But not less than 120 mm.

Where $l_n =$ length of clear span in the long direction = 9,000 - 500 = 8,500 mm

Try 300 mm. slab for all panels (self-weight = $24 \text{ kN/m}^3 \times 0.3 \text{ m} = 7.2 \text{ kN/m}^2$)

b. <u>Slab shear strength – one way shear</u>

At a preliminary check level, the use of average effective depth would be sufficient. However, after determining the final depth of the slab, the exact effective depth will be used in flexural, shear and deflection calculations. Evaluate the average effective depth (Figure 2):

2

Where:

$$c_{clear} = 20 \text{ mm}$$

 $d_b = 16 \text{ mm}$ for 15M steel bar

Figure 2 - Two-Way Flat Concrete Floor System

Factored dead load, $w_{df} = 1.25 \times (7.2 + 1) = 10.25 \text{ kN/m}^2$ Factored live load, $w_{lf} = 1.5 \times 3 = 4.5 \text{ kN/m}^2$

Total factored load, $w_f = 14.75 \text{ kN/m}^2$

Check the adequacy of slab thickness for beam action (one-way shear)

At an interior column:

The critical section for one-way shear is extending in a plane across the entire width and located at a distance, d_v from the face of support or concentrated load (see Figure 3). Consider a 1 m wide strip

Tributary are for one-way shear is
$$A_{Tributary} = \left(\frac{\left[\left(\frac{9,000}{2}\right) - \left(\frac{500}{2}\right) - 264\right] \times (1,000)}{1,000^2}\right) = 3.986 \text{ m}^2$$

$$V_f = w_f \times A_{Tributary} = 14.75 \times 3.986 = 58.79 \text{ kN}$$
$$V_c = \varphi_c \lambda \beta \sqrt{f_c} b_w d_v \qquad CSA \ A23.3-14 \ (Eq.11.6)$$

CSA A23.3-14 (Annex C. Table C.1 a)

CSA A23.3-14 (13.3.6)

spislab

Where:

$\lambda = 1$ For normal weight concrete	<u>CSA A23.3-14 (8.6.5)</u>
$\beta = 0.21$ For slabs with overall thickness not greater than 350 mm	<u>CSA A23.3-14 (11.3.6.2)</u>
$d_v = Max (0.9d, 0.75h) = 237.6 \text{ mm}$	<u>CSA A23.3-14 (3.2)</u>
$\sqrt{f'_c} = 5.29 \text{ MPa} < 8 \text{ MPa}$	<u>CSA A23.3-14 (11.3.4)</u>
$V_c = 0.65 \times 1 \times 0.21 \times \sqrt{35} \times 1,000 \times \frac{237.6}{1,000} = 191.87 \text{ kN} > V_f$	

Slab thickness of 300 mm is adequate for one-way shear.

c. <u>Slab shear strength – two-way shear</u>

Check the adequacy of slab thickness for punching shear (two-way shear) at an interior column (Figure 4):

Tributary area for two-way shear is
$$A_{Tributary} = (9 \times 9) - \left(\frac{400 + 264}{1,000}\right)^2 = 80.42 \text{ m}^2$$

$$V_f = w_f \times A_{Tributary} = 80.42 \times 14.75 = 1,186.1 \text{ kN}$$

$$v_{f} = \frac{V_{f}}{b_{o}d} = \frac{1,186.1}{3,056 \times 264} = 1.47 \text{ MPa}$$

$$v_{r} = v_{c} = 0.38\lambda\phi_{c}\sqrt{f_{c}}$$

$$v_{c} = 0.38 \times 1 \times 0.65 \times \sqrt{35} = 1.46 \text{ MPa} > v_{f}$$

$$CSA A23.3-14 (13.3.4.1)$$

Slab thickness of 300 mm is not adequate for two-way shear. It is good to mention that the factored shear (V_f) used in the preliminary check does not include the effect of the unbalanced moment at supports. Including this effect will lead to an increase of V_f value as shown later in section 4.2.

In this case, four options could be used: 1) to increase the slab thickness, 2) to increase columns cross sectional dimensions or cut the spacing between columns (reducing span lengths), however, this option is assumed to be not permissible in this example due to architectural limitations, 3) to use headed shear reinforcement, or 4) to use drop panels. In this example, the latter option will be used to achieve better understanding for the design of two-way slab with drop panels often called flat slab.

Check the drop panel dimensional limitations as follows:

1) The additional thickness of the drop panel below the soffit of the slab (Δ_h) shall not be taken larger than h_s .

CSA A23.3-14 (13.2.4)

Since the slab thickness (h_s) is 260 mm (see page 7), the thickness of the drop panel should be at less than 260 mm.

Drop panel dimensions are also controlled by formwork considerations. The following Figure shows the standard lumber dimensions that are used when forming drop panels. Using other depths will unnecessarily increase formwork costs. The Δ_h dimension will be taken as the lumber dimension plus the thickness of one sheet of plywood (19 mm).

For nominal lumber size:

 $h_{dp} = 38 + 19 = 57 \text{ mm or } h_{dp} = 89 + 19 = 108 \text{ mm}$

Try $h_{dp} = 108 \text{ mm} < 260 \text{ mm}$

The total thickness including the slab and the drop panel (h) = $h_s + h_{dp} = 260 + 108 = 368$ mm

Nominal Lumber Size, mm	Actual Lumber Size, mm	Plyform Thickness, mm	h _{dp} , mm
2x	38	19	57
4x	89	19	108

Figure 5 – Drop Panel Formwork Details

CSA A23.3-14 (13.2.1)

CSA A23.3-14 (13.2.1)

For Flat Slab (with Drop Panels)

For slabs with changes in thickness and subjected to bending in two directions, it is necessary to check shear at multiple sections as defined in the <u>CSA A23.3-14</u>. The critical sections for two-way action shall be located with respect to:

1) Perimeter of the concentrated load or reaction area.	<u>CSA A.23.3-14 (13.3.3.1)</u>
2) Changes in slab thickness, such as edges of drop panels.	CSA A.23.3-14 (13.3.3.2)

a. <u>Slab minimum thickness – Deflection</u>

In lieu of detailed calculation for deflections, CSA A23.3 Code gives minimum slab thickness for two-way construction with drop panel in *Clause 13.2.4*.

For this flat plate slab systems the minimum slab thicknesses per CSA A23.3-14 are:

The value of $2x_d/l_n$ is not known at this point. The upper limit is 1/4. A reasonable preliminary estimate is 1/6.

Exterior Panels: $h_{s,\min} = 1.1 \times$	$\left(\frac{l_n \left(0.6 + f_y / 1,000\right)}{30}\right)$	$\left(\frac{l}{l_n}\right) = 272.1 \text{ mm}$	<u>CSA A23.3-14 (13.2.4)</u>
--	--	---	------------------------------

But not less than 120 mm.

Interior Panels: $h_{s,\min} = \frac{l_n \left(0.6 + f_y / 1,000 \right)}{30} - \frac{2x_d}{l_n} = 247.3 \text{ mm}$ <u>CSA A23.3-14 (13.2.4)</u>

But not less than 120 mm.

Where

 l_n = length of clear span in the long direction = 9,000 – 500 = 8,500 mm Try 260 mm slab for all panels Self-weight for slab section without drop panel = 24 kN/m³ × 0.26 m = 6.24 kN/m² Self-weight for slab section with drop panel = 24 kN/m³ × 0.368 m = 8.83 kN/m²

b. <u>Slab shear strength – one way shear</u>

For critical section at distance *d* from the edge of the column (slab section with drop panel): Evaluate the average effective depth:

$$d_{l} = h_{s} - c_{clear} - d_{b} - \frac{d_{b}}{2} = 368 - 20 - 16 - \frac{16}{2} = 324 \text{ mm}$$
$$d_{t} = h_{s} - c_{clear} - \frac{d_{b}}{2} = 368 - 20 - \frac{16}{2} = 340 \text{ mm}$$
$$d_{avg} = \frac{d_{l} + d_{t}}{2} = \frac{324 + 340}{2} = 332 \text{ mm}$$

Where:

 $c_{clear} = 20 \text{ mm}$

 $d_b = 16 \text{ mm}$ for 15M steel bar

Factored dead load $\rightarrow w_{df} = 1.25 \times (8.83 + 1) = 12.29 \text{ kN/m}^2$ CSA A23.3-14 (Annex C. Table C.1 a)

Factored live load $\rightarrow w_{lf} = 1.5 \times 3 = 4.5 \text{ kN/m}^2$

Total factored load $\rightarrow w_f = 12.29 + 4.5 = 16.79 \text{ kN/m}^2$

Check the adequacy of slab thickness for beam action (one-way shear) from the edge of the interior column

CSA A23.3-14 (13.3.6)

Consider a 1 m wide strip. The critical section for one-way shear is located at a distance d_{ν} , from the edge of the column (see Figure 7)

Tributary area for one-way shear is
$$A_{Tributary} = \left(\frac{\left[\left(\frac{9,000}{2}\right) - \left(\frac{500}{2}\right) - 299\right] \times (1,000)}{1,000^2}\right) = 3.95 \,\mathrm{m}^2$$

$$V_f = w_f \times A_{Tributary} = 16.79 \times 3.95 = 66.34$$
 kN

$$V_c = \varphi_c \lambda \beta \sqrt{f_c} b_w d_v \qquad CSA \ A23.3-14 \ (Eq. \ 11.6)$$

Where $\lambda = 1$ for normal weight concrete

This slab contains no transverse reinforcement and it is assumed the specified nominal maximum size of coarse aggregate is not less than 20 mm, β shall be taken as: <u>CSA A23.3-14 (11.3.6.3)</u>

$$\beta = \frac{230}{(1,000 + d_v)} = \frac{230}{(1,000 + 331.2)} = 0.173$$

$$d_v = Max \ (0.9d, \ 0.75h) = 299 \text{ mm}$$

$$V_c = 0.65 \times 1 \times 0.17 \times \sqrt{35} \times 1,000 \times \frac{299}{1,000} = 198.52 \text{ kN} > V_u$$

Slab thickness of 368 mm is adequate for one-way shear for the first critical section (from the edge of the column).

For critical section at the edge of the drop panel (slab section without drop panel):

Evaluate the average effective depth:

$$d_l = h_s - c_{clear} - d_b - \frac{d_b}{2} = 260 - 20 - 16 - \frac{16}{2} = 216 \text{ mm}$$

 $d_{t} = h_{s} - c_{clear} - \frac{d_{b}}{2} = 260 - 20 - \frac{16}{2} = 232 \text{ mm}$ $d_{avg} = \frac{d_{l} + d_{t}}{2} = \frac{216 + 232}{2} = 224 \text{ mm}$ Where: $c_{clear} = 20 \text{ mm}$

<u>CSA A23.3-14 (Annex A. Table 17)</u>

CSA A23.3-14 (Annex C. Table C.1 a)

 $d_b = 16 \text{ mm}$ for 15M steel bar

Factored dead load $\rightarrow w_{df} = 1.25 \times (6.24 + 1) = 9.05 \text{ kN/m}^2$

Factored live load $\rightarrow w_{lf} = 1.5 \times 3 = 4.5 \text{ kN/m}^2$

Total factored load $\rightarrow w_f = 9.05 + 4.5 = 13.55 \text{ kN/m}^2$

Check the adequacy of slab thickness for beam action (one-way shear) from the edge of the interior drop panel. <u>CSA A23.3-14 (13.3.6)</u>

Consider a 1 m wide strip. The critical section for one-way shear is located at a distance, d_v from the face of support (see Figure 7)

Tributary area for one-way shear is
$$A_{Tributary} = \left(\frac{\left[\left(\frac{9,000}{2}\right) - \left(\frac{3,000}{2}\right) - 202\right] \times (1,000)}{1,000^2}\right) = 2.80 \,\mathrm{m}^2$$

$$V_f = w_f \times A_{Tributary} = 13.55 \times 2.8 = 37.92 \text{ kN}$$

$$V_c = \varphi_c \lambda \beta \sqrt{f_c} b_w d_v \qquad \underline{CSA \ A23.3-14 \ (Eq. \ 11.6)}$$

Where $\lambda = 1$ for normal weight concrete

 $\beta = 0.21 \text{ for slabs with overall thickness not greater than 350 mm} \qquad \frac{CSA \ A23.3-14 \ (11.3.6.2)}{CSA \ A23.3-14 \ (3.2)}$ $\sqrt{f'_{c}} = 5.29 \text{ MPa} < 8 \text{ MPa} \qquad \frac{CSA \ A23.3-14 \ (11.3.4)}{CSA \ A23.3-14 \ (11.3.4)}$

$$V_c = 0.65 \times 1 \times 0.21 \times \sqrt{35} \times 1,000 \times \frac{202}{1,000} = 180.9 \text{ kN} > V_f$$

Slab thickness of 260 mm is adequate for one-way shear for the second critical section (from the edge of the drop panel).

c. <u>Slab shear strength – two-way shear</u>

For critical section at distance *d*/2 from the edge of the column (slab section with drop panel):

Check the adequacy of slab thickness for punching shear (two-way shear) at an interior column (Figure 8):

Tributary area for two-way shear is $A_{Tributary} = (9 \times 9) - (0.5 + 0.224)^2 = 80.31 \text{ m}^2$

$$V_f = w_f \times A_{Tributary} = 16.79 \times 80.31 = 1,348.37$$
 kN

$$v_{f} = \frac{V_{f}}{b_{o}d} = \frac{1,348.4}{3,328 \times 332} = 1.22 \text{ MPa}$$
$$v_{r} = v_{c} = 0.38\lambda\phi_{c}\sqrt{f_{c}}$$
$$v_{c} = 0.38 \times 1 \times 0.65 \times \sqrt{35} = 1.46 \text{ MPa} > v_{f}$$

CSA A23.3-14 (13.3.4.1)

Tributary area for two-way shear is $A_{Tributary} = (9 \times 9) - (3 + 0.224)^2 = 70.61 \text{ m}^2$

$$V_{f} = w_{f} \times A_{Tributary} = 13.55 \times 70.61 = 956.7 \text{ kN}$$

$$v_{f} = \frac{V_{f}}{b_{o}d} = \frac{956.7}{12,896 \times 224} = 0.33 \text{ MPa}$$

$$v_{r} = v_{c} = 0.38\lambda\phi_{c}\sqrt{f_{c}}$$

$$v_{c} = 0.38 \times 1 \times 0.65 \times \sqrt{35} = 1.46 \text{ MPa} > v_{f}$$

Slab thickness of 260 mm is adequate for two-way shear for the first critical section (from the edge of the column).

For critical section at the edge of the drop panel (slab section without drop panel):

Check the adequacy of slab thickness for punching shear (two-way shear) at an interior drop panel (Figure 8):

Tributary area for two-way shear is $A_{Tributary} = (9 \times 9) - (3 + 0.224)^2 = 70.61 \text{ m}^2$

$$V_{f} = w_{f} \times A_{Tributary} = 13.55 \times 70.61 = 956.7 \text{ kN}$$

$$v_{f} = \frac{V_{f}}{b_{o}d} = \frac{956.7}{12,896 \times 224} = 0.33 \text{ MPa}$$

$$v_{r} = v_{c} = 0.38\lambda\phi_{c}\sqrt{f_{c}}$$

$$v_{c} = 0.38 \times 1 \times 0.65 \times \sqrt{35} = 1.46 \text{ MPa} > v_{f}$$

Slab thickness of 260 mm is adequate for two-way shear for the second critical section (from the edge of the drop panel).

Figure 8 - Critical Sections for Two-Way Shear

d. Column dimensions - axial load

Check the adequacy of column dimensions for axial load:

Tributary area for interior column for live load, superimposed dead load, and self-weight of the slab is

 $A_{Tributary} = 9 \times 9 = 81 \text{ m}^2$

Tributary area for interior column for self-weight of additional slab thickness due to the presence of the drop panel is

 $A_{Tributary} = 3 \times 3 = 9 \text{ m}^2$

Assuming five story building

$$\begin{split} P_{f} &= n \times w_{f} \times A_{Tributary} = 5 \times \left(13.55 \times 81 + 3.24 \times 9\right) = 5,633.5 \text{ kN} \\ \text{Assume 500 mm square column with } 12 - 30\text{M vertical bars with design axial strength, } P_{r,max} \text{ of} \\ P_{r,max} &= (0.2 + 0.002h)P_{ro} \leq 0.80P_{ro} \text{ (For tied column along full length)} \\ P_{ro} &= \alpha_{1} \phi_{c} f_{c} (A_{g} - A_{st} - A_{t} - A_{p}) + \phi_{s} f_{y} A_{st} + \phi_{\alpha} F_{y} A_{t} - f_{pr} A_{p} \\ P_{ro} &= 0.8 \times 0.65 \times 35 \times (500 \times 500 - 8 \times 700) + 0.85 \times 400 \times (12 \times 700) + 0 = 7,239.4 \text{ kN} \\ P_{r,max} &= (0.2 + 0.002 \times 500) \times 7,239.4 \leq 0.80 \times 7,239.4 \\ P_{r,max} &= 5,791.5 \text{ kN} < P_{f} \end{split}$$

Where:

$$\alpha_1 = 0.85 - 0.0015 f'_c = 0.85 - 0.0015 \times 35 = 0.8 > 0.67$$

CSA A23.3-14 (Eq. 10.1)

Column dimensions of 500 mm \times 500 mm are adequate for axial load.

2. Flexural Analysis and Design

CSA A23.3 states that a slab system shall be designed by any procedure satisfying equilibrium and geometric compatibility, provided that strength and serviceability criteria are satisfied. Distinction of two-systems from one-way systems is given by <u>CSA A23.3-14 (3.2.2)</u>

CSA A23.3-14 permits the use of Direct Design Method (DDM) and Elastic Frame Method (EFM) for the gravity load analysis of orthogonal frames and is applicable to flat plates, flat slabs, and slabs with beams. The following sections outline the solution per EFM and spSlab software. For the solution per DDM, check the flat plate example.

2.1. Elastic Frame Method (EFM)

EFM (as known as Equivalent Frame Method in the ACI 318) is the most comprehensive and detailed procedure provided by the CSA A23.3 for the analysis and design of two-way slab systems where these systems may, for purposes of analysis, be considered a series of plane frames acting longitudinally and transversely through the

building. Each frame shall be composed of equivalent line members intersecting at member centerlines, shall follow a column line, and shall include the portion of slab bounded laterally by the centerline of the panel on each side.

CSA A23.3-14 (13.8.1.1)

Probably the most frequently used method to determine design moments in regular two-way slab systems is to consider the slab as a series of two-dimensional frames that are analyzed elastically. When using this analogy, it is essential that stiffness properties of the elements of the frame be selected to properly represent the behavior of the three-dimensional slab system.

2.1.1. Limitations for use of elastic frame method

In EFM, live load shall be arranged in accordance with 13.8.4 which requires slab systems to be analyzed and designed for the most demanding set of forces established by investigating the effects of live load placed in various critical patterns. CSA A23.3-14 (13.8.4) Complete analysis must include representative interior and exterior equivalent elastic frames in both the longitudinal and transverse directions of the floor. CSA A23.3-14 (13.8.1.1) Panels shall be rectangular, with a ratio of longer to shorter panel dimensions, measured center-to-center of CSA A23.3-14 (13.2.2) supports, not to exceed 2. For slab systems with beams between supports, the relative effective stiffness of beams in the two directions is not less than 0.2 or greater than 2. CSA A23.3-14 (13.2.2) Column offsets are not greater than 20% of the span (in the direction of offset) from either axis between centerlines of successive columns. CSA A23.3-14 (13.2.2) CSA A23.3-14 (13.2.2) The reinforcement is placed in an orthogonal grid.

2.1.2. Frame members of elastic frame

Determine moment distribution factors and fixed-end moments for the equivalent frame members. The moment distribution procedure will be used to analyze the equivalent frame. Stiffness factors k, carry over factors COF, and fixed-end moment factors FEM for the slab-beams and column members are determined using the design aids tables at <u>Appendix 20A of PCA Notes on ACI 318-11</u>. These calculations are shown below.

a. Flexural stiffness of slab-beams at both ends, K_{sb} .

$$\frac{c_{\scriptscriptstyle N1}}{\ell_1} = \frac{500}{9,000} = 0.056 \ , \ \frac{c_{\scriptscriptstyle N2}}{\ell_2} = \frac{500}{9,000} = 0.056$$

For $c_{F1} = c_{N1}$, stiffness factors, $k_{NF} = k_{FN} = 5.55$

Thus,
$$K_{sb} = k_{NF} \frac{E_{cs}I_s}{\ell_1} = 5.55 \frac{E_{cs}I_s}{\ell_1}$$

PCA Notes on ACI 318-11 (Table A2&3)

PCA Notes on ACI 318-11 (Table A2&3)

$$K_{sb} = 5.55 \times 29,002 \times \frac{1.32 \times 10^{10}}{9,000} = 2.36 \times 10^{8} \text{ N.m}$$
Where, $I_{s} = \frac{\ell_{s}h^{3}}{12} = \frac{9,000 \times (260)^{3}}{12} = 1.32 \times 10^{10} \text{ mm}^{4}$

$$E_{cs} = (3,300\sqrt{f_{c}} + 6,900) \left(\frac{\gamma_{c}}{2,300}\right)^{1.5} = 29,002 \text{ MPa}$$

$$E_{cs} = (3,300\sqrt{35} + 6,900) \left(\frac{2,447}{2,300}\right)^{1.5} = 29,002 \text{ MPa}$$
Carry-over factor $COF = 0.576$
Fixed-end moment, $FEM = \sum_{i=1}^{n} m_{NFi} \times w_{i} \times l_{1}^{2}$

$$\frac{PCA \text{ Notes on ACI 318-11 (Table A2\&3)}}{PCA \text{ Notes on ACI 318-11 (Table A2\&3)}}$$
Uniform load fixed end moment coefficient, $m_{NFI} = 0.0913$
Fixed end moment coefficient for (b-a) = 0.2 when a = 0, $m_{NF2} = 0.0163$
Fixed end moment coefficient for (b-a) = 0.2 when a = 0.8, $m_{NF3} = 0.0163$

The coefficient of fixed end moment for (b-a) = 0.2 when a = 0.8 is taken as 0.0163 in order to be conservative and take the upper bound and be conservative.

b. Flexural stiffness of column members at both ends, K_c .

Referring to Table A7, Appendix 20A,

For the Bottom Column (Below):

$$t_a = 260/2 + 108 = 238 \text{ mm}, t_b = 260/2 = 130 \text{ mm}$$

$$\frac{t_a}{t_b} = \frac{238}{130} = 1.83$$

H = 4 m = 4,000 mm, $H_c = 4,000 \text{ mm} - 260 \text{ mm} - 108 \text{ mm} = 3,632 \text{ mm}$

$$\frac{H}{H_c} = \frac{4,000}{3,632} = 1.10$$

Thus, $k_{AB} = 5.31$ and $C_{AB} = 0.55$ by interpolation.

$$K_{c,bottom} = \frac{5.31E_{cc}I_c}{\ell_c}$$

PCA Notes on ACI 318-11 (Table A7)

$$K_{c,bottom} = 5.31 \times 31,047 \times \frac{5.21 \times 10^9}{4,000 \times 1,000} = 2.15 \times 10^8 \text{ N.m}$$

Where
$$I_c = \frac{c^4}{12} = \frac{(500)^4}{12} = 5.21 \times 10^9 \text{ mm}^4$$

$$E_{cc} = (3,300\sqrt{f_c} + 6,900) \left(\frac{\gamma_c}{2,300}\right)^{1.5}$$
$$E_{cc} = (3,300\sqrt{42} + 6,900) \left(\frac{2,447}{2,300}\right)^{1.5} = 31,047 \text{ MPa}$$
$$l_c = 4 \text{ m} = 4,000 \text{ mm}$$

For the Top Column (Above):

$$\frac{t_b}{t_a} = \frac{130}{238} = 0.55$$
$$\frac{H}{H_c} = \frac{4,000}{3,632} = 1.10$$

 $K_{ec} = 1.76 \times 10^8$ N.m

Thus, $k_{BA} = 4.88$ and $C_{BA} = 0.6$ by interpolation.

$$K_{c} = \frac{4.88E_{cc}I_{c}}{\ell_{c}}$$

$$\frac{PCA \ Notes \ on \ ACI \ 318-11 \ (Table \ A7)}{R_{c,top}}$$

$$K_{c,top} = 4.88 \times 31,047 \times \frac{5.21 \times 10^{9}}{4,000 \times 1,000} = 1.97 \times 10^{8} \ \text{N.m}$$

c. Torsional stiffness of torsional members, K_t .

$$\begin{split} K_t &= \frac{9E_{cs}C}{\ell_t \left(1 - \frac{C_2}{\ell_t}\right)^3} & \frac{CSA \ A23.3 - 14(13.8.2.8)}{\ell_t \left(1 - \frac{C_2}{\ell_t}\right)^3} \\ K_t &= \frac{9 \times 29,002 \times 4.45 \times 10^9}{9,000 \times (1 - 500 / 9,000)^3 \times 1,000} = 1.53 \times 10^8 \text{ N.m} \end{split}$$

$$\begin{aligned} \text{Where } C &= \sum \left(1 - 0.63 \frac{x}{y}\right) \left(\frac{x^3 y}{3}\right) & \frac{CSA \ A23.3 - 14(13.8.2.9)}{2} \\ C &= \left(1 - 0.63 \times \frac{368}{500}\right) \left(368^3 \times \frac{500}{3}\right) = 4.45 \times 10^9 \text{ mm}^4 \\ c_2 &= 500 \text{ mm}, \ \ell_2 &= 9 \text{ m} = 9,000 \text{ mm} \\ \text{Equivalent column stiffness } K_{ec}. \\ K_{ec} &= \frac{\sum K_c \times \sum K_t}{\sum K_c + \sum K_t} \\ K_{ec} &= \frac{(1.97 + 1.15)(2 \times 1.53)}{[(2.15 + 1.97) + (2 \times 1.53)]} \times 10^8 \end{split}$$

Where $\sum K_t$ is for two torsional members one on each side of the column, and $\sum K_c$ is for the upper and lower columns at the slab-beam joint of an intermediate floor.

Figure 9 – Torsional Member

d. Slab-beam joint distribution factors, DF.

At exterior joint,

$$DF = \frac{2.36}{(1.76 + 2.36)} = 0.57$$

At interior joint,

$$DF = \frac{2.36}{(2.36 + 2.36 + 1.76)} = 0.36$$

COF for slab-beam =0.576

PCA Notes on ACI 318-11 (Table A1)

2.1.3. Elastic frame analysis

Determine negative and positive moments for the slab-beams using the moment distribution method. Since the unfactored live load does not exceed three-quarters of the unfactored dead load, design moments are assumed to occur at all critical sections with full factored live on all spans. <u>CSA A23.3-14 (13.8.4.2)</u>

$$\frac{L}{D} = \frac{3}{(6.24+1)} = 0.41 < \frac{3}{4}$$

a. Factored load and Fixed-End Moments (FEM's).

For slab:

Factored dead load $w_{df} = 1.25 \times (6.24 + 1) = 9.05 \text{ kN/m}^2$ Factored live load $w_{lf} = 1.5 \times 3 = 4.5 \text{ kN/m}^2$ Factored load $w_f = w_{df} + w_{lf} = 13.55 \text{ kN/m}^2$

For drop panels:

Factored dead load $w_{df} = 1.25 \times (24 \times 0.108) = 3.24 \text{ kN/m}^2$

Factored live load $w_{lf} = 1.5 \times 0 = 0 \text{ kN/m}^2$

Factored load $w_f = w_{df} + w_{lf} = 3.24 \text{ kN/m}^2$ Fixed-end moment, $FEM = \sum_{i=1}^n m_{NFi} \times w_i \times l_1^2$

 $FEM = 0.0913 \times 13.55 \times 9 \times 9^{2} + 0.0163 \times 3.24 \times (9/6) \times 9^{2} + 0.0163 \times 3.24 \times (9/3) \times 9^{2}$

$$FEM = 914.9 \text{ kN.m}$$

b. Moment distribution. Computations are shown in Table 1. Counterclockwise rotational moments acting on the member ends are taken as positive. Positive span moments are determined from the following equation:

$$M_{f,midspan} = M_o - \frac{(M_{uL} + M_{uR})}{2}$$

Where M_o is the moment at the midspan for a simple beam.

When the end moments are not equal, the maximum moment in the span does not occur at the midspan, but its value is close to that midspan for this example (6% difference compared with the exact value from spSlab).

Positive moment in span 1-2:

$$M_{u} = (13.55 \times 9) \frac{9^{2}}{8} + 2 \times \left[\frac{(3.24 \times 9/6) \times 9/6}{2 \times 9} \times 9/6 \times (9-9/2) \right] - \frac{(428.6 + 1093.2)}{2}$$
$$M_{e} = 479.3 \text{ kN.m}$$

Table 1 - Moment Distribution for Equivalent Frame							
(+ + 1	<i>ه</i>	2	3	2	4		
Ioint	1	ntn.	, 4	m.	2	1	
Member	1_2	2_1	2_3	3_2	3_1	4	
DF	0.573	0.364	0.364	0.364	0.364	0.573	
COF	0.575	0.504	0.576	0.504	0.504	0.575	
FFM	914.9	-914 9	914.9	-914 9	914.9	-914 9	
Dist	-523.8	0.0	0.0	0.0	0.0	523.8	
CO	0.0	-301.8	0.0	0.0	301.8	0.0	
Dist	0.0	109.9	109.9	-109.9	-109.9	0.0	
CO	63.3	0.0	-63.3	63.3	0.0	-63.3	
Dist	-36.3	23.1	23.1	-23.1	-23.1	36.3	
CO	13.3	-20.9	-13.3	13.3	20.9	-13.3	
Dist	-7.6	12.4	12.4	-12.4	-12.4	7.6	
CO	7.2	-4.4	-7.2	7.2	4.4	-7.2	
Dist	-4.1	4.2	4.2	-4.2	-4.2	4.1	
CO	2.4	-2.4	-2.4	2.4	2.4	-2.4	
Dist	-1.4	1.7	1.7	-1.7	-1.7	1.4	
CO	1.0	-0.8	-1.0	1.0	0.8	-1.0	
Dist	-0.6	0.7	0.7	-0.7	-0.7	0.6	
CO	0.4	-0.3	-0.4	0.4	0.3	-0.4	
Dist	-0.2	0.3	0.3	-0.3	-0.3	0.2	
CO	0.1	-0.1	-0.1	0.1	0.1	-0.1	
Dist	-0.1	0.1	0.1	-0.1	-0.1	0.1	
CO	0.1	-0.1	-0.1	0.1	0.1	-0.1	
Dist	0.0	0.0	0.0	0.0	0.0	0.0	
M, kN.m	428.6	-1093.2	979.5	-979.5	1093.2	-428.6	
Midspan M, kN.m	47	9.3	26	0.8	47	3.9	

2.1.4. Factored moments used for Design

Positive and negative factored moments for the slab system in the direction of analysis are plotted in Figure 12. The negative moments used for design are taken at the faces of supports (rectangle section or equivalent rectangle for circular or polygon sections) but not at distances greater than 0.175 l_1 from the centers of supports. <u>CSA A23.3-14 (13.8.5.1)</u>

 $500 \text{ mm} < 0.175 \times 9,000 = 1,575 \text{ mm}$ (use face of supporting location)

Figure 12 - Positive and Negative Design Moments for Slab-Beam (All Spans Loaded with Full Factored Live Load)

2.1.5. Distribution of design moments

Check Applicability of Direct Design Method:

1. There is a minimum of three continuous spans in each direction.	<u>CSA A23.3-14 (13.9.1.2)</u>
2. Successive span lengths are equal.	<u>CSA A23.3-14 (13.9.1.3)</u>
3. Loads are uniformly distributed over the entire panel	<u>CSA A23.3-14 (13.9.1.4)</u>
4. Factored live-to-dead load ratio of $0.5 < 2.0$	<u>CSA A23.3-14 (13.9.1.4)</u>

(Note: The self-weight of the drop panels is not uniformly distributed entirely along the span. However, the variation in load magnitude is small).

After the negative and positive moments have been determined for the slab-beam strip, the ACI code permits the distribution of the moments at critical sections to the column strips, beams (if any), and middle strips in accordance with the DDM. <u>CSA A23.3-14 (13.11.2.2)</u>

Table 2 - Distribution of factored moments								
		Slab-beam Strip Column Strip		Middle Strip				
		Moment (kN.m)	Percent Momen (kN.m		Percent	Moment (kN.m)		
	Exterior Negative	310.09	100	310.09	0	0.00		
End Span	Positive	479.32	60	287.59	40	191.73		
	Interior Negative	937.84	82.5	773.72	17.5	164.12		
Interior Span	Negative	842.53	82.5	695.09	17.5	147.44		
interior span	Positive	260.75	60	156.45	40	104.30		

Distribution of factored moments at critical sections is summarized in Table 2.

2.1.6. Flexural reinforcement requirements

a. Determine flexural reinforcement required for strip moments

The flexural reinforcement calculation for the column strip of end span – exterior negative location is provided below.

 $M_f = 310.09 \text{ kN.m}$

Use $d_{avg} = 332 \text{ mm}$

In this example, jd is assumed equal to 0.98d. The assumption will be verified once the area of steel in finalized.

Assume $jd = 0.98 \times d = 325.4$ mm

Column strip width, b = 9,000 / 2 = 4,500 mm

Middle strip width, b = 9,000 - 4,500 = 4,500 mm

$$A_s = \frac{M_f}{\varphi_s f_y jd} = \frac{310.9 \times 10^6}{0.85 \times 400 \times 325.4} = 2,803 \text{ mm}^2$$

CSA A23.3-14 (10.1.7)

 $\alpha_1 = 0.85 - 0.0015 f_c = 0.80 > 0.67$

Recalculate 'a' for the actual $A_s = 2803 \text{ mm}^2 \rightarrow a = \frac{\phi_s A_s f_y}{\phi_c \alpha_1 f'_c b} = \frac{0.85 \times 2834 \times 400}{0.65 \times 0.80 \times 35 \times 4,500} = 11.67 \text{ mm}$

$$jd = d - \frac{a}{2} = 0.98d$$

Therefore, the assumption that jd equals to 0.98d is valid.

The slab have two thicknesses in the column strip (368 mm for the slab with the drop panel and 260 mm for the slab without the drop panel).

The weighted slab thickness:

$$h_{w} = \frac{368 \times (9/3) + 260 \times (9/2 - 9/3)}{(9/3) + (9/2 - 9/3)} = 332 \text{ mm}$$

 $A_{\rm s,min} = 0.002 \times 4500 \times 332 = 2988 \text{ mm}^2 > 2814 \text{ mm}^2$

<u>CSA A23.3-14 (7.8.1)</u>

332 mm

9/2 m

Maximum spacing:

CSA A23.3-14 (13.10.4)

- Negative reinforcement in the band defined by b_b : $1.5h_w = 498 \text{ mm} \le 250 \text{ mm}$
- Remaining negative moment reinforcement: $3h_w = 996 \text{ mm} \le 500 \text{ mm}$

For the negative reinforcements at the exterior span the maximum spacing is 250 mm. To distribute the bars uniformly, the same minimum spacing is applied to the remaining negative moment reinforcements within the column.

Reinforcement for the total factored negative moment transferred to the exterior columns shall be placed within a band width b_b . Temperature and shrinkage reinforcement determined as specified in Clause 7.8.1 shall be provided in that section of the slab outside if the band region defined by b_b .

CSA A23.3-14 (13.10.3)

 $b_b = 500 + 2 \times (1.5 \times 368) = 1,604 \text{ mm}$

Provide 10 - 15 M bars with $A_s = 3,000$ mm² within b_b width and 9 - 15 M bars with $A_s = 1,800$ mm² out of the band. Based on the procedure outlined above, values for all span locations are given in Table 3.

Table 3 - Required Slab Reinforcement for Flexure [Equivalent Frame Method (EFM)]								
Span Location		Mu (kN.m)	b (mm)	d (mm)	As Req'd for flexure (mm ²)	Min As (mm ²)	Reinforceme nt Provided	A _s Prov. for flexure (mm ²)
				End S	pan			
	Exterior Negative	310.10	4,500	332	2,803	2,988	24-15M*	4,800
Column Strip	Positive	287.60	4,500	224	3,933	2,340	21-15M	4,200
Sulp	Interior Negative	773.72	4,500	332	7,204	2,988	37-15M	7,400
	Exterior Negative	0.0	4,500	224	0.0	2,340	12-15M*	2,400
Middle Strip	Positive	191.7	4,500	224	2,579	2,340	14-15M	2,800
Sulp	Interior Negative	164.12	4,500	224	2,207	2,340	12-15M*	2,400
				Interior	Span			
Column Strip	Positive	156.45	180	224	2,096	2340	12-15M*	2,400
Middle Strip	Positive	104.30	180	224	1,387	2340	12-15M*	2,400
* Design	governed by minimu	n reinforcem	ent					

b. Calculate additional slab reinforcement at columns for moment transfer between slab and column by flexure

The factored slab moment resisted by the column ($\gamma_f \times M_f$) shall be assumed to be transferred by flexure. When gravity load, wind, earthquake, or other lateral forces cause transfer of moment between slab and column, a fraction of unbalanced moment given by γ_f shall be transferred by flexural reinforcement placed within a width b_b . $\underline{CSA A23.3-14 (13.10.2)}$

Portion of the unbalanced moment transferred by flexure is $\gamma_f \times M_r$

$$\gamma_f = \frac{1}{1 + (2/3) \times \sqrt{b_1/b_2}}$$
CSA A23.3-14 (13.10.2)

Where

- b_1 = Width of the critical section for shear measured in the direction of the span for which moments are determined according to CSA A23.3-14, clause 13 (see the following figure).
- b_2 = Width of the critical section for shear measured in the direction perpendicular to b1 according to CSA A23.3-14, clause 13 (see the following figure).

 $b_b =$ Effective slab width $= c_2 + 3 \times h_s$

CSA A23.3-14 (3.2)

Critical shear perimeter for interior column

Critical shear perimeter for exterior column

Critical shear perimeter for corner column

Figure 13 - Critical Shear Perimeters for Columns

For exterior support:

d = 332 mm $b_1 = c_1 + d/2 = 500 + 332/2 = 666 \text{ mm}$ $b_2 = c_2 + d = 500 + 332 = 832 \text{ mm}$ $b_b = 500 + 3 \times 368 = 1,604 \text{ mm}$ $\gamma_f = \frac{1}{1 + (2/3) \times \sqrt{666/832}} = 0.626$ $\gamma_f M_{sc} = 0.626 \times 428.6 = 268.4 \text{ kN.m}$

Using the same procedure in 2.1.6.a, the required area of steel:

 $A_s = 2,412 \text{ mm}^2$

The area of steel provided to resist the flexural moment within the effective slab width b_b :

 $A_{s, provided} = 3,000 \text{ mm}^2$

Then, there is no need to add additional reinforcement for the unbalanced moment.

Based on the procedure outlined above, values for all supports are given in Table 4.

Table 4 - Additional Slab Reinforcement required for moment transfer between slab and column (EFM)									
Span Location		M _{sc} * (kN.m)	γf	γ _f M _{sc} (kN.m)	Effective slab width, b _b (mm)	d (mm)	A _s req'd within b _b (mm ²)	${f A_s}$ prov. For flexure within b _b $({f mm^2})$	Add'l Reinf.
				En	d Span				
Column Stein	Exterior Negative	428.6	0.626	268.4	1,604	332	2,412	3,000	-
Column Strip	Interior Negative	113.8	0.60	68.3	1,604	332	607	3,000	-
*Msc is taken at the centerline of the support in Equivalent Frame Method solution.									

2.1.7. Factored moments in columns

The unbalanced moment from the slab-beams at the supports of the equivalent frame are distributed to the support columns above and below the slab-beam in proportion to the relative stiffness of the support columns. Referring to Figure 12, the unbalanced moment at the exterior and interior joints are:

Exterior Joint = +428.6 kN.m

Joint 2= -1,093.2 + 979.5 = -113.7 kN.m

The stiffness and carry-over factors of the actual columns and the distribution of the unbalanced slab moments (M_{sc}) to the exterior and interior columns are shown in the following figure.

INTERIOR COLUMN

For Bottom column (Below):
M _{col,Exterior} = 202.73 kN.m
$M_{col,Interior} = 53.82 \text{ kN.m}$

The moments determined above are combined with the factored axial loads (for each story) and factored moments in the transverse direction for design of column sections. The moment values at the face of interior, exterior, and corner columns from the unbalanced moment values are shown in the following table.

Table 5 – Factored Moments in Columns			
M _u kN.m	Column Location		
	Interior	Exterior	Corner
Mux	54.57	205.5	117.17
Muy	54.57	54.57	117.17

3. Design of Columns by spColumn

This section includes the design of interior, edge, and corner columns using <u>spColumn</u> software. The preliminary dimensions for these columns were calculated previously in section one.

3.1. Determination of factored loads

Interior Column:

Assume 5 story building

Tributary area for interior column for live load, superimposed dead load, and self-weight of the slab is

 $A_{Tributary} = 9 \times 9 = 81 \text{ m}^2$

Tributary area for interior column for self-weight of additional slab thickness due to the presence of the drop panel is

 $A_{Tributary} = 3 \times 3 = 9 \text{ m}^2$

Assuming five story building

$$P_f = n \times w_f \times A_{Tributary} = 5 \times (13.55 \times 81 + 9 \times 3.24) = 5,633.5 \text{ kN}$$

 $M_{f,x} = 54.57$ kN.m (see the previous Table)

 $M_{f,y} = 54.57$ kN.m (see the previous Table)

Edge (Exterior) Column:

Tributary area for edge column for live load, superimposed dead load, and self-weight of the slab is

$$A_{Tributary} = \left(\frac{9}{2} + \frac{0.5}{2}\right) \times 9 = 42.75 \text{ m}^2$$

Tributary area for edge column for self-weight of additional slab thickness due to the presence of the drop panel is

$$A_{Tributary} = \left(\frac{3}{2} + \frac{0.5}{2}\right) \times 3 = 5.25 \text{ m}^2$$
$$P_f = n \times w_f \times A_{Tributary} = 5 \times (13.55 \times 42.75 + 3.24 \times 5.25) = 2,981.4 \text{ kN}$$

 $M_{f,x} = 205.5$ kN.m (see the previous Table)

 $M_{f,y} = 54.57$ kN.m (see the previous Table)

Corner Column:

Tributary area for corner column for live load, superimposed dead load, and self-weight of the slab is

$$A_{Tributary} = \left(\frac{9}{2} + \frac{0.5}{2}\right) \times \left(\frac{9}{2} + \frac{0.5}{2}\right) = 22.56 \text{ m}^2$$

Tributary area for corner column for self-weight of additional slab thickness due to the presence of the drop panel is

$$A_{Tributary} = \left(\frac{3}{2} + \frac{0.5}{2}\right) \times \left(\frac{3}{2} + \frac{0.5}{2}\right) = 3.06 \text{ m}^2$$
$$P_f = n \times w_f \times A_{Tributary} = 5 \times (13.55 \times 22.56 + 3.24 \times 3.24) = 1,578.2 \text{ kN}$$

 $M_{u,x} = 117.2$ kN.m (see the previous Table)

 $M_{u,y} = 117.2$ kN.m (see the previous Table)

Structure Point CONCRETE SOFTWARE SOLUTIONS

3.2. Moment Interaction Diagram

Interior Column:

Edge Column:

Corner Column:

31

Shear Strength 4.

Shear strength of the slab in the vicinity of columns/supports includes an evaluation of one-way shear (beam action) and two-way shear (punching) in accordance with CSA A23.3-14 Chapter 13.

4.1. One-Way (Beam action) Shear Strength

One-way shear is critical at a distance d from the face of the column as shown in Figure 3. Figures 15 and 16 show the factored shear forces (V_f) at the critical sections around each column and each drop panel, respectively. In members without shear reinforcement, the design shear capacity of the section equals to the design shear capacity of the concrete:

$$V_r = V_c + V_s + V_p = V_c$$
, $(V_s = V_p = 0)$
CSA A23.3-14 (Eq. 11.4)

Where:

Note: The calculations below follow one of two possible approaches for checking one-way shear. Refer to the conclusions section for a comparison with the other approach.

4.1.1. At distance d_v from the supporting column

$$h_{weighted} = \frac{368 \times 9/3 + 260 \times (9 - 9/3)}{9} = 296 \text{ mm}$$

$$d_w = 296 - 28 - 16/2 = 260 \text{ mm}$$

$$d_v = Max \ (0.9d, 0.72h) = Max \ (0.9 \times 260, 0.72 \times 260) = 234 \text{ mm}$$

$$\lambda = 1 \text{ for normal weight concrete}$$

$$CSA \ A23.3 - 14 \ (3.2)$$

$$\beta = \frac{230}{(1,000+d_v)} = \frac{230}{(1,000+234)} = 0.186$$
CSA A23.3-14 (11.3.6.3)

$$V_c = 0.65 \times 1 \times 0.186 \times \sqrt{35} \times 9,000 \times \frac{234}{1,000} = 1,506.4 \text{ kN} > V_f$$

Because $V_r \ge V_f$ at all the critical sections, the slab has adequate one-way shear strength.

 $CSA A 22 2 14 (E_{a} 115)$

Shear Diagram (kN)

Figure 15 – One-way shear at critical sections (at distance d from the face of the supporting column)

4.1.2. At the face of the drop panel

- h = 260 mm
- d = 260 28 16/2 = 224 mm
- $d_{v} = Max \ (0.9d, 0.72h) = Max \ (0.9 \times 224, 0.72 \times 260) = 202 \text{ mm}$ <u>CSA A23.3-14 (3.2)</u>
- $\lambda = 1$ for normal weight concrete

 $\beta = 0.21$ for slabs with overall thickness not greater than 350 mm

CSA A23.3-14 (11.3.6.2)

$$V_c = 0.65 \times 1 \times 0.21 \times \sqrt{35} \times 9,000 \times \frac{202}{1,000} = 1,465.2 \text{ kN} > V_f$$

Because $V_r \ge V_f$ at all the critical sections, the slab has adequate one-way shear strength.

Figure 16 – One-way shear at critical sections (at the face of the drop panel)

CSA A23.3-14 (13.3.2)

4.2. Two-Way (Punching) Shear Strength

4.2.1. Around the columns faces

Two-way shear is critical on a rectangular section located at d/2 away from the face of the column as shown in Figure 13.

a. Exterior column:

The factored shear force (V_f) in the critical section is computed as the reaction at the centroid of the critical section minus the self-weight and any superimposed surface dead and live load acting within the critical section (d/2 away from column face).

$$V_f = V - w_f (b_1 \times b_2) = 474.9 - 16.79 \left(\frac{666 \times 832}{10^6}\right) = 465.6 \text{ kN}$$

The factored unbalanced moment used for shear transfer, M_{unb} , is computed as the sum of the joint moments to the left and right. Moment of the vertical reaction with respect to the centroid of the critical section is also taken into account.

$$M_{unb} = M - V_f \left(b_I - c_{AB} - c_1 / 2 \right) = 428.5 - 474.9 \left(\frac{666 - 205 - 500 / 2}{10^3} \right) = 330.3 \text{ kN.m}$$

For the exterior column in Figure 13, the location of the centroidal axis z-z is:

$$c_{AB} = \frac{\text{moment of area of the sides about AB}}{\text{area of the sides}} = \frac{2(666 \times (832 - 666) \times 666/2)}{2 \times 666 \times 332 + 832 \times 332} = 205 \text{ mm}$$

The polar moment J_c of the shear perimeter is:

$$J = 2\left(\frac{b_1d^3}{12} + \frac{db_1^3}{12} + (b_1d)\left(\frac{b_1}{2} - c_{AB}\right)^2\right) + b_2dc_{AB}^2$$
$$J = 2\left(\frac{666 \times 332^3}{12} + \frac{332 \times 666^3}{12} + (666 \times 332)\left(\frac{666}{2} - 205\right)^2\right) + 832 \times 332 \times 205^2$$

 $J = 3.93 \times 10^{10} \text{ mm}^4$

 $\gamma_{v} = 1 - \gamma_{f} = 1 - 0.626 = 0.374$ <u>CSA A23.3-14 (Eq. 13.8)</u>

The length of the critical perimeter for the exterior column:

$$b_{0} = 2 \times 666 + 832 = 2,164 \text{ mm}$$

The two-way shear stress (v_f) can then be calculated as:

$$v_f = \frac{V_f}{b_o \times d} + \frac{\gamma_v M_{unb} C_{AB}}{J}$$

$$v_f = \frac{465.6 \times 1,000}{2,164 \times 332} + \frac{0.374 \times (330.3 \times 10^6) \times 205}{2.926 \times 10^{10}} = 1.29 \text{ MPa}$$

The factored resisting shear stress, V_r shall be the smallest of:

CSA A23.3-14 (Eq.13.9)

a)
$$v_r = v_c = \left(1 + \frac{2}{\beta_c}\right) 0.19 \lambda \phi_c \sqrt{f'_c} = \left(1 + \frac{2}{1}\right) 0.19 \times 0.65 \times \sqrt{35} = 2.19 \text{ MPa}$$

b) $v_r = v_c = \left(\frac{\alpha_s d}{b_o} + 0.19\right) \lambda \phi_c \sqrt{f'_c} = \left(\frac{3 \times 332}{2164} + 0.19\right) \times 1 \times 0.65 \times \sqrt{35} = 2.5 \text{ MPa}$
c) $v_r = v_c = 0.38 \lambda \phi_c \sqrt{f'_c} = 0.38 \times 1 \times 0.65 \times \sqrt{35} = 1.46 \text{ MPa}$

If the effective depth. D, used in two-way shear calculations exceeds 300 mm, the value of v_c obtained shall be multiplied by 1,300/ (1,000+d). CSA A23.3-14 (13.3.4.1)

$$v_r = v_c = 1.46 \times \frac{1,300}{(1,000+332)} = 1.426 \text{ MPa}$$

Since $v_c \ge v_f$ at the critical section, the slab has adequate two-way shear strength around this drop panel.

b. Interior column:

$$V_f = V - w_f (b_1 \times b_2) = 622.6 + 548.8 - 16.79 \left(\frac{832 \times 832}{10^6}\right) = 1,159.8 \text{ kN}$$
$$M_{unb} = M - V_f (b_1 - c_{AB} - c_1 / 2) = 113.8 - 1,159.8(0) = 113.8 \text{ kN}$$

For the interior column in Figure 13, the location of the centroidal axis z-z is:

$$c_{AB} = \frac{b_1}{2} = \frac{832}{2} = 416 \,\mathrm{mm}$$

The polar moment J_c of the shear perimeter is:

$$J = 2\left(\frac{b_{d}d^{3}}{12} + \frac{db_{1}^{3}}{12} + (b_{1}d)\left(\frac{b_{1}}{2} - c_{AB}\right)^{2}\right) + 2b_{2}dc_{AB}^{2}$$
$$J = 2\left(\frac{832 \times 332^{3}}{12} + \frac{332 \times 832^{3}}{12} + (832 \times 332)\left(\frac{832}{2} - 416\right)^{2}\right) + 2 \times 832 \times 332 \times 416^{2}$$

 $J = 1.33 \times 10^{11} \text{ mm}^4$

$$\gamma_{v} = 1 - \gamma_{f} = 1 - 0.600 = 0.400$$

The length of the critical perimeter for the interior column:

$$b_o = 2 \times (832 + 832) = 3,328 \text{ mm}$$

The two-way shear stress (v_f) can then be calculated as:

$$v_f = \frac{V_f}{b_o \times d} + \frac{\gamma_v M_{unb} c_{AB}}{J}$$
CSA A23.3-14 (Eq.13.9)

$$v_f = \frac{1,171.4 \times 1,000}{3,328 \times 332} + \frac{0.4 \times (113.8 \times 10^\circ) \times 416}{1.33 \times 10^{11}} = 1.19 \text{ MPa}$$

The factored resisting shear stress, V_r shall be the smallest of:

CSA A23.3-14 (13.3.4.1)

a)
$$v_r = v_c = \left(1 + \frac{2}{\beta_c}\right) 0.19\lambda \phi_c \sqrt{f'_c} = \left(1 + \frac{2}{1}\right) 0.19 \times 0.65 \times \sqrt{35} = 2.19 \text{ MPa}$$

b)
$$v_r = v_c = \left(\frac{\alpha_s d}{b_o} + 0.19\right) \lambda \phi_c \sqrt{f_c} = \left(\frac{4 \times 332}{3328} + 0.19\right) \times 1 \times 0.65 \times \sqrt{35} = 2.27 \text{ MPa}$$

c)
$$v_r = v_c = 0.38\lambda\phi_c\sqrt{f_c} = 0.38 \times 1 \times 0.65 \times \sqrt{35} = 1.46$$
 MPa

If the effective depth. D, used in two-way shear calculations exceeds 300 mm, the value of v_c obtained shall be multiplied by 1,300/ (1,000+d). CSA A23.3-14 (13.3.4.1)

$$v_r = v_c = 1.46 \times \frac{1,300}{(1,000+332)} = 1.426$$
 Mpa

Since $v_c \ge v_f$ at the critical section, the slab has adequate two-way shear strength around this drop panel.

c. Corner column:

In this example, interior equivalent frame strip was selected where it only have exterior and interior supports (no corner supports are included in this strip). However, the two-way shear strength of corner supports usually governs. Thus, the two-way shear strength for the corner column in this example will be checked for educational purposes. Same procedure is used to find the reaction and factored unbalanced moment used for shear transfer at the centroid of the critical section for the corner support for the exterior equivalent frame strip.

$$V_{f} = V - w_{f} (b_{I} \times b_{2}) = 261.4 - 16.79 \left(\frac{666 \times 666}{10^{6}}\right) = 253.9 \text{ kN}$$
$$M_{unb} = M - V_{f} (b_{I} - c_{AB} - c_{1}/2) = 247.7 - 253.9 \left(\frac{666 - 166.5 - 500/2}{10^{3}}\right) = 184.3 \text{ kN.m}$$

For the interior column in Figure 13, the location of the centroidal axis z-z is:

 $c_{AB} = \frac{moment \ of \ area \ of \ the \ sides \ about \ AB}{area \ of \ the \ sides} = \frac{(666 \times 332 \times 666 / 2)}{666 \times 332 + 666 \times 332} = 166.5 \text{ mm}$

The polar moment J_c of the shear perimeter is:

Structure Point CONCRETE SOFTWARE SOLUTIONS

$$J = \left(\frac{b_{l}d^{3}}{12} + \frac{db_{l}^{3}}{12} + (b_{l}d)\left(\frac{b_{l}}{2} - c_{AB}\right)^{2}\right) + b_{2}dc_{AB}^{2}$$
$$J_{c} = \left(\frac{666 \times 332^{3}}{12} + \frac{666 \times 332^{3}}{12} + (666 \times 332)\left(\frac{666}{2} - 166.5\right)^{2}\right) + 666 \times 332 \times 166.5^{2}$$
$$J_{c} = 2.25 \times 10^{10} \text{ mm}^{4}$$

The length of the critical perimeter for the corner column:

 $b_o = 666 + 666 = 1,332 \text{ mm}$

 $\gamma_v = 1 - \gamma_f = 1 - 0.600 = 0.400$

The two-way shear stress (v_u) can then be calculated as:

$$v_{f} = \frac{V_{f}}{b_{o} \times d} + \frac{\gamma_{v} M_{unb} c_{AB}}{J}$$

$$v_{f} = \frac{253.9 \times 1,000}{1,332 \times 332} + \frac{0.4 \times (184.3 \times 10^{6}) \times 166.5}{2.25 \times 10^{10}} = 1.12 \text{ MPa}$$

The factored resisting shear stress, V_r shall be the smallest of:

a)
$$v_r = v_c = \left(1 + \frac{2}{\beta_c}\right) 0.19\lambda \phi_c \sqrt{f'_c} = \left(1 + \frac{2}{1}\right) 0.19 \times 0.65 \times \sqrt{35} = 2.19 \text{ MPa}$$

b) $v_r = v_c = \left(\frac{\alpha_s d}{b_o} + 0.19\right) \lambda \phi_c \sqrt{f'_c} = \left(\frac{2 \times 332}{1,332} + 0.19\right) \times 1 \times 0.65 \times \sqrt{35} = 2.65 \text{ MPa}$
c) $v_r = v_c = 0.38\lambda \phi_c \sqrt{f'_c} = 0.38 \times 1 \times 0.65 \times \sqrt{35} = 1.46 \text{ MPa}$

calculations exceeds 300 mm, the value of v_c obtained shall be multiplied by 1300/ (1000+d). CSA A23.3-14 (13.3.4.1)

$$v_r = v_c = 1.46 \times \frac{1,300}{(1,000+332)} = 1.426 \text{ MPa}$$

Since $v_c \ge v_f$ at the critical section, the slab has adequate two-way shear strength around this drop panel.

CSA A23.3-14 (13.3.4.1)

CSA A23.3-14 (Eq. 13.8)

4.2.2. Around drop panels

Two-way shear is critical on a rectangular section located at d/2 away from the face of the drop panel.

<u>Note:</u> The two-way shear stress calculations around drop panels do not have the term for unbalanced moment since drop panels are a thickened portion of the slab and are not considered as a support.

a. Exterior drop panel:

$$V_f = V - w_f A = 474.9 - 13.55 \left(\frac{1,862 \times 3,224}{10^6}\right) = 393.6 \text{ kN}$$

The length of the critical perimeter for the exterior drop panel:

 $b_o = 2 \times 1,862 + 3,224 = 6,948 \text{ mm}$

The two-way shear stress (v_f) can then be calculated as:

$$v_f = \frac{V_f}{b_o \times d}$$
 CSA A23.3-14 (N.13.3.5.4)

$$v_f = \frac{393.6 \times 1,000}{6,948 \times 224} = 0.25 \text{ MPa}$$

The factored resisting shear stress, V_r shall be the smallest of:

<u>CSA A23.3-14 (13.3.4.1)</u>

a)
$$v_r = v_c = \left(1 + \frac{2}{\beta_c}\right) 0.19\lambda \phi_c \sqrt{f'_c} = \left(1 + \frac{2}{1}\right) 0.19 \times 0.65 \times \sqrt{35} = 2.19 \text{ MPa}$$

b)
$$v_r = v_c = \left(\frac{\alpha_s d}{b_o} + 0.19\right) \lambda \phi_c \sqrt{f_c} = \left(\frac{3 \times 224}{6,948} + 0.19\right) \times 1 \times 0.65 \times \sqrt{35} = 1.10 \text{ MPa}$$

c)
$$v_r = v_c = 0.38\lambda\phi_c\sqrt{f_c} = 0.38 \times 1 \times 0.65 \times \sqrt{35} = 1.46 \text{ MPa}$$

Since $v_c \ge v_f$ at the critical section, the slab has adequate two-way shear strength around this drop panel.

b. Interior drop panel:

$$V_f = V - w_f A$$

$$V_f = 622.6 + 548.8 - 13.55 \left(\frac{3,224 \times 3,224}{10^6}\right) = 1,030.6 \text{ kN}$$

The length of the critical perimeter for the interior drop panel:

$$b_o = 2 \times (3,224 + 3,224) = 12,896 \text{ mm}$$

The two-way shear stress (v_f) can then be calculated as:

 $v_f = \frac{V_f}{b_o \times d}$

$$v_f = \frac{1,030.6 \times 1,000}{12,896 \times 224} = 0.36 \text{ MPa}$$

The factored resisting shear stress,
$$V_r$$
 shall be the smallest of:

CSA A23.3-14 (13.3.4.1)

a)
$$v_r = v_c = \left(1 + \frac{2}{\beta_c}\right) 0.19 \lambda \phi_c \sqrt{f'_c} = \left(1 + \frac{2}{1}\right) 0.19 \times 0.65 \times \sqrt{35} = 2.19 \text{ MPa}$$

b) $v_r = v_c = \left(\frac{\alpha_s d}{b_o} + 0.19\right) \lambda \phi_c \sqrt{f'_c} = \left(\frac{4 \times 224}{12,896} + 0.19\right) \times 1 \times 0.65 \times \sqrt{35} = 1.00 \text{ MPa}$

c)
$$v_r = v_c = 0.38\lambda \phi_c \sqrt{f_c} = 0.38 \times 1 \times 0.65 \times \sqrt{35} = 1.46 \text{ MPa}$$

Since $v_c \ge v_f$ at the critical section, the slab has adequate two-way shear strength around this drop panel.

c. Corner drop panel:

$$V_f = V - w_f A$$

 $V_f = 261.4 - 13.55 \left(\frac{1,862 \times 1,862}{10^6}\right) = 214.4 \text{ kN}$

The length of the critical perimeter for the corner drop panel:

$$b_o = 1,862 + 1,862 = 3724 \text{ mm}$$

The two-way shear stress (v_f) can then be calculated as:

$$v_f = \frac{V_f}{b_o \times d}$$
 CSA A23.3-14 (N.13.3.5.4)

$$v_f = \frac{214.4 \times 1,000}{3,724 \times 224} = 0.24$$
 MPa

The factored resisting shear stress, V_r shall be the smallest of:

CSA A23.3-14 (13.3.4.1)

a)
$$v_r = v_c = \left(1 + \frac{2}{\beta_c}\right) 0.19 \lambda \phi_c \sqrt{f'_c} = \left(1 + \frac{2}{1}\right) 0.19 \times 0.65 \times \sqrt{35} = 2.19 \text{ MPa}$$

b) $v_r = v_c = \left(\frac{\alpha_s d}{b_o} + 0.19\right) \lambda \phi_c \sqrt{f'_c} = \left(\frac{2 \times 224}{3,724} + 0.19\right) \times 1 \times 0.65 \times \sqrt{35} = 1.19 \text{ MPa}$
c) $v_r = v_c = 0.38 \lambda \phi_c \sqrt{f'_c} = 0.38 \times 1 \times 0.65 \times \sqrt{35} = 1.46 \text{ MPa}$

Since $v_c \ge v_f$ at the critical section, the slab has adequate two-way shear strength around this drop panel.

5. Serviceability Requirements (Deflection Check)

Since the slab thickness was selected below the minimum slab thickness equations in CSA A23.3-14, the deflection calculations of immediate and time-dependent deflections are required and shown below including a comparison with spSlab model results.

5.1. Immediate (Instantaneous) Deflections

When deflections are to be computed, deflections that occur immediately on application of load shall be computed by methods or formulas for elastic deflections, taking into consideration the effects of cracking and reinforcement on member stiffness. Unless deflections are determined by a more comprehensive analysis, immediate deflection shall be computed using elastic deflection equations. <u>CSA A23.3-14 (9.8.2.2 & 9.8.2.3)</u>

The calculation of deflections for two-way slabs is challenging even if linear elastic behavior can be assumed. Elastic analysis for three service load levels (D, $D + L_{sustained}$, $D+L_{Full}$) is used to obtain immediate deflections of the two-way slab in this example. However, other procedures may be used if they result in predictions of deflection in reasonable agreement with the results of comprehensive tests.

The effective moment of inertia (I_e) is used to account for the cracking effect on the flexural stiffness of the slab. I_e for uncracked section ($M_{cr} > M_a$) is equal to I_g . When the section is cracked ($M_{cr} < M_a$), then the following equation should be used:

$$I_e = I_{cr} + \left(I_g - I_{cr}\right) \left(\frac{M_{cr}}{M_a}\right)^3 \le I_g$$

CSA A23.3-14 (Eq.9.1)

Where:

 M_a = Maximum moment in member due to service loads at stage deflection is calculated.

The values of the maximum moments for the three service load levels are calculated from structural analysis as shown previously in this document. These moments are shown in Figure 17.

* Moment values at columns centerlines

Moment Diagram (kN.m) 3. $DL + LL_{full}$

For positive moment (midspan) section:

$$M_{cr}$$
 = Cracking moment.

$$M_{cr} = \frac{f_r I_g}{Y_t} = \frac{(3.55/2) \times (1.32 \times 10^{10})}{130} \times 10^{-6} = 179.9 \text{ kN.m}$$

CSA A23.3-14 (Eq.9.2)

 f_r = Modulus of rapture of concrete.

$$f_r = 0.6\lambda \sqrt{f_c'} = 0.6 \times 1.0 \times \sqrt{35} = 3.55 \text{ MPa}$$

 I_g = Moment of inertia of the gross uncracked concrete section.

CSA A23.3-14 (Eq.8.3)

$$I_g = \frac{l_2 h^3}{12} = \frac{9,000 \times 260^3}{12} = 1.32 \times 10^{10} \text{ mm}$$

 y_t = Distance from centroidal axis of gross section, neglecting reinforcement, to tension face, mm.

$$y_t = \frac{h}{2} = \frac{260}{2} = 130 \text{ mm}$$

 I_{cr} = Moment of inertia of the cracked section transformed to concrete.

CAC Concrete Design Handbook 4th Edition (Table 6.2(a))

As calculated previously, the positive reinforcement for the end span frame strip is 35-15M bars are located along the section from the bottom of the slab. Two of these bars are not continuous and will be conservatively excluded from the calculation of I_{cr} since they might not be adequately developed or tied (33 bars are used). Figure 18 shows all the parameters needed to calculate the moment of inertia of the cracked section transformed to concrete at midspan.

Figure 18 - Cracked Transformed Section (positive moment section)

 E_{cs} = Modulus of elasticity of slab concrete.

$$E_{cs} = (3,300\sqrt{f_c} + 6,900) \left(\frac{\gamma_c}{2,300}\right)^{1.5} = (3,300\sqrt{35} + 6,900) \left(\frac{2,447}{2,300}\right)^{1.5} = 29,002 \text{ MPa} \quad \underline{CSA \ A23.3-14(8.6.2.2)}$$

$$n = \frac{E_s}{E_{cs}} = \frac{200,000}{29,002} = 6.9 \qquad \underline{CAC \ Concrete \ Design \ Handbook \ 4^{th} \ Edition \ (Table \ 6.2a)}$$

$$B = \frac{b}{n \ A_s} = \frac{9,000}{6.9 \times (33 \times 200)} = 0.2 \text{ mm}^{-1} \qquad \underline{CAC \ Concrete \ Design \ Handbook \ 4^{th} \ Edition \ (Table \ 6.2a)}}$$

$$kd = \frac{\sqrt{2dB+1}-1}{B} = \frac{\sqrt{2 \times 224 \times 0.2 + 1}-1}{0.2} = 42.81 \text{ mm}$$

$$\underline{CAC \ Concrete \ Design \ Handbook \ 4^{th} \ Edition \ (Table \ 6.2a)}}$$

$$I_{cr} = \frac{b(kd)^3}{3} + nA_s(d - kd)^2$$

$$I_{cr} = \frac{9,000 \times (42.81)^3}{3} + 6.90 \times (33 \times 200) \times (224 - 42.81)^2 = 1.73 \times 10^9 \text{ mm}^4$$

For negative moment section (near the interior support of the end span):

The negative reinforcement for the end span frame strip near the interior support is 36-15M bars along the section from the top of the slab.

$$M_{cr} = \frac{f_r I_g}{Y_t} = \frac{(3.55/2) \times (2.31 \times 10^{10})}{152.4} \times 10^{-6} = 269.4 \text{ kN.m}$$

$$CSA \ A23.3-14 \ (Eq.9.2)$$

$$f_r = 0.6 \lambda \sqrt{f_c} = 0.6 \times 1.0 \times \sqrt{35} = 3.55 \text{ MPa}$$

$$CSA \ A23.3-14 \ (Eq.8.3)$$

$$I_g = 2.31 \times 10^{10} \text{ mm}^4$$

 $y_t = 152.4 \text{ mm}$

$$E_{cs} = (3,300\sqrt{f_c} + 6,900) \left(\frac{\gamma_c}{2,300}\right)^{1.5}$$

$$E_{cs} = (3,300\sqrt{35} + 6,900) \left(\frac{2,447}{2,300}\right)^{1.5} = 29,002 \text{ MPa}$$

$$n = \frac{E_s}{E_{cs}} = \frac{200,000}{29,002} = 6.9$$

$$B = \frac{b}{nA_s} = \frac{3,000}{6.9 \times (36 \times 200)} = 0.06 \text{ mm}^{-1}$$

$$E_{cs} = \frac{\sqrt{2}2(B+1-1)}{B} = \frac{\sqrt{2} \times 332 \times 0.06 + 1 - 1}{0.06} = 89.6 \text{ mm}$$

$$CAC Concrete Design Handbook 4^{th} Edition (Table 6.2a)$$

$$E_{cr} = \frac{b(kd)^3}{3} + nA_s(d-kd)^2$$

$$CAC Concrete Design Handbook 4^{th} Edition (Table 6.2a)$$

Figure 20 - Cracked Transformed Section (negative moment section)

The effective moment of inertia procedure described in the Code is considered sufficiently accurate to estimate deflections. The effective moment of inertia, I_e , was developed to provide a transition between the upper and lower bounds of I_g and I_{cr} as a function of the ratio M_{cr}/M_a . For conventionally reinforced (nonprestressed) members, the effective moment of inertia, I_e , shall be calculated by Eq. (9.1) unless obtained by a more comprehensive analysis.

For continuous prismatic members, the effective moment of inertia may be taken as the weighted average of the values obtained from Equation 9.1 for the critical positive and negative moment sections

CSA A23.3-14(9.8.2.4)

For the middle span (span with two ends continuous) with service load level $(D+LL_{full})$:

$$I_{e}^{-} = I_{cr} + \left(I_{g} - I_{cr}\right) \left(\frac{M_{cr}}{M_{a}}\right)^{3} \text{, since } M_{cr} = 269.4 \text{ kN.m} < M_{a} = 739 \text{ kN.m}$$
CSA A23.3-14(Eq. 9.1)

Where I_e^{-} is the effective moment of inertia for the critical negative moment section (near the support).

$$I_e^- = 4.64 \times 10^9 + (2.31 \times 10^{10} - 4.64 \times 10^9) \left(\frac{269.4}{739}\right)^3 = 5.53 \times 10^9 \text{ mm}^4$$

For the middle span (span with two ends continuous) with service load level $(D+LL_{full})$:

$$I_{e}^{+} = I_{cr} + \left(I_{g} - I_{cr}\right) \left(\frac{M_{cr}}{M_{a}}\right)^{3}, \text{ since } M_{cr} = 179.9 \text{ kN.m} < M_{a} = 202.9 \text{ kN.m}$$

$$\underline{CSA \ A23.3-14(Eq.\ 9.1)}$$

$$I_{e}^{+} = 1.31 \times 10^{9} + \left(1.32 \times 10^{10} - 1.31 \times 10^{9}\right) \left(\frac{179.9}{202.9}\right)^{3} = 9.59 \times 10^{9} \text{ mm}^{4}$$

Where I_{e^+} is the effective moment of inertia for the critical positive moment section (midspan).

Since midspan stiffness (including the effect of cracking) has a dominant effect on deflections, midspan section is heavily represented in calculation of I_e and this is considered satisfactory in approximate deflection calculations. Both the midspan stiffness (I_e^+) and averaged span stiffness ($I_{e,avg}$) can be used in the calculation of immediate (instantaneous) deflection.

The averaged effective moment of inertia $(I_{e,avg})$ is given by:

$$I_{e,avg} = 0.70 I_e^+ + 0.15 \left(I_{e,l}^- + I_{e,r}^- \right) \text{ for two ends continuous}$$

$$CSA \ A23.3-14 \ (Eq.9.3)$$

$$I_{e,avg} = 0.85 I_e^+ + 0.15 I_e^- \text{ for one end continuous}$$

$$CSA \ A23.3-14 \ (Eq.9.4)$$

However, these expressions lead to improved results only for continuous prismatic members. The drop panels in this example result in non-prismatic members and the following expressions should be used according to ACI 318-89:

$$I_{e,avg} = 0.50 I_e^+ + 0.25 \left(I_{e,l}^- + I_{e,r}^- \right) \text{ for interior span} \qquad \underline{ACI \ 435R-95 \ (2.14)}$$

For the middle span (span with two ends continuous) with service load level (D_l) :

$$I_{e,avg} = 0.50 \times 13.18 \times 10^9 + 0.25 (7.14 \times 10^9 + 7.14 \times 10^9) = 10.16 \times 10^9 \text{ mm}^4$$
$$I_{e,avg} = 0.50 I_e^+ + 0.50 I_e^- \text{ for end span} \qquad \underline{ACI \ 435R-95 \ (2.14)}$$

For the end span (span with one end continuous) with service load level (D_l) :

$$I_{e,avg} = 0.50 \times 5.06 \times 10^9 + 0.50 \times 6.44 \times 10^9 = 5.75 \times 10^9 \text{ mm}^4$$

Where:

 $I_{e,l}^{-}$ = The effective moment of inertia for the critical negative moment section near the left support.

 $I_{e,l}^{-}$ = The effective moment of inertia for the critical negative moment section near the right support.

 I_{a}^{+} = The effective moment of inertia for the critical positive moment section (midspan).

Table 6 provides a summary of the required parameters and calculated values needed for deflections for exterior and interior spans.

	Table 6 – Averaged Effective Moment of Inertia Calculations													
	For Frame Strip													
		L	Lora		M _a , kN.m			I _e ,	, mm ⁴ (×10) ⁹)	I _{e,av}	_{rg} , mm ⁴ (×	10 ⁹)	
Span	zone	mm ⁴ (×10 ⁹)	mm ⁴ (×10 ⁹)	D	D + LL _{Sus}	D + L _{full}	kN.m	D	D + LL _{Sus}	D + L _{full}	D	D + LL _{Sus}	D + L _{full}	
	Left	23.13	3.64	-231.4	-231.4	-325.7	269.4	23.13	23.13	14.67				
Ext	Midspan	13.18	1.73	271.7	271.7	383.4	179.9	5.06	5.06	2.91	5.75	5.75	4.10	
	Right	23.13	4.64	-585.8	-585.8	-824.6	269.4	6.44	6.44	5.28				
	Left	23.13	4.64	-525.0	-525.0	739	269.4	7.14	7.14	5.53				
Int	Midspan	13.18	1.31	179.9	179.9	179.9	179.9	13.18	13.18	9.60	10.16	10.16	7.56	
	Right	23.13	4.64	-525.0	-525.0	739	269.4	7.14	7.14	5.53				

Deflections in two-way slab systems shall be calculated taking into account size and shape of the panel, conditions of support, and nature of restraints at the panel edges. For immediate deflections in two-way slab systems, the midpanel deflection is computed as the sum of deflection at midspan of the column strip or column line in one direction (Δ_{cx} or Δ_{cy}) and deflection at midspan of the middle strip in the orthogonal direction (Δ_{mx} or Δ_{my}). Figure 21 shows the deflection computation for a rectangular panel. The average Δ for panels that have different properties in the two direction is calculated as follows:

Figure 21 – Deflection Computation for a rectangular Panel

To calculate each term of the previous equation, the following procedure should be used. Figure 22 shows the procedure of calculating the term Δ_{cx} . Same procedure can be used to find the other terms.

For end span - service dead load case:

$$\Delta_{frame, fixed} = \frac{wl^4}{384E_c I_{frame, averaged}}$$

PCA Notes on ACI 318-11 (9.5.3.4 Eq. 10)

CSA A23.3-14(8.6.2.2)

Where:

 $\Delta_{frame, fixed}$ = Deflection of column strip assuming fixed end condition.

$$w = (1 + 24 \times 0.260)(9) = 65.16 \text{ kN/m}$$

$$E_{cs} = (3,300\sqrt{f_c} + 6,900) \left(\frac{\gamma_c}{2,300}\right)^{1.5}$$
$$E_{cs} = (3,300\sqrt{35} + 6,900) \left(\frac{2,447}{2,300}\right)^{1.5} = 29,000 \text{ MPa}$$

 $I_{frame, averaged}$ = The averaged effective moment of inertia ($I_{e,avg}$) for the frame strip for service dead load case from Table $6 = 5.75 \text{ x } 10^9 \text{ mm}^4$

$$\Delta_{frame, fixed} = \frac{(65.16)(9 \times 10^3)^4}{384(29,000)(5.75 \times 10^9)} = 5.31 \,\mathrm{mm}$$

$$\Delta_{c, fixed} = LDF_c \times \Delta_{frame, fixed} \times \frac{I_{frame, averaged}}{I_{c,g}}$$

PCA Notes on ACI 318-11 (9.5.3.4 Eq. 11)

For this example and like in the spSlab program, the effective moment of inertia at midspan will be used.

 LDF_c is the load distribution factor for the column strip. The load distribution factor for the column strip can be found from the following equation:

$$LDF_{c} = \frac{LDF^{+} + \frac{LDF_{l}^{-} + LDF_{R}^{-}}{2}}{2}$$

And the load distribution factor for the middle strip can be found from the following equation:

$$LDF_m = 1 - LDF_d$$

For the end span, LDF for exterior negative region (LDF_L) , interior negative region (LDF_R) , and positive region (LDF^+) are 1.00, 0.825, and 0.60, respectively (From Table 2 of this document). Thus, the load distribution factor for the column strip for the end span is given by:

$$LDF_{c} = \frac{0.6 + \frac{1.0 + 0.825}{2}}{2} = 0.756$$

 $I_{c,g}$ = The gross moment of inertia (I_g) for the column strip for service dead load = 6.59 x 10⁹ mm⁴

$$\Delta_{c,fixed} = 0.756 \times 0.0995 \times \frac{13.18 \times 10^9}{6.59 \times 10^9} = 8.03 \text{ mm}$$

$$\theta_{c,L} = \frac{(M_{net,L})_{frame}}{K_{ec}}$$
PCA Notes on ACI 318-11 (9.5.3.4 Eq. 12)

Where:

 $\theta_{c,L}$ = Rotation of the span left support.

 $(M_{net,L})_{frame} = 231$ kN-m = Net frame strip negative moment of the left support.

 K_{ec} = effective column stiffness = 1.76 x 10⁵ kN-m/rad (calculated previously).

$$\theta_{c,L} = \frac{231}{1.76 \times 10^5} = 0.00131 \text{ rad}$$
$$\Delta \theta_{c,L} = \theta_{c,L} \left(\frac{l}{8}\right) \left(\frac{I_g}{I_e}\right)_{frame}$$

PCA Notes on ACI 318-11 (9.5.3.4 Eq. 14)

Where:

 $\Delta \theta_{c,L}$ = Midspan deflection due to rotation of left support.

 $\left(\frac{I_g}{I_e}\right)_{frame}$ = Gross-to-effective moment of inertia ratio for frame strip.

$$\Delta \theta_{c,L} = 0.00131 \times \frac{9000 - 500}{8} \times \frac{13.18 \times 10^9}{5.75 \times 10^9} = 3.20 \text{ mm}$$

$$\theta_{c,R} = \frac{\left(M_{net,R}\right)_{frame}}{K_{ec}} = \frac{6.08 \times 10^7}{1.76 \times 10^{11}} = 0.00035 \text{ rad}$$

Where

 $\theta_{c,R}$ = Rotation of the end span right support.

 $(M_{net,R})_{frame}$ = Net frame strip negative moment of the right support.

$$\Delta \theta_{c,R} = \theta_{c,R} \left(\frac{l}{8}\right) \left(\frac{I_g}{I_e}\right)_{frame} = 0.00035 \times \frac{9000 - 500}{8} \times \frac{13.18 \times 10^9}{5.75 \times 10^9} = 0.84 \text{ mm}$$

Where:

 $\Delta \theta_{c,R}$ = Midspan delfection due to rotation of right support.

$$\Delta_{cx} = \Delta_{cx,fixed} + \Delta \theta_{cx,R} + \Delta \theta_{cx,L}$$

$$PCA Notes on ACI 318-11 (9.5.3.4 Eq. 9)$$

$$\Delta_{cx} = 8.03 + 3.20 + 0.84 = 12.07 \text{ mm}$$

Following the same procedure, Δ_{mx} can be calculated for the middle strip. This procedure is repeated for the equivalent frame in the orthogonal direction to obtain Δ_{cy} , and Δ_{my} for the end and middle spans for the other load levels ($D+LL_{sus}$ and $D+LL_{full}$).

Since in this example the panel is squared, $\Delta_{cx} = \Delta_{cy} = 12.07$ mm and $\Delta_{mx} = \Delta_{my} = 6.63$ mm

The average Δ for the corner panel is calculated as follows:

$$\Delta = \frac{\left(\Delta_{cx} + \Delta_{my}\right) + \left(\Delta_{cy} + \Delta_{mx}\right)}{2} = \left(\Delta_{cx} + \Delta_{my}\right) = \left(\Delta_{cy} + \Delta_{mx}\right) = 12.07 + 6.63 = 18.70 \text{ mm}$$

Table 7 – Immediate (Instantaneous) Deflections in the x-direction

Column Strip

Span	LDF		D												
		$\Delta_{ ext{frame-fixed}}, \\ ext{mm}$	$\begin{array}{c c} \Delta_{\text{c-fixed}}, & \theta_{\text{c1}}, \\ mm & rad \end{array}$		θ _{c2} , rad	$\Delta \theta_{c1},$ mm	$\Delta \theta_{c2},$ mm	Δ _{cx} , mm							
Ext	0.756	5.21	8.03	0.00131	0.00035	3.20	0.84	12.07							
Int	0.713	3.00	4.28	0.00035	0.00035	0.48	0.48	3.33							

IDE		D													
LDF	$\Delta_{ ext{frame-fixed}}, \\ ext{mm}$	Δ _{m-fixed} , mm	θ _{m1} , mm	θ _{m2} , mm	$\Delta \theta_{m1},$ mm	Δθ _{m2} , mm	Δ _{mx} , mm								
0.244	5.31	2.59	0.00131	0.00035	3.20	0.84	6.63								
0.288	3.01	1.83	0.00035	0.00035	0.48	0.48	0.78								

Middle Strip

Span			D+LL _{sus}											
	LDF	$\Delta_{ ext{frame-fixed}}, \\ ext{mm}$	$\Delta_{\text{c-fixed}},$ mm	θ _{c1} , rad	θ _{c2} , rad	Δθ _{c1} , mm	Δθ _{c2} , mm	Δ _{cx} , mm						
Ext	0.756	5.21	8.03	0.00131	0.00035	3.20	0.84	12.07						
Int	0.713	3.00	4.28	0.00035	0.00035	0.48	0.48	3.33						

				D+LL _{sus}			
LDF	$\Delta_{ ext{frame-fixed}}, \\ ext{mm}$	Δ _{m-fixed} , mm	θ _{m1} , mm	θ _{m2} , mm	Δθ _{m1} , mm	Δθ _{m2} , mm	Δ _{mx} , mm
0.244	5.31	2.59	0.00131	0.00035	3.20	0.84	6.63
0.288	3.01	1.83	0.00035	0.00035	0.48	0.48	0.78

G	LDF		D+LL _{full}											
Span	LDF	$\Delta_{ ext{frame-fixed}}, \\ ext{mm}$	$\Delta_{\text{c-fixed}},$ mm	θ _{c1} , rad	θ _{c2} , rad	$\Delta \theta_{c1},$ mm	Δθ _{c2} , mm	$\Delta_{cx},$ mm						
Ext	0.756	10.54	15.94	0.00184	0.00049	6.27	1.66	23.87						
Int	0.713	5.71	8.14	0.00049	0.00049	0.90	0.90	6.34						

LDF		D+LL _{full}													
	$\Delta_{ ext{frame-fixed}}, \ ext{mm}$	Δ _{m-fixed} , mm	θ _{m1} , mm	θ _{m2} , mm	Δθ _{m1} , mm	Δθ _{m2} , mm	$\Delta_{mx},$ mm								
0.244	10.54	5.14	0.00184	0.00049	6.27	1.66	13.07								
0.288	5.71	3.29	0.00049	0.00049	0.90	0.90	1.48								

G	LDE	LL
Span	LDF	$\Delta_{cx},$ mm
Ext	0.756	11.80
Int	0.713	3.01

	LL
LDF	$\Delta_{mx},$ mm
0.244	6.44
0.288	0.70

5.2. Time-Dependent (Long-Term) Deflections (Alt)

The additional time-dependent (long-term) deflection resulting from creep and shrinkage (Δ_{cs}) may be estimated as follows:

$$\Delta_{cs} = \lambda_{\Delta} \times (\Delta_{sust})_{Inst}$$
PCA Notes on ACI 318-11 (9.5.2.5 Eq. 4)

The total time-dependent (long-term) deflection is calculated as:

$$(\Delta_{total})_{lt} = (\Delta_{sust})_{Inst} \times (1 + \lambda_{\Delta}) + [(\Delta_{total})_{Inst} - (\Delta_{sust})_{Inst}]$$

$$\underline{CSA \ A23.3-04 \ (N9.8.2.5)}$$

Where:

 $(\Delta_{sust})_{lnst}$ = Immediate (instantaneous) deflection due to sustained load, in.

$$\lambda_{\Delta} = \frac{\xi}{1+50\rho'}$$
ACI 318-14 (24.2.4.1.1)

 $(\Delta_{total})_{lt}$ = Time-dependent (long-term) total delfection, in.

 $(\Delta_{total})_{Inst}$ = Total immediate (instantaneous) deflection, in.

For the exterior span

 $\xi = 2$, consider the sustained load duration to be 60 months or more. <u>ACI 318-14 (Table 24.2.4.1.3)</u>

 $\rho' = 0$, conservatively.

$$\lambda_{\Delta} = \frac{2}{1+50\times0} = 2$$

 $\Delta_{cs} = 2 \times 12.07 = 24.14 \text{ mm}$

 $(\Delta_{total})_{lt} = 12.07 \times (1+2) + (23.87 - 12.07) = 48.01 \text{ mm}$

Table 8 shows long-term deflections for the exterior and interior spans for the analysis in the x-direction, for column and middle strips.

	Table 8 - Long-Term Deflections												
Column Strip													
Span $(\Delta_{sust})_{Inst}, mm$ λ_{Δ} Δ_{cs}, mm $(\Delta_{total})_{Inst}, mm$ $(\Delta_{total})_{lt}, mm$													
Exterior	12.07	2.000	24.14	23.87	48.01								
Interior	3.33	2.000	6.66	6.34	13.00								
		Mie	ldle Strip										
Exterior 6.63 2.000 13.26 13.07													
Interior	0.78	2.000	1.56	1.48	3.04								

CONCRETE SOFTWARE SOLUTIONS

6. spSlab Software Program Model Solution

<u>spSlab</u> program utilizes the Elastic Frame Method described and illustrated in details here for modeling, analysis and design of two-way concrete floor slab systems. <u>spSlab</u> uses the exact geometry and boundary conditions provided as input to perform an elastic stiffness (matrix) analysis of the equivalent frame taking into account the torsional stiffness of the slabs framing into the column. It also takes into account the complications introduced by a large number of parameters such as vertical and torsional stiffness of transverse beams, the stiffening effect of drop panels, column capitals, and effective contribution of columns above and below the floor slab using the of equivalent column concept (<u>CSA A23.3-14 (13.8.2.6)</u>).

<u>spSlab</u> Program models the elastic frame as a design strip. The design strip is, then, separated by <u>spSlab</u> into column and middle strips. The program calculates the internal forces (Shear Force & Bending Moment), moment and shear capacity vs. demand diagrams for column and middle strips, instantaneous and long-term deflection results, and required flexural reinforcement for column and middle strips. The graphical and text results will be provided from the <u>spSlab</u> model in a future revision to this document.

sislab

CONCRETE SOFTWARE SOLUTIONS

spSlab v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 00000-0000000-4-25EF2-270EB C:\TSDA\Two-Way Flate Slab Floor with Drop Panel (CSA)\Interior Strip.slb 07-05-2018, 12:19:12 PM Page 1

			00000	000000	00000 00 00 00	00 00 00 00 00	00000	0 00 00 00		
			00000 00 00000	00 00 000000 00 00	00 00000			00 00 00 00 00 00 00000	(TM)	
		A C Re:	omputer 1 inforced Cop	Program f Concrete pyright ©	spSlak for Analys Beams, (2003-201 All right	o v5.00 (sis, Desi Dne-way a 15, STRUC ts reserv	TM) gn, and Inves nd Two-way SI TUREPOINT, LI ed	tigation o .ab Systems .C	f	
	Licensee be respons for proces any warrat by the spi program is analysis, STRUCTUREM analysis, program.	stated a sible for ssing by o nty express. Slab program s not and o design POINT disc: design or	above a either the spS3 ed nor : m. Altho cannot and laims all engineer	acknowled the acc lab comp implied w bugh STRU be cert enginee l respor ring docu	dges the curacy of vuter provide resp vith resp CTUREPOIN cring do sibility uments pre	at STRU ogram. F pect to NT has e nfallible ocuments in cont epared i	CTUREPOINT acy of the urthermore, the correctr ndeavored to . The final is the ract, neglige n connection	(SP) is material STRUCTUREF less of th produce s and only elicens ince or ot with the	not and supplied OINT neith e output pSlab error responsib ee's. Acc her tort f use of th	cannot as input er makes prepared free the ility for ordingly, or any e spSlab
[1] INPU	т есно									
General	Information	n =	_							
Proje Frame Engin Code: Reinf Mode: Numbe Floor	name: C:(13 ct: Two Way : Interior eer: SP CSA A23.3- orcement Da Design r of suppor System: Tw	SDA(1WO-Way y Slab with Frame -14 atabase: CSi atabase: CSi wo-Way	A G30.18 eft cant:	ilever +	Right car	ntilever	(CSA) (Interio	r strip.si	d	
Live Minim Circu Defle In ne Long- 0% of Compr Defau Combi User-	load patter um free edg lar critica ctions are gative mome term deflec live load ession rein lt incremen ned M-V-T n defined sl	rn ratio = (ye distance al section (based on c: ent regions; ttions are (is sustain nforcement (reinforcement ab strip wid	0% for pund around c: racked se , Ig and calculate design se nt design dths NOT	ching she ircular s ection pr Mcr DO N ed for lo ions NOT elected. n NOT sel selected	ear = 4 ti supports u coperties. NOT includ ad durati selected. Lected.	imes slab used (if de flange ion of 60	effective de possible). /slab contrik months.	epth. Dution (if	available)	
User- One-w Distr	defined dis ay shear in ibution of	stribution : n drop pane: shear to si	factors l l selecte trips NO	NOT selec ed. E selecte	ted.					
Beam Longi	T-section of tudinal bea	design NOT am contribu	selected tion in 1	negative	reinforce	ement des	ign over supp	ort NOT se	lected.	
Trans [®]	Properties	contributi	on in neo	gative re	inforceme	ent desig	n over suppor	t NOT sele	cted.	
	Slabs F	- = Beams	Columns							
WC	= 24	447.3	2447.	- 3 kcr/m.3						
f'c Ec	= 2	35 29002	41 3104	2 MPa 7 MPa						
fr Preca	= 1. st concrete	.7748 = construct	3.888 ion is no	4 MPa ot select	ed.					
fy fyt Es	= = = 19	400 MPa, 1 400 MPa 99950 MPa	Bars are	not epox	vy-coated					
Reinforc	ement Datak	oase								
Units Size	: Db (mm), Db	Ab (mm^2), Ab	Wb (kg/1 Wb	n) Size	Db	Ab	Wb			
#10 #20	11 20	100 300	1 2	#15 #25	16 25	200 500	2 4			

CONCRETE SOFTWARE SOLUTIONS

spSlab License C:\TSDA	v5.00 (d to: 2 \\Two-Wa	D Str Struc ay Fl	ucturePo turePoir ate Slab	int it, Lic Floor	ense I with	D: 0000 Drop Pa	0-000000 nel (CSA	0-4-2)\Int	5EF2-2 erior	70EB Strip.	.slb				07-05	-2018,	12:19: P	13 PM age 2
#30 #45)	30 44	700 1500		5 12	#35 #55	36 56	10 25	00	8 20								
Span Da Slab Unit Span	ata === os :s: L1, 1 Loc	wL,	wR, L2L, L1	L2R (1	m); t,	Hmin (1	nm) wR	L2L	L	2R	Hmin							
1 2 3 4 5 NOTE Defl *i -	. Int 2 Int 3 Int 4 Int 5 Int 2S: .ection • canti:	0. 9. 9. 0. chec lever	250 000 000 250 250 250	260 260 260 260 260 260 red for an (LC,	4.50 4.50 4.50 4.50 4.50 panel RC) s	0 4. 0 4. 0 4. 0 4. 0 4. 0 4.	500 9 500 9 500 9 500 9 500 9 500 9 code-sp code-sp	.000 .000 .000 .000 .000 ecifi n	9.0 9.0 9.0 9.0 9.0 9.0	00 00 00 00 00 00 n for	1 252 252 252 1 two-way	LC *i RC *i y cons	tructio	n doesi	n't ap	ply due	to:	
Support Colu	Data																	
Unit Supp	s: c1a,	, c2a c1a	, c1b, c c2a	:2b (mm); Ha, Ha 	Hb (m) c1b	c2	b 	Hb	Red%								
1 2 3 4		500 500 500 500	500 500 500 500	4.0 4.0 4.0 4.0	00 00 00 00	500 500 500 500	50 50 50 50	0 0 0 0	4.000 4.000 4.000 4.000	100 100 100 100								
Drop Unit Supp	Panels s:h(r	s - mm); h	Ll, Lr, Ll	Wl, Wr	(m) Lr	Wl	Wr											
1 2 3 4 *b -	Standa	108 108 108 108 108 ard d	0.250 1.500 1.500 1.500 1.500 irop.	1.5 1.5 1.5 0.2	00 00 00 50	1.500 1.500 1.500 1.500	1.500 1.500 1.500 1.500	*b *b *b *b										
Boun	ndary Co	ondit	ions															
Unit Supp 1 2	:s: Kz) Sp: 	(kN/m ring 	m); Kry Kz Spr 0 0	(kN-mm ing Kr	/rad) y Far 0 0	End A For Fixed Fixed Fixed	ar End B Fixed Fixed Fixed											
4			ŏ		0	Fixed	Fixed											
Load Da	ita === 1 Cases	and	Combinat	ions														
Case Type	s SI	ELF EAD	Dead DEAD	Li LI	ve VE													
U1	1.3	250	1.250	1.5	00													
Area	Loads																	
Unit Case	s: Wa /Patt :	(kN/m Span	12)	Wa														
SELF		1		6.24														
Dead	1	4 4 5 1 2 3 4		6.24 6.24 6.24 1.00 1.00 1.00 1.00														
Live	2	5 1 3 4 5		1.00 3.00 3.00 3.00 3.00 3.00														
Line	Loads																	
Unit Case	s: Wa, /Patt :	Wb (Span	кN/m), I	.a, Lb Wa	(m)	La		Wb		Lb								

CONCRETE SOFTWARE SOLUTIONS

07-05-2018, 12:19:13 PM

Page 3

spSlab v5.00 Licensed to: C:\TSDA\Two-	© Struct Structur Way Flate	urePoint ePoint, Licens Slab Floor wi	e ID: 00000-00 th Drop Panel	00000-4-25EF2- (CSA)\Interior	270EB Strip.slb
SELF	1	7.78	0.000	7.78	0.250
	2	7.78	0.000	7.78	1.500
	2	7.78	7.500	7.78	9.000
	3	7.78	0.000	7.78	1.500
	3	7.78	7.500	7.78	9.000
	4	7.78	0.000	7.78	1.500
	4	7.78	7.500	7.78	9.000
	5	7.78	0.000	7.78	0.250

Reinforcement Criteria

Slabs and Ribs

	Top ba	ars	Bottom ba	rs	
-	Min	Max		Max	
Bar Size	#15	#15	#15	#15	
Bar spacing	25	457	25	457	mm
Reinf ratio	0.14	5.00	0.14	5.00	20
Cover	28		28		mm
There is NOT	more than	300 mm	of concrete	below	top bars.

Beams

	Top bars		Bottom bars			Stirrups			
	Min	Max	Min	Max		Min	Max		
Bar Size	#20	#35	#20	#35		#10	#20		
Bar spacing	25	457	25	457		152	457	mm	
Reinf ratio	0.14	5.00	0.14	5.00	8				
Cover	38		38		mm				
Layer dist.	25		25		mm				
No. of legs						2	6		
Side cover						38		mm	
1st Stirrup						76		mm	
There is NOT	more than	300 mm	of concrete	below	top	bars.			

CONCRETE SOFTWARE SOLUTIONS

spSlab v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 00000-0000000-4-25EF2-270EB C:\TSDA\Two-Way Flate Slab Floor with Drop Panel (CSA)\Interior Strip.slb

07-05-2018, 12:19:27 PM Page 1

				000	000	0				0		
				00	00	00				00		
00	000	0000	000	00		00		000	000	00		
00	0	00	00	00		00		0	00	00		
00		00	00	00	0	00		000	0000	000	000	
00	000	00	00		000	00		00	00	00	00	
	00	000	000		00	00		00	00	00	00	
0	00	00		00	00	00	0	00	00	00	00	
00	000	00		000	000	00	0	000	0 000	00	000	(TM)
 A Comp Reinf	uter l orced Coj	Progra Conc: Dyrig	am fo: rete l ht © 1 Ai	spSl r Anal Beams, 2003-2 ll rig	ab v5 ysis, One- 015, hts r	.00 (Desi Way a STRUC	(TM) .gn, .nd I .TURI red	and I Iwo-wa SPOIN	Invest ay Sla I, LLC	igat: b Sy	ion o: stems	f

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spSlab computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spSlab program. Although STRUCTUREPOINT has endeavored to produce spSlab error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spSlab program. and can... 'ed as input makes program.

*Unless otherwise noted, all results are in the direction of analysis only. Another analysis in the perpendicular direction has to be carried out for two-way slab systems.

Strip Widths and Distribution Factors

Units: Width (m).

Width				Mo	Moment Factor		
Strip -	Left**	Right**	Bottom*	Left**	Right**	Bottom*	
Column	4.50	4.50	4.50	1.000	1.000	0.600	
Middle	4.50	4.50	4.50		0.000	0.400	
Column	4.50	4.50	4.50	1.000	0.825	0.600	
Middle	4.50	4.50	4.50	0.000	0.175	0.400	
Column	4.50	4.50	4.50	0.825	0.825	0.600	
Middle	4.50	4.50	4.50	0.175	0.175	0.400	
Column	4.50	4.50	4.50	0.825	1.000	0.600	
Middle	4.50	4.50	4.50	0.175	0.000	0.400	
Column Middle	4.50 4.50	4.50 4.50	4.50 4.50	1.000 0.000	1.000	0.600	
	Strip Column Middle Column Middle Column Middle Column Middle d for bo	Strip Left** Column 4.50 Middle 4.50 Column 4.50 Middle 4.50 Column 4.50 Middle 4.50 Column 4.50 Middle 4.50 Column 4.50 Middle 4.50 d for bottom rein	Strip Left** Right** Column 4.50 4.50 Middle 4.50 4.50 Column 4.50 4.50 Middle 4.50 4.50 Column 4.50 4.50 Middle 4.50 4.50 Column 4.50 4.50 Column 4.50 4.50 Column 4.50 4.50 Middle 4.50 4.50 Middle 4.50 4.50 Middle 4.50 4.50 Afor bottom reinforcement	Strip Left** Right** Bottom* Column 4.50 4.50 4.50 Middle 4.50 4.50 4.50 Column 4.50 4.50 4.50 Middle 4.50 4.50 4.50 Column 4.50 4.50 4.50 Column 4.50 4.50 4.50 Middle 4.50 4.50 4.50 Middle 4.50 4.50 4.50 Middle 4.50 4.50 4.50	Strip Left** Right** Bottom* Left** Column 4.50 4.50 4.50 1.000 Middle 4.50 4.50 4.50 1.000 Middle 4.50 4.50 4.50 1.000 Column 4.50 4.50 4.50 1.000 Middle 4.50 4.50 4.50 0.000 Column 4.50 4.50 4.50 0.000 Column 4.50 4.50 4.50 0.000 Column 4.50 4.50 4.50 0.825 Middle 4.50 4.50 4.50 0.825 Middle 4.50 4.50 0.175 0.175 Column 4.50 4.50 4.50 0.175 Column 4.50 4.50 4.50 0.175 Column 4.50 4.50 4.50 0.000 didle 4.50 4.50 0.000 0.000 difor bottom reinforcement.	Strip Left** Right** Bottom* Left** Right** Column 4.50 4.50 4.50 1.000 1.000 Middle 4.50 4.50 4.50 0.000 0.000 Column 4.50 4.50 4.50 1.000 0.000 Column 4.50 4.50 4.50 1.000 0.825 Middle 4.50 4.50 4.50 0.175 0.175 Column 4.50 4.50 4.50 0.825 0.825 Middle 4.50 4.50 4.50 0.175 0.175 Column 4.50 4.50 4.50 0.825 1.000 Middle 4.50 4.50 0.175 0.000 0.000 Column 4.50 4.50 4.50 0.175 0.000 Column 4.50 4.50 0.000 0.000 0.000 Column 4.50 4.50 0.000 0.000 0.000 0.000	

Top Reinforcement

Unit Span	s: Widt) Strip	h (m), Mmax Zone	(kNm), Width	Xmax (m), A Mmax	.s (mm^2), Xmax	Sp (mm) AsMin	AsMax	AsReq	SpProv	Bars	
1	Column	Left	4.50	0.38	0.072	2340	30207	5	281	16-#15	*3
		Midspan	4.50	1.22	0.134	2340	44772	11	281	16-#15	*3
		Right	4.50	2.85	0.206	2988	29848	25	188	24-#15	*3 *5
	Middle	Left	4.50	0.00	0.000	2340	30207	0	375	12-#15	*3
		Midspan	4.50	0.00	0.103	2340	30207	0	375	12-#15	*3
		Right	4.50	0.00	0.206	2340	30207	0	375	12-#15	*3
2	Column	Left	4.50	312.29	0.250	2988	29848	2843	188	24-#15	*3
		Midspan	4.50	0.00	4.500	0	30207	0	0		
		Right	4.50	771.69	8.750	2988	29848	7344	122	37-#15	
	Middle	Left	4.50	1.16	0.618	2340	30207	15	375	12-#15	*3
		Midspan	4.50	0.00	4.500	0	30207	0	0		
		Right	4.50	163.69	8.750	2340	30207	2194	375	12-#15	*3
3	Column	Left	4.50	693.41	0.250	2988	29848	6546	122	37-#15	
		Midspan	4.50	0.00	4.500	0	30207	0	0		
		Right	4.50	693.41	8.750	2988	29848	6546	122	37-#15	
	Middle	Left	4.50	147.09	0.250	2340	30207	1967	375	12-#15	*3

^[2] DESIGN RESULTS*

CONCRETE SOFTWARE SOLUTIONS

07-05-2018, 12:19:27 PM

Page 2

spSlab v Licensed C:\TSDA\?	5.00 © to: Si Two-Way	StructureF tructurePoi y Flate Sla	oint nt, Licen b Floor W	nse ID: 000 with Drop H	000-0000000 Panel (CSA))-4-25EF2-	270EB Strip.s	lb			07-05-
		Midspan Right	4.50 4.50	0.00 147.09	4.500 8.750	0 2340	30207 30207	0 1967	0 375	 12-#15	*3
4 (Column	Left Midspan Right	4.50 4.50 4.50	771.69 0.00 312.29	0.250 4.500 8.750	2988 0 2988	29848 30207 29848	7344 0 2843	122 0 188	37-#15 24-#15	*3
1	Middle	Left Midspan Right	4.50 4.50 4.50	163.69 0.00 1.16	0.250 4.500 8.382	2340 0 2340	30207 30207 30207	2194 0 15	375 0 375	12-#15 12-#15	*3 *3
5 (Column	Left Midspan Right	4.50 4.50 4.50	2.85 1.22 0.38	0.044 0.116 0.178	2988 2340 2340	29848 44772 30207	25 11 5	188 281 281	24-#15 16-#15 16-#15	*3 *5 *3 *3
1	Middle	Left Midspan Right	4.50 4.50 4.50	0.00 0.00 0.00	0.044 0.147 0.250	2340 2340 2340	30207 30207 30207	0 0 0	375 375 375	12-#15 12-#15 12-#15	*3 *3 *3

NOTES: *3 - Design governed by minimum reinforcement. *5 - Number of bars governed by maximum allowable spacing.

Top Bar Details _____

Units: Length (m)

			Lef	t		Conti	nuous	Right				
Span	Strip	Bars	Length	Bars	Length	Bars	Length	Bars	Length	Bars	Length	
1	Column					16-#15	0.25	8-#15	0.25			
	Middle					12-#15	0.25					
2	Column	15-#15	3.06	9-#15	1.95			19-#15	3.06	18-#15*	1.95	
	Middle	12-#15	2.12					12-#15	2.78			
3	Column	19-#15	3.06	18-#15*	1.95			19-#15	3.06	18-#15*	1.95	
	Middle	12-#15	3.01					12-#15	3.01			
4	Column	19-#15	3.06	18-#15*	1.95			15-#15	3.06	9-#15	1.95	
	Middle	12-#15	2.78					12-#15	2.12			
5	Column	8-#15	0.25			16-#15	0.25					
NOTE	Middle 5:					12-#15	0.25					

* - Bar cut-off location shall be manually checked for compliance with CSA A23.3, 11.2.13.

Top Bar Development Lengths

Units: Length (mm)

			Lef	t		Conti	nuous	Right				
Span	Strip	Bars	DevLen	Bars	DevLen	Bars	DevLen	Bars	DevLen	Bars	DevLen	
1	Column Middle					16-#15 12-#15	300.00 300.00	8-#15	300.00			
2	Column Middle	15-#15 12-#15	300.00 300.00	9- # 15 	300.00			19-#15 12-#15	344.77 317.60	18-#15 	344.77	
3	Column Middle	19-#15 12-#15	307.32 300.00	18-#15	307.32			19-#15 12-#15	307.32 300.00	18-#15	307.32	
4	Column Middle	19-#15 12-#15	344.77 317.60	18-#15	344.77			15-#15 12-#15	300.00 300.00	9-#15 	300.00	
5	Column Middle	8-#15	300.00			16-#15 12-#15	300.00 300.00					

Band Reinforcement at Supports

Units: Width (mm), As (mm^2)

Supp	Width <c></c>	Width 	Width <s></s>	As <c></c>	As 	As <s></s>	Bars <c></c>	Bars 	Bars <s></s>
1	4500	1604	2896	4800	3000	1800	24-#15	15-#15	9-#15
2	4500	1604	2896	7400	3000	4400	37-#15	15-#15	22-#15
3	4500	1604	2896	7400	3000	4400	37-#15	15-#15	22-#15
4	4500	1604	2896	4800	3000	1800	24-#15	15-#15	9-#15
<c></c>	Total Str	ip, 1	Banded Stri	p, <s> F</s>	Remaining	Strip			

Bottom Reinforcement

Units: Width Span Strip	(m), Mmax Width	(kNm), Xmax Mmax	(m), As Xmax	(mm^2), AsMin	Sp (mm) AsMax	AsReq	SpProv	Bars
1 Column Middle	4.50 4.50	0.00	0.103 0.103	0 0	30207 30207	0 0	0 0	
2 Column Middle	4.50 4.50	304.29 202.86	3.900 3.900	2340 2340	30207 30207	4156 2733	214 321	21-#15 14-#15

CONCRETE SOFTWARE SOLUTIONS

07-05-2018, 12:19:27 PM

Page 3

3	Column Middle	4.50 4.50	161.07 107.38	4.500 4.500	2340 2340	30207 30207	2158 1429	375 375	12-#15 * 12-#15 *	3 3
4	Column Middle	4.50 4.50	304.29 202.86	5.100 5.100	2340 2340	30207 30207	4156 2733	214 321	21-#15 14-#15	
5	Column Middle	4.50 4.50	0.00	0.147 0.147	0 0	30207 30207	0 0	0 0		
OTE:	S:									

NOTES: *3 - Design governed by minimum reinforcement.

Units: Start (m), Length (m)

		Lo	ong Bars		Short Bars			
Span	Strip	Bars	Start	Length	Bars	Start	Length	
1	Column Middle							
2	Column Middle	21-#15 12-#15	0.00	9.00 9.00	2-#15	0.00	7.65	
3	Column Middle	12-#15 12-#15	0.00	9.00 9.00				
4	Column Middle	21-#15 12-#15	0.00	9.00 9.00	2-#15	1.35	7.65	
5	Column Middle							

spSlab v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 00000-0000000-4-25EF2-270EB C:\TSDA\Two-Way Flate Slab Floor with Drop Panel (CSA)\Interior Strip.slb

Bottom Bar Development Lengths

Units: DevLen (mm)

Span	Strip	Long Bars	Bars DevLen	Short Bars	Bars DevLen
1	Column				
	Middle				
2	Column	21-#15	343.76		
	Middle	12-#15	339.10	2-#15	339.10
3	Column	12-#15	312.40		
	Middle	12-#15	300.00		
4	Column	21-#15	343.76		
	Middle	12-#15	339.10	2-#15	339.10
5	Column				
	Middle				

Flexural Capacity

Units: x (m), As (mm^2), PhiMn, Mu (kNm)

					To	p					Botto	n		
Span	Strip	x	AsTop	PhiMn-	Mu-	Comb	Pat	Status	AsBot	PhiMn+	Mu+	Comb	Pat	Status
1	Column	0.000	4800	-349.26	0.00	U1	A11	OK	0	0.00	0.00	U1	A11	OK
		0.072	4800	-525.51	-0.38	U1	A11	OK	0	0.00	0.00	U1	A11	OK
		0.125	4800	-525.51	-1.03	U1	A11	OK	0	0.00	0.00	U1	A11	OK
		0.134	4800	-517.36	-1.22	U1	A11	OK	0	0.00	0.00	U1	A11	OK
		0.206	4800	-517.36	-2.85	U1	A11	OK	0	0.00	0.00	U1	A11	OK
		0.250	4800	-517.36	-4.11	U1	A11		0	0.00	0.00	U1	A11	
	Middle	0.000	2400	-178.71	0.00	U1	A11	OK	0	0.00	0.00	U1	A11	OK
		0.072	2400	-178.71	-0.00	U1	A11	OK	0	0.00	0.00	U1	A11	OK
		0.125	2400	-178.71	-0.00	U1	A11	OK	0	0.00	0.00	U1	A11	OK
		0.134	2400	-178.71	-0.00	U1	A11	OK	0	0.00	0.00	U1	A11	OK
		0.206	2400	-178.71	-0.00	U1	A11	OK	0	0.00	0.00	U1	A11	OK
		0.250	2400	-178.71	-0.00	01	A11		0	0.00	0.00	U1	A11	
2	Column	0.000	4800	-517.36	-432.91	U1	A11		4200	307.38	0.00	U1	A11	
		0.250	4800	-517.36	-312.29	U1	A11	OK	4200	307.38	0.00	U1	A11	OK
		1.500	4800	-517.36	0.00	U1	A11	OK	4200	307.38	93.70	U1	A11	OK
		1.500	4800	-349.26	0.00	U1	A11	OK	4200	307.38	93.80	U1	A11	OK
		1.650	4800	-349.26	0.00	U1	A11	OK	4200	307.38	119.26	U1	A11	OK
		1.950	3000	-222.11	0.00	U1	A11	OK	4200	307.38	165.33	U1	A11	OK
		2.755	3000	-222.11	0.00	U1	A11	OK	4200	307.38	256.38	U1	A11	OK
		3.055	0	0.00	0.00	U1	A11	OK	4200	307.38	278.19	U1	A11	OK
		3.225	0	0.00	0.00	U1	A11	OK	4200	307.38	287.67	U1	A11	OK
		3.900	0	0.00	0.00	U1	A11	OK	4200	307.38	304.29	U1	A11	OK
		4.500	0	0.00	0.00	U1	A11	OK	4200	307.38	291.07	U1	A11	OK
		5.775	0	0.00	0.00	U1	A11	OK	4200	307.38	175.52	U1	A11	OK
		5.945	0	0.00	0.00	U1	A11	OK	4200	307.38	151.08	U1	A11	OK
		6.290	3800	-279.19	0.00	U1	A11	OK	4200	307.38	95.13	U1	A11	OK

Bottom Bar Details

sislab

07-05-2018, 12:19:27 PM

Page 4

spSlab v5.00 © S	Structur	ePoint								07-05-2018, 1
Licensed to: Str C:\TSDA\Two-Way	ructureF Flate S	Point, Slab Fl	License ID oor with D:	: 00000-00 rop Panel	00000-4-2 (CSA)\Int	SEF2-	-270EB Strip.slb			
	7.050	3800	-279.19	-84.54	U1 A11	OK	4200	307.38	0.00	U1 All OK
	7.395	7400	-524.82	-203.09	U1 All	OK	4200	307.38	0.00	U1 All OK
	7.500	7400	-524.82	-241.14	U1 All	OK	4200	307.38	0.00	U1 All OK
	7.500	7400	-777.16	-241.36	U1 A11	OK	4200	307.38	0.00	U1 A11 OK
	8.813	7400	-777 16	-801 78	UI AII	OK	4200	307.38	0.00	UI AII OK
	9.000	7400	-777.16	-893.99	U1 A11		4200	307.38	0.00	U1 A11
Middle	0.000	2400	-178.71	2.22	U1 All		2800	207.70	0.00	U1 All
	0.250	2400	-178.71	-0.00	U1 All	OK	2800	207.70	0.00	U1 All OK
	0.618	2400	-178.71	-1.16	U1 All	OK	2800	207.70	0.00	U1 A11 OK
	2.120	2400	-1/8./1	0.00	UI AII	OK	2800	207.70	125.65	UI AII OK
	3.225	ŏ	0.00	0.00	U1 A11	OK	2800	207.70	191.78	U1 All OK
	3.900	0	0.00	0.00	U1 All	OK	2800	207.70	202.86	U1 All OK
	4.500	0	0.00	0.00	U1 A11	OK	2800	207.70	194.05	U1 All OK
	5.775	0	0.00	0.00	UI AII	OK	2800	207.70	71 50	UI AII OK
	6.536	2400	-178.71	0.00	U1 A11	OK	2800	207.70	33.18	U1 A11 OK
	7.311	2400	-178.71	-29.48	U1 All	OK	2800	207.70	0.00	U1 All OK
	7.650	2400	-178.71	-53.47	U1 All	OK	2400	178.71	0.00	U1 All OK
	8.750	2400	-178.71	-163.69	U1 All	OK	2400	178.71	0.00	U1 All OK
	9.000	2400	-178.71	-196.44	U1 All		2400	178.71	0.00	U1 A11
3 Column	0 000	7400	-777 16	-806 21	111 211		2400	178 71	0 00	II1 A11
0 001444	0.063	7400	-777.16	-777.38	U1 A11		2400	178.71	0.00	U1 A11
	0.250	7400	-777.16	-693.41	U1 All	OK	2400	178.71	0.00	U1 All OK
	1.500	7400	-777.16	-231.36	U1 A11	OK	2400	178.71	0.00	U1 All OK
	1.500	7400	-524.82	-231.18	U1 AII	OK	2400	178.71	0.00	UI ALL OK
	1.950	3800	-279.19	-105.63	U1 All	OK	2400	178.71	0.00	U1 All OK
	2.748	3800	-279.19	0.00	U1 A11	OK	2400	178.71	48.68	U1 All OK
	3.055	0	0.00	0.00	U1 All	OK	2400	178.71	84.64	U1 All OK
	3.225	0	0.00	0.00	U1 A11	OK	2400	178.71	101.60	U1 A11 OK
	5 775	0	0.00	0.00	U1 A11 U1 A11	OK	2400	178 71	101.07	UI AII OK
	5.945	ŏ	0.00	0.00	U1 A11	OK	2400	178.71	84.64	U1 A11 OK
	6.252	3800	-279.19	0.00	U1 All	OK	2400	178.71	48.68	U1 All OK
	7.050	3800	-279.19	-105.63	U1 All	OK	2400	178.71	0.00	U1 All OK
	7.357	7400	-524.82	-189.25	U1 A11	OK	2400	178.71	0.00	U1 A11 OK
	7.500	7400	-777.16	-231.36	U1 All	OK	2400	178.71	0.00	U1 All OK
	8.750	7400	-777.16	-693.41	U1 All	OK	2400	178.71	0.00	U1 All OK
	8.938	7400	-777.16	-777.38	U1 All		2400	178.71	0.00	U1 All
	9.000	7400	-777.16	-806.21	U1 A11		2400	178.71	0.00	U1 A11
Middle	0.000	2400	-178.71	-171.01	U1 AII	08	2400	178.71	0.00	U1 A11
	2.706	2400	-178.71	0.00	U1 All	OK	2400	178.71	28.89	U1 All OK
	3.006	0	0.00	0.00	U1 All	OK	2400	178.71	52.95	U1 All OK
	3.225	0	0.00	0.00	U1 All	OK	2400	178.71	67.73	U1 All OK
	4.500	0	0.00	0.00	U1 All	OK	2400	178.71	107.38	U1 A11 OK
	5.994	0	0.00	0.00	U1 A11	OK	2400	178.71	52.95	U1 A11 OK
	6.294	2400	-178.71	0.00	U1 A11	OK	2400	178.71	28.89	U1 All OK
	8.750	2400	-178.71	-147.09	U1 All	OK	2400	178.71	0.00	U1 All OK
	9.000	2400	-178.71	-171.01	U1 All		2400	178.71	0.00	U1 A11
4 Column	0.000	7400	-777.16	-893.99	U1 All		4200	307.38	0.00	U1 All
	0.250	7400	-777.16	-771.69	UI AII	OK.	4200	307.38	0.00	01 A11 OK
	1.500	7400	-777.16	-241.36	U1 All	OK	4200	307.38	0.00	U1 All OK
	1.500	7400	-524.82	-241.14	U1 All	OK	4200	307.38	0.00	U1 All OK
	1.605	7400	-524.82	-203.09	U1 A11	OK	4200	307.38	0.00	U1 A11 OK
	2 710	3800	-279.19	-84.54	UI AII	OK	4200	307.38	0.00	UI AIL OK
	3.055	0	0.00	0.00	U1 A11	OK	4200	307.38	151.08	U1 A11 OK
	3.225	ŏ	0.00	0.00	U1 All	OK	4200	307.38	175.52	U1 All OK
	4.500	0	0.00	0.00	U1 All	OK	4200	307.38	291.07	U1 All OK
	5.100	0	0.00	0.00	U1 All	OK	4200	307.38	304.29	U1 All OK
	5.775	0	0.00	0.00	U1 AII	OK	4200	307.38	287.67	UI ALL OK
	6.245	3000	-222.11	0.00	U1 A11	OK	4200	307.38	256.38	U1 A11 OK
	7.050	3000	-222.11	0.00	U1 All	OK	4200	307.38	165.33	U1 All OK
	7.350	4800	-349.26	0.00	U1 All	OK	4200	307.38	119.26	U1 All OK
	7.500	4800	-349.26	0.00	U1 A11	OK OK	4200	307.38	93.80	U1 All OK
	7.500	4800	-517.36	-312 29	UI AIL UI AIL	OK	4200	307.38	93.70	UI AIL OK
	9.000	4800	-517.36	-432.91	U1 All		4200	307.38	0.00	U1 A11
Middle	0.000	2400	-178.71	-196.44	U1 A11		2400	178.71	0.00	U1 All
	0.125	2400	-178.71	-179.68	U1 A11		2400	178.71	0.00	U1 A11
	0.250	2400	-178.71	-163.69	U1 A11	OK	2400	178.71	0.00	U1 All OK
	1.689	2400	-178.71	-29,48	U1 A11	OK OK	2400	207.70	0.00	U1 A11 OK
	2.464	2400	-178.71	0.00	U1 A11	OK	2800	207.70	33.18	U1 All OK
	2.781	0	0.00	0.00	U1 All	OK	2800	207.70	71.59	U1 All OK
	3.225	0	0.00	0.00	U1 A11	OK	2800	207.70	117.01	U1 All OK
	4.500	U	0.00	0.00	UI AIL	OK	2800	207.70	194.05	OT ALL OK

07-05-2018, 12:19:27 PM

Page 5

spSlab v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 00000-0000000-4-25EF2-270EB C:\TSDA\Two-Way Flate Slab Floor with Drop Panel (CSA)\Interior Strip.slb												
	5.100	0	0.00	0.00	U1 /	A11 C	K	2800	207.70	202.86	U1 A11	OK
	5.775	0	0.00	0.00	U1 /	A11 C	K	2800	207.70	191.78	U1 All	OK
	6.880	0	0.00	0.00	U1 4	A11 C	K	2800	207.70	125.65	U1 All	OK
	7.180	2400	-178.71	0.00	U1 4	A11 C	ΟK	2800	207.70	97.42	U1 All	OK
	8.382	2400	-178.71	-1.16	U1 /	All ()K	2800	207.70	0.00	U1 All	OK
	8.750	2400	-178.71	-0.00	U1 /	All ()K	2800	207.70	0.00	U1 All	OK
	9.000	2400	-178.71	2.22	U1 /	All -		2800	207.70	0.00	U1 All	
5 Column	0.000	4800	-517.36	-4.11	U1 2	A11 -		0	0.00	0.00	U1 A11	
	0.044	4800	-517.36	-2.85	U1 /	A11 C)K	0	0.00	0.00	U1 All	OK
	0.116	4800	-525.51	-1.22	U1 /	All ()K	0	0.00	0.00	U1 All	OK
	0.125	4800	-525.51	-1.03	U1 /	All ()K	0	0.00	0.00	U1 All	OK
	0.178	4800	-349.26	-0.38	U1 /	All ()K	0	0.00	0.00	U1 All	OK
	0.250	4800	-349.26	0.00	U1 /	All ()K	0	0.00	0.00	U1 All	OK
Middle	0.000	2400	-178.71	-0.00	U1 7	All -		0	0.00	0.00	U1 All	
	0.044	2400	-178.71	-0.00	U1 7	A11 C)K	0	0.00	0.00	U1 All	OK
	0.116	2400	-178.71	-0.00	U1 /	All (ΟK	0	0.00	0.00	U1 All	OK
	0.125	2400	-178.71	-0.00	U1 /	All ()K	0	0.00	0.00	U1 All	OK
	0.178	2400	-178.71	-0.00	U1 /	All ()K	0	0.00	0.00	U1 All	OK
	0.250	2400	-178.71	0.00	U1 7	All ()K	0	0.00	0.00	U1 All	OK

Slab Shear Capacity _____

Units: Span	b, dv (mm), b	Xu (m) dv), PhiVc, Beta	Vu(kN) Vratio	PhiVc	Vu	Xu
1	9000	202	0 000	1 000	1465 21	0 00	0 00
-	9000	234	0.000	1.000	1587.23	0.00	0.00
2	9000	234	0.000	1.000	1587.23	430.59	0.45
	9000	202	0.000	1.000	1465.21	439.15	7.50
	9000	234	0.000	1.000	1587.23	577.20	8.55
3	9000	234	0.000	1.000	1587.23	503.89	0.45
	9000	202	0.000	1.000	1465.21	365.85	7.50
	9000	234	0.000	1.000	1587.23	503.89	8.55
4	9000	234	0.000	1.000	1587.23	577.20	0.45
	9000	202	0.000	1.000	1465.21	439.15	1.50
	9000	234	0.000	1.000	1587.23	430.59	8.55
5	9000	234	0.000	1.000	1587.23	0.00	0.25
	9000	202	0.000	1.000	1465.21	0.00	0.25

Flexural Transfer of Negative Unbalanced Moment at Supports _____ -----

Units:	Width	(mm), Munb	(kNm), As	(mm^2)	Comb	Dat	CommoR	A n D n m	AsDrorr	Add Barg
5upp		widen-c	u				Ganunar	ASKEQ	ASPIOV	Add Bars
1	1604	1604	332	426.58	U1	A11	0.626	2475	3000	
2	1604	1604	332	113.21	U1	A11	0.600	608	3000	
3	1604	1604	332	113.21	U1	A11	0.600	608	3000	
4	1604	1604	332	426.58	U1	A11	0.626	2475	3000	

Punching Shear Around Columns

Critical Section Properties

Unit: Supp	s: b1, Type	b2, b0, b1	davg, CG, b2	c(left), b0	c(right) davg	(mm), Ac CG	(mm^2), c(left)	Jc (mm^4) c(right)	Ac	Jc
1	Rect	666.0	832.0	2164.0	332.0	211.0	461.0	205.0	7.1845e+005	3.9262e+010
2	Rect Rect	832.0 832.0	832.0 832.0	3328.0 3328.0	332.0 332.0	0.0	416.0 416.0	416.0 416.0	1.1049e+006 1.1049e+006	1.3255e+011 1.3255e+011
4	Rect	666.0	832.0	2164.0	332.0	-211.0	205.0	461.0	7.1845e+005	3.9262e+010

Punching Shear Results

Units: Supp	Vu (kN), Mu Vu	nb (kNm), vu vu	(N/mm^2) Munb	, Phi Comb	*vc Pat	(N/mm^2) GammaV	vu	Phi*vc
1 2 3	515.46 1190.63 1190.63	0.717 1.078 1.078	317.80 -113.21 113.21	U1 U1 U1 U1	A11 A11 A11	0.374 0.400 0.400	1.337 1.220 1.220	1.426 1.426 1.426
4	515.46	0.717	-317.80	U1	A11	0.374	1.337	1.426

Punching Shear Around Drops

Critical Section Properties

				_							
Unit: Supp	s: b1, Type	b2, b0, b1	davg,	CG, b2	c(left), b0	c(right) davg	(mm), Ac CG	(mm^2), c(left)	Jc (mm^4) c(right)	Ac	Jc
1	Rect	1862.0	3224	.0	6948.0	224.0	1113.0	1363.0	499.0	1.5564e+006	5.8e+011
2	Rect	3224.0	3224	.0	12896.0	224.0	0.0	1612.0	1612.0	2.8887e+006	5.0103e+012
3	Rect	3224.0	3224	.0	12896.0	224.0	0.0	1612.0	1612.0	2.8887e+006	5.0103e+012
4	Rect	1862.0	3224	.0	6948.0	224.0	-1113.0	499.0	1363.0	1.5564e+006	5.8e+011

Punching Shear Results

Units: Vu (kN), vu (N/mm^2), Phi*vc (N/mm^2)

CONCRETE SOFTWARE SOLUTIONS

spSlab v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 00000-0000000-4-25EF2-270EB C:\TSDA\Two-Way Flate Slab Floor with Drop Panel (CSA)\Interior Strip.slb

Supp	Vu	Comb	Pat	vu	Phi*vc
1	441.62	U1	A11	0.284	1.103
2	1059.17	U1	A11	0.367	0.998
3	1059.17	U1	A11	0.367	0.998
4	441.62	U1	A11	0.284	1.103

Integrity Reinforcement at Supports

Units:	Vse(kN),	Asb(mm^2)		
Supp	Vs	e	Asb	
1	485.7	 6	2429	
2	1116.9	4	5585	
3	1116.9	4	5585	
4	485.7	6	2429	
NOTES:	The sum of	f bottom	reinforcement	cross

OTES: The sum of bottom reinforcement crossing the perimeter of the support on all sides shall not be less than the above listed values.

Material Takeoff

Reinforcement in the Direction of Analysis

Top Bars:	1110.2	kg	<=>	40.37	kg/m	<=>	4.486	kg/m^2
Bottom Bars:	1319.7	kg	<=>	47.99	kg/m	<=>	5.332	kg/m^2
Stirrups:	0.0	kg	<=>	0.00	kg/m	<=>	0.000	kg/m^2
Total Steel:	2429.9	kg	<=>	88.36	kg/m	<=>	9.818	kg/m^2
Concrete:	67.4	m^3	<=>	2.45	m^3/m	<=>	0.272	m^3/m^2

Page 6

CONCRETE SOFTWARE SOLUTIONS

spSlab v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 00000-0000000-4-25EF2-270EB C:\TSDA\Two-Way Flate Slab Floor with Drop Panel (CSA)\Interior Strip.slb 08-06-2018, 03:58:55 PM

Page 1

	0	00000 00 0 0 00 00000 00 00 00 00 00			0 00 00 00 00 00 00 00 00 00 00	00000 0 00 00 00 00 00 00 00 00 00 00000 0	0 00 00 00 00 00 00 00 00 00 00 00 00 0	(TM)	
	A Cor Rein	mputer Prog nforced Con Copyri	s ram for A crete Bea ght © 200 All	pSlab v5.(nalysis, 1 ms, One-wa 3-2015, S rights res	D0 (TM) Design, a ay and Tw IRUCTUREE served	nd Invest 70-way Sla POINT, LLC	igation o ab Systems	f	
Licensee be respon for proce any warri- by the si program : analysis, STRUCTURI analysis, program.	stated al hsible for (essing by th anty expresse. Slab program is not and c. design action CPOINT discl. design or (bove ackni brither the spSlab i nor impl: . Although annot be and en aims all re- engineering	owledges accurac computer ied with STRUCTUR certifie gineering esponsibi document	that : y or ac program respect EPOINT han d infall: documen lity in (s prepare(STRUCTURE dequacy . Furthe to the s endeav ible. The nts i contract, i in con	POINT of the rmore, S correctne ored to p e final a .s the negliger inection	(SP) is material STRUCTUREP iss of th roduce s and only licens ice or ot with the	not and car supplied as ir OINT neither ma e output prepy Slab error free responsibility ee's. According her tort for use of the spi	nnot aput akes ared for for gly, any slab
[3] DEFLECTION RES	SULTS								
Section Properties	3								
Frame Section 1	= Properties								
Uniter To Tox	(mm^4) Man	(1-37m)							
onics: ig, ier	(num 4), MCI	M+ve			M-ve				
Span Zone	Ig	Icr	Mcr	I(J 	Icr	Mcr		
1 Left 1 Midspan 1	.3182e+010 .3182e+010	0.00000	179.96 1 179.96 1	.3182e+010	0 1.4991e 0 1.8638e	+009 -17	9.96 9.96		
Right 2. 2 Left 2	.3132e+010 .3132e+010 1.4	0.00000 4217e+009	190.40 2	.3132e+010	0 3.6360e 0 3.6360e	+009 -26 +009 -26	59.43 59.43		
Midspan 1	.3182e+010 1.	7292e+009	179.96 1	.3182e+010	0.0	00000 -17	9.96		
Right 2	.3132e+010 1.	1217e+009	190.40 2	.3132e+010	0 4.6354e	+009 -26	59.43 59.43		
Midspan 1	.3182e+010 1.3	3092e+009	179.96 1	.3182e+010	0.0	00000 -17	9.96		
Right 2	.3132e+010 1.	L061e+009	190.40 2	.3132e+010	0 4.6354e	+009 -26	9.43		
4 Left 2. Midspan 1	.3132e+010 1. .3182e+010 1.	1217e+009 7292e+009	179.96 1	.3132e+010	0 4.63546 0 0.0	0000 -17	9.43 9.96		
Right 2	.3132e+010 1.	1217e+009	190.40 2	.3132e+01	0 3.6360e	+009 -26	9.43		
5 Left 2. Midenar 1	.3132e+010	0.00000	190.40 2	.3132e+010	0 3.6360e	+009 -26	9.43 9.96		
Right 1	.3182e+010	0.00000	179.96 1	.3182e+010) 1.3638e	+009 -17	9.96		
NOTES: M+ve val M-ve val	lues are for p lues are for p	positive mon negative mon	ments (te ments (te	nsion at) nsion at 1	oottom fa top face)				
Frame Effective	e Section Prop	perties							
Units: Ie, Ie,	avg (mm^4), Mi	nax (kNm)		Load Lev	vel				
G		Dead		Sustain	ned	Dea	d+Live		
Span Zone	weight l	1max	1e	mmax	ſe	Mmax			
1 Right Span Avg	1.000	2.28 2.3132	e+010 e+010	-2.28 2.3	132e+010 132e+010	-3.12	2.3132e+0 2.3132e+0	10 10	

-		2.000	2.20	2.0102020.010	2.20	2.0102020.010	0.110	2.010201010
	Span Avg			2.3132e+010		2.3132e+010		2.3132e+010
2	Middle	0.500	271.75	5.0556e+009	271.75	5.0556e+009	383.39	2.9138e+009
	Right	0.500	-585.84	6.4346e+009	-585.84	6.4346e+009	-824.59	5.2806e+009
	Span Avg			5.7451e+009		5.7451e+009		4.0972e+009
3	Left	0.250	-525.03	7.1350e+009	-525.03	7.1350e+009	-738.99	5.5318e+009
	Middle	0.500	143.46	1.3182e+010	143.46	1.3182e+010	202.88	9.5968e+009
	Right	0.250	-525.03	7.1350e+009	-525.03	7.1350e+009	-738.99	5.5318e+009
	Span Avg			1.0158e+010		1.0158e+010		7.5643e+009
4	Left	0.500	-585.84	6.4346e+009	-585.84	6.4346e+009	-824.59	5.2806e+009
	Middle	0.500	271.75	5.0556e+009	271.75	5.0556e+009	383.39	2.9138e+009
	Span Avg			5.7451e+009		5.7451e+009		4.0972e+009
- 5	Left	1.000	-2.28	2.3132e+010	-2.28	2.3132e+010	-3.12	2.3132e+010
	Span Avg			2.3132e+010		2.3132e+010		2.3132e+010

Strip Section Properties at Midspan

68

CONCRETE SOFTWARE SOLUTIONS

08-06-2018, 03:58:55 PM Page 2

spSlab v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 00000-0000000-4-25EF2-270EB C:\TSDA\Two-Way Flate Slab Floor with Drop Panel (CSA)\Interior Strip.slb

Units: Ig (mm^4)

	Column	Strip		Middle	Strip	
Span	Ig	LDF	Ratio	Ig	LDF	Ratio
1	6.591e+009	0.800	1.600	6.591e+009	0.200	0.400
2	6.591e+009	0.756	1.513	6.591e+009	0.244	0.488
3	6.591e+009	0.712	1.425	6.591e+009	0.288	0.575
4	6.591e+009	0.756	1.513	6.591e+009	0.244	0.488
5	6.591e+009	0.800	1.600	6.591e+009	0.200	0.400

NOTES: Load distirubtion factor, LDL, averages moment distribution factors listed in [2] Design Results. Ratio refers to proportion of strip to frame deflections under fix-end condtions.

Instantaneous Deflections

Extreme Instantaneous Frame Deflections and Corresponding Locations

Units:	Def (mm), Loc (m)						
					Live		Total		
Span D	irection	Value	Dead	Sustained Ur	nsustained	Total	Sustained	Dead+Live	
1	Down	Def							
		Loc							
	Up	Def	-0.46		-0.25	-0.25	-0.46	-0.71	
		Loc	0.000		0.000	0.000	0.000	0.000	
2	Down	Def	8.19		6.65	6.65	8.19	14.84	
		Loc	4.200		4.275	4.275	4.200	4.275	
	Up	Def							
	-	Loc							
3	Down	Def	2.73		2.67	2.67	2.73	5.41	
		Loc	4.500		4.500	4.500	4.500	4.500	
	Up	Def	-0.05		-0.01	-0.01	-0.05	-0.06	
	-	Loc	0.324		0.250	0.250	0.324	0.324	
4	Down	Def	8.19		6.65	6.65	8.19	14.84	
		Loc	4.800		4.725	4.725	4.800	4.725	
	Up	Def							
	-	Loc							
5	Down	Def							
		Loc							
	Up	Def	-0.46		-0.25	-0.25	-0.46	-0.71	
	-	Loc	0.250		0.250	0.250	0.250	0.250	

Extreme Instantaneous Column Strip Deflections and Corresponding Locations

Units: Def (mm), Loc (m)

					Live	Total		
Span	Direction	Value	alue Dead	Sustained	Unsustained	Total	Sustained	Dead+Live
1	Down	Def						
		Loc						
	qU	Def	-0.46		-0.25	-0.25	-0.46	-0.71
	-	Loc	0.000		0.000	0.000	0.000	0.000
2	Down	Def	11.07		9.39	9.39	11.07	20.46
		Loc	4.275		4.350	4.350	4.275	4.350
	Up	Def						
		Loc						
3	Down	Def	4.15		3.88	3.88	4.15	8.03
		Loc	4.500		4.500	4.500	4.500	4.500
	Up	Def	-0.04		-0.01	-0.01	-0.04	-0.05
		Loc	0.250		0.188	0.188	0.250	0.250
4	Down	Def	11.07		9.39	9.39	11.07	20.46
		Loc	4.725		4.650	4.650	4.725	4.650
	Up	Def						
	_	Loc						
5	Down	Def						
		Loc						
	Up	Def	-0.46		-0.25	-0.25	-0.46	-0.71
		Loc	0.250		0.250	0.250	0.250	0.250

Extreme Instantaneous Middle Strip Deflections and Corresponding Locations
-----Units: Def (mm), Loc (m)

					Live		Total		
Span	Direction	Value	Dead	Sustained	Unsustained	Total	Sustained	Dead+Live	
1	Down	Def							
		Loc							
	Up	Def	-0.46		-0.25	-0.25	-0.46	-0.71	
	-	Loc	0.000		0.000	0.000	0.000	0.000	
2	Down	Def	5.34		3.92	3.92	5.34	9.26	
		Loc	3.975		4.125	4.125	3.975	4.050	
	Up	Def							
	-	Loc							
3	Down	Def	1.32		1.47	1.47	1.32	2.78	
		Loc	4.500		4.500	4.500	4.500	4.500	
	Up	Def	-0.07		-0.01	-0.01	-0.07	-0.08	
	-	Loc	0.471		0.324	0.324	0.471	0.397	
CONCRETE SOFTWARE SOLUTIONS

08-06-2018, 03:58:55 PM

Page 3

spSlab v5. Licensed t C:\TSDA\Tw	00 © Str o: Struc o-Way Fla	ucturePo turePoin ate Slab	int t, License ID Floor with D:	: 00000-0000 rop Panel (0	0000-4-25EF2 CSA)\Interio:	-270EB r Strip.slb		
4	Down	Def	5.34		3.92	3.92	5.34	9.26
		Loc	5.025		4.875	4.875	5.025	4.950
	Up	Def						
		Loc						
5	Down	Def						
		Loc						
	σU	Def	-0.46		-0.25	-0.25	-0.46	-0.71
		Loc	0.250		0.250	0.250	0.250	0.250

Long-term Deflections

Long-term Column Strip Deflection Factors

Time dependant factor for sustained loads = 2.000

Units: Astop, Asbot (mm^2), b, d (mm), Rho' (%), Lambda (-) M+ve

Span	Zone	Astop	b	d	Rho'	Lambda	Asbot	b	d	Rho'	Lambda
1	Right				0.000	2.000				0.000	2.000
2	Midspan				0.000	2.000				0.000	2.000
3	Midspan				0.000	2.000				0.000	2.000
4	Midspan				0.000	2.000				0.000	2.000
5	Left				0.000	2.000				0.000	2.000

NOTES: Deflection multiplier, Lambda, depends on moment sign at sustained load level and Rho' in given zone. Rho' is assumed zero because Compression Reinforcement option is NOT selected in Solve Options.

M-ve

Long-term Middle Strip Deflection Factors

Time dependant factor for sustained loads = 2.000 Units: Astop, Asbot (mm^2), b, d (mm), Rho' (%), Lambda (-)

				M+ve					M-ve		
Span	Zone	Astop	b	d	Rho'	Lambda	Asbot	b	d	Rho'	Lambda
1	Right				0.000	2.000				0.000	2.000
2	Midspan				0.000	2.000				0.000	2.000
3	Midspan				0.000	2.000				0.000	2.000
4	Midspan				0.000	2.000				0.000	2.000
5	Left				0.000	2.000				0.000	2.000

NOTES: Deflection multiplier, Lambda, depends on moment sign at sustained load level and Rho' in given zone. Rho' is assumed zero because Compression Reinforcement option is NOT selected in Solve Options.

Extreme Long-term Column Strip Deflections and Corresponding Locations

Jnits Span	: D (mm), Direction	x (m) Value	cs	cs+lu	cs+l	Total
1	Down	Def				
		Loc				
	gU	Def	-0.92	-1.17	-1.17	-1.62
	-	Loc	0.000	0.000	0.000	0.000
2	Down	Def	22.15	31.53	31.53	42.61
		Loc	4.275	4.275	4.275	4.275
	σU	Def				
		Loc				
3	Down	Def	8.31	12.19	12.19	16.34
-		Loc	4.500	4.500	4.500	4.500
	Up	Def	-0.08	-0.08	-0.08	-0.12
	010	Loc	0 250	0 250	0 250	0 250
4	Down	Def	22 15	31 53	31 53	42 61
-	200411	Loc	4 725	4 725	4 725	4 725
	IIn	Def	1.725	1.725	1.725	1.725
	05	Loc				
E	Dorm	Dof				
5	DOWII	Der				
		LOC				
	Up	Der	-0.92	-1.17	-1.17	-1.62
		LOC	0.250	0.250	0.250	0.250

NOTES: Incremental deflections due to creep and shrinkage (cs) based on sustained load level values. Incremental deflections after partitions are installed can be estimated by deflections due to: - creep and shrinkage plus unsustained live load (cs+1), if live load applied before partitions, - creep and shrinkage plus live load (cs+1), if live load applied after partitions. Total deflections consist of dead, live, and creep and shrinkage deflections.

Extreme Long-term Middle Strip Deflections and Corresponding Locations

Units Span	s: D (mm), Direction	x (m) Value	cs	cs+lu	cs+1	Total
1	Down	Def				
		Loc				
	Up	Def Loc	-0.92	-1.17	-1.17	-1.62
2	Down	Def Loc	10.68	14.59 4.050	14.59 4.050	19.93 3.975
	Up	Def				

spSlab v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 00000-0000000-4-25EF2-270EB C:\TSDA\Two-Way Flate Slab Floor with Drop Panel (CSA)\Interior Strip.slb

		Loc				
3	Down	Def	2.63	4.10	4.10	5.41
		Loc	4.500	4.500	4.500	4.500
	Up	Def	-0.15	-0.15	-0.15	-0.22
		Loc	0.471	0.397	0.397	0.471
4	Down	Def	10.68	14.59	14.59	19.93
		Loc	5.025	4.950	4.950	5.025
	Up	Def				
		Loc				
5	Down	Def				
		Loc				
	Up	Def	-0.92	-1.17	-1.17	-1.62
		Loc	0.250	0.250	0.250	0.250

NOTES: Incremental deflections due to creep and shrinkage (cs) based on sustained load level values. Incremental deflections after partitions are installed can be estimated by deflections due to: - creep and shrinkage plus unsustained live load (cs+lu), if live load applied before partitions, - creep and shrinkage plus live load (cs+l), if live load applied after partitions. Total deflections consist of dead, live, and creep and shrinkage deflections.

08-06-2018, 03:58:55 PM

Page 4

7. Summary and Comparison of Design Results

Table 9 - Comp	parison of Moments obtained from H	and (EFM) and spSlab Solution	on (<i>kN.m</i>)
		Hand (EFM)	spSlab
	Exterior Span	n	-
	Exterior Negative*	310.1	312.3
Column Strip	Positive	287.6	304.3
	Interior Negative*	773.7	771.7
	Exterior Negative*	0.0	0.0
Middle Strip	Positive	191.7	202.9
	Interior Negative*	164.1	163.7
	Interior Spar	1	-
Column Strin	Interior Negative*	695.1	693.4
Column Surp	Positive	156.4	161.1
Middle Strip	Interior Negative*	147.4	147.1
Middle Strip	Positive	104.3	107.4
* negative moments are ta	aken at the faces of supports		

		Table 10 -	Comparison o	of Reinforceme	nt Results					
Span]	Location	Reinfo Provided	orcement for Flexure	Additional I Provided fo Moment	Reinforcement r Unbalanced Transfer*	Total Reinforcement Provided				
		Hand	spSlab	Hand	spSlab	Hand	spSlab			
			Exterio	or Span						
	Exterior Negative	24-15M	24-15M	n/a	n/a	24-15M	24-15M			
Column Strip	Positive	21-15M	21-15M	n/a	n/a	21-15M	21-15M			
Strip	Interior Negative	37-15M	37-15M			37-15M	37-15M			
NC 1 11	Exterior Negative	12-15M	12-15M	n/a	n/a	12-15M	12-15M			
Strip	Positive	14-15M	14-15M	n/a	n/a	14-15M	14-15M			
Sulp	Interior Negative	12-15M	12-15M	n/a	n/a	12-15M	12-15M			
			Interio	or Span						
Column Strip	Column StripPositive12-15M12-15Mn/an/a12-15M12-15M									
Middle Strip	Positive	12-15M	12-15M	n/a	n/a	12-15M	12-15M			

Structure Point CONCRETE SOFTWARE SOLUTIONS

Table 11 - Comparison of One-Way (Beam Action) Shear Check Results											
Snon	V_f @	dv, kN	V _f @ drop panel, kN		<i>V</i> _c @ d	v, kN	Vc @ drop panel, kN				
SpanHandspSlabHandspSlabHandspHandspSlabHandspSlabHandsp											
Exterior	576.6	577.2	449.4	439.2	1,506.4	1,587.2	1,465.2	1,465.2			
Interior	Interior 502.8 503.9 375.6 365.8 1,506.4 1,587.2 1,465.2 1,465.2										
* x _u calcula	* x _u calculated from the centerline of the left column for each span										

All calculated from the conte	Time of the feft column to	r each span

Tab	Table 12 - Comparison of Two-Way (Punching) Shear Check Results (around Columns Faces)											
Sunnaut	<i>b</i> 1, mm		<i>b</i> ₂ , mm		b _o , mm		$V_{f_{f}}$ kN		<i>cAB</i> , mm			
Support	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab		
Exterior	666	832	832	832	2,164	2,164	465.6	515.5	205.0	205.0		
Interior	832	832	832	832	3,328	3,328	1,159.8	1,190.6	416.0	416.0		
Corner	666	666	666	666	1,332	1,332	253.9	272.9	166.5	166.5		
Sunnant	<i>J</i> _c ,	mm ⁴		γv	Munb,	, kN.m	V _f ,	MPa	<i>v</i> _c ,]	MPa		
Support	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab		
Exterior	3.93×1010	3.93×10 ¹⁰	0.374	0.374	330.3	317.8	1.29	1.34	1.426	1.426		
Interior	1.33×10 ¹¹	1.33×10 ¹¹	0.400	0.400	113.8	113.2	1.19	1.22	1.426	1.426		
Corner	2.25×10 ¹⁰	2.25×10 ¹⁰	0.400	0.400	184.3	177.4	1.12	1.14	1.426	1.426		

	Та	ble 13 - Com	parison of T	wo-Way (Pu	nching) Shea	ar Check Res	ults (around	l Drop Panel	s)	
S	<i>b</i> ₁ , mm		<i>b</i> ₂ , mm		b _o , mm		V_{f} , kN		<i>cAB</i> , mm	
Support	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab
Exterior	1,862	1,862	3,224	3,224	6,948	6,948	393.6	441.6	205.0	205.0
Interior	3,224	3,224	3,224	3,224	12,896	12,896	1,030.6	1059.2	416.0	416.0
Corner	1,862	1,862	1,862	1,862	3,724	3,724	214.4	231.9	166.5	166.5
Sunnant	<i>J</i> _c , 1	nm ⁴	:	γ _v	Munb,	kN.m	v _f , I	MPa	<i>v</i> _c , N	/IPa
Support	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab
Exterior	5.8×10 ¹¹	5.8×10 ¹¹	N.A.	N.A.	N.A.	N.A.	0.25	0.28	1.1	1.1
Interior	5.01×10 ¹²	5.01×10 ¹²	N.A.	N.A.	N.A.	N.A.	0.36	0.37	1.0	1.0
Corner	3.03×10 ¹¹	3.03×10 ¹¹	N.A.	N.A.	N.A.	N.A.	0.24	0.28	1.19	1.19
Note: Shear the model a	stresses from s right/left car	spSlab are hi ntilevers. This	gher than har small increas	d calculation se is often neg	s since it con glected in sim	siders the load	d effects bey calculations l	ond the colun ike the one u	nn centerline	known in

the model as right/left cantilevers. This small increase is often neglected in simplified hand calculations like the one used here.

Table 14 - Comparison of Immediate Deflection Results (mm)									
Column Strip									
Snon	D		D+LL _{sus}		D+LL _{full}		LL		
Span	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab	
Exterior	12.07	11.07	12.07	11.07	23.87	20.46	11.80	9.39	
Interior	3.33	4.15	3.33	4.15	6.34	8.03	3.01	3.88	
Middle Strip									
Snon	D		D+LL _{sus}		$D+LL_{full}$		LL		
span	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab	
Exterior	6.63	5.34	6.63	5.34	13.07	9.26	6.44	3.92	
Interior	0.78	1.32	0.78	1.32	1.48	2.78	0.70	1.47	

Table 15 - Comparison of Time-Dependent Deflection Results									
Column Strip									
Snon		λ_{Δ}	Δ_{cs}	, mm	Δ_{total} , mm				
Span	Hand	spSlab	Hand	spSlab	Hand	spSlab			
Exterior	2.0	2.0	24.14	22.15	48.01	42.61			
Interior	2.0	2.0	6.66	8.31	13.00	16.34			
Middle Strip									
Snon		λ_{Δ}	Δ_{cs}	, mm	$\Delta_{\text{total}}, \mathbf{mm}$				
Span	Hand	spSlab	Hand	spSlab	Hand	spSlab			
Exterior	2.0	2.0	13.26	10.68	26.33	19.93			
Interior	2.0	2.0	1.48	2.63	3.04	5.41			

In all of the hand calculations illustrated above, the results are in close or exact agreement with the automated analysis and design results obtained from the spSlab model.

8. Conclusions & Observations

8.1. One-Way Shear Distribution to Slab Strips

In one-way shear checks above, shear is distributed uniformly along the width of the design strip (9 m). <u>StructurePoint</u> finds it necessary sometimes to allocate the one-way shears with the same proportion moments are distributed to column and middle strips.

<u>spSlab</u> allows the one-way shear check using two approaches: 1) calculating the one-way shear capacity using the average slab thickness and comparing it with the total factored one-shear load as shown in the hand calculations above; 2) distributing the factored one-way shear forces to the column and middle strips and comparing it with the shear capacity of each strip as illustrated in the following figures. An engineering judgment is needed to decide which approach to be used.

General Information Span Control 50	oive Options	
Design Options Live load pattern ratio:	%	
Compression Reinforcement □ Decremental Reinf. Design □ Combined M-V-T Reinf. Design □ One-way Shear In Drop Panels □ Distribute Shear to Slab Strips □ Critical section for punching shear — Ignore side on a free edge if within effective depth from the face of the □ Use circular critical section arour	User Slab Strip Widths User Distribution Factors Beam T-Section Design Long. Bm. Supt. Design Trans. Bm. Supt. Design 4 times the slab support. nd circular supports (if possible)	
Deflection calculation options	tions are	
Gross (uncracked)	Effective (cracked)	
In negative moment regions, to calcu	ulate Ig and Mcruse	-
Rectangular Section	C T-Section	
Calculate long-term deflections Duration of load 60 months	Sustained part of live load	

Figure 23a - Distributing Shear to Column and Middle Strips (spSlab Input)

Figure 23b - Distributed Column and Middle Strip Shear Force Diagram (spSlab Output)

Unit	s: b, dv	(mm), Xu ((m), PhiV	c, Vu(kN)				
Span	Strip	b 	dv	Beta	Vratio	PhiVc	Vu	X1
1	Column	4500	202	0.210	1.000	732.60	0.00	0.00
		4500	266	0.210	1.000	854.63	0.00	0.00
	Middle	4500	202	0.210	0.000	732.60	0.00	0.00
		4500	202	0.210	0.000	732.60	0.00	0.00
2	Column	4500	266	0.210	0.996	854.63	428.80	0.45
		4500	202	0.210	0.851	732.60	373.60	7.50
		4500	266	0.210	0.829	854.63	478.58	8.55
	Middle	4500	202	0.210	0.026	732.60	7.53	1.50
		4500	202	0.210	0.149	732.60	65.55	7.50
		4500	202	0.210	0.171	732.60	98.61	8.55
3	Column	4500	266	0.210	0.825	854.63	415.71	0.45
		4500	202	0.210	0.825	732.60	301.83	7.50
		4500	266	0.210	0.825	854.63	415.71	8.55
	Middle	4500	202	0.210	0.175	732.60	88.18	0.45
		4500	202	0.210	0.175	732.60	64.02	7.50
		4500	202	0.210	0.175	732.60	88.18	8.55
4	Column	4500	266	0.210	0.829	854.63	478.58	0.45
		4500	202	0.210	0.851	732.60	373.60	1.50
		4500	266	0.210	0.996	854.63	428.80	8.55
	Middle	4500	202	0.210	0.171	732.60	98.61	0.45
		4500	202	0.210	0.149	732.60	65.55	1.50
		4500	202	0.210	0.026	732.60	7.53	7.50
5	Column	4500	266	0.210	1.000	854.63	0.00	0.25
		4500	202	0.210	1.000	732.60	0.00	0.25
	Middle	4500	202	0.210	0.000	732.60	0.00	0.25
		4500	202	0.210	0.000	732.60	0.00	0.25

8.2. Two-Way Concrete Slab Analysis Methods

A slab system can be analyzed and designed by any procedure satisfying equilibrium and geometric compatibility. Three established methods are widely used. The requirements for two of them are described in detail in CSA A.23.3-14 Clause 13.

Direct Design Method (DDM) is an approximate method and is applicable to two-way slab concrete floor systems that meet the stringent requirements of <u>CSA A.23.3-14 (13.9.1)</u>. In many projects, however, these requirements limit the usability of the Direct Design Method significantly.

The Elastic Frame Method (EFM) does not have the limitations of DDM. It requires more accurate analysis methods that, depending on the size and geometry can prove to be long, tedious, and time-consuming.

StucturePoint's <u>spSlab</u> software program solution utilizes the EFM to automate the process providing considerable time-savings in the analysis and design of two-way slab systems as compared to hand solutions using DDM or EFM.

Finite Element Method (FEM) is another method for analyzing reinforced concrete slabs, particularly useful for irregular slab systems with variable thicknesses, openings, and other features not permissible in DDM or EFM. Many reputable commercial FEM analysis software packages are available on the market today such as <u>spMats</u>. Using FEM requires critical understanding of the relationship between the actual behavior of the structure and the numerical simulation since this method is an approximate numerical method. The method is based on several assumptions and the operator has a great deal of decisions to make while setting up the model and applying loads and boundary conditions. The results obtained from FEM models should be verified to confirm their suitability for design and detailing of concrete structures.

The following table shows a general comparison between the DDM, EFM and FEM. This table covers general limitations, drawbacks, advantages, and cost-time efficiency of each method where it helps the engineer in deciding which method to use based on the project complexity, schedule, and budget.

Applicable CSA	Limitations/Applicability	Concrete Slab Analysis Method					
A23.3-14 Provision	Limitations/Applicability	DDM (Hand)	EFM (Hand//spSlab)	FEM (spMats)			
13.8.1.1 13.9.1.1	Panels shall be rectangular, with ratio of longer to shorter panel dimensions, measured center-to-center supports, not exceed 2.	(Trand)		(spinits)			
13.8.1.1 13.9.1.1	For a panel with beams between supports on all sides, slab-to-beam stiffness ratio shall be satisfied for beams in the two perpendicular directions.	Ø	Ø				
13.8.1.1 13.9.1.1	Column offset shall not exceed 20% of the span in direction of offset from either axis between centerlines of successive columns	Ŋ	Ø				
13.8.1.1 13.9.1.1	The reinforcement is placed in an orthogonal grid.	V	V				
13.9.1.2	Minimum of three continuous spans in each direction	₹ I					
13.9.1.3	Successive span lengths measured center-to- center of supports in each direction shall not differ by more than one-third the longer span	Ø					
13.9.1.4	All loads shall be due to gravity only	$\overline{\mathbf{v}}$					
13.9.1.4	All loads shall be uniformly distributed over an entire panel (q_f)	V					
13.9.1.4	Factored live load shall not exceed two times the factored dead load						
13.10.6	Structural integrity steel detailing	V	Ø	Ø			
13.10.10	Openings in slab systems	Ø	Ø	V			
8.2	Concentrated loads	Not permitted	R	V			
13.8.4.1	Live load arrangement (Load Patterning)	Not required	Required	Engineering judgment required based on modeling technique			
13.10.2*	Reinforcement for unbalanced slab moment transfer to column (M_{sc})	Moments @ support face	Moments @ support centerline	Engineering judgment required based on modeling technique			
13.8.2	Irregularities (i.e. variable thickness, non- prismatic, partial bands, mixed systems, support arrangement, etc.)	Not permitted	Engineering judgment required	Engineering judgment required			
Complexity	- · · · · · · · · · · · · · · · · · · ·	Low	Average	Complex to very complex			
Design time/o	costs	Fast	Limited	Unpredictable/Costly			
Design Econo	omy	Conservative (see detailed comparison with spSlab output)	Somewhat conservative	Unknown - highly dependent on modeling assumptions: 1. Linear vs. non-linear 2. Isotropic vs non-isotropic 3. Plate element choice 4. Mesh size and aspect ratio 5. Design & detailing features			
General (Dra	wbacks)	Very limited applications	Limited geometry	Limited guidance non-standard application (user dependent). Required significant engineering judgment			
General (Adv	antages)	Very limited analysis is required	Detailed analysis is required or via software (e.g. spSlab)	Unlimited applicability to handle complex situations permissible by the features of the software used (e.g. spMats)			
* The unbalar	[*] The unbalanced slab moment transferred to the column M_{sc} (M_{unb}) is the difference in slab moment on either side of a column at a specific joint.						

^{*} The unbalanced slab moment transferred to the column M_{sc} (M_{unb}) is the difference in slab moment on either side of a column at a specific joint. In DDM only moments at the face of the support are calculated and are also used to obtain M_{sc} (M_{unb}). In EFM where a frame analysis is used, moments at the column center line are used to obtain M_{sc} (M_{unb}).