Observations in Shear Wall Strength in Tall Buildings

CONCRETE SOFTWARE SOLUTIONS

Presented by StructurePoint at ACI Spring 2012 Convention in Dallas, Texas

Metropolitan Tower, New York City

68-story, 716 ft (218m) skyscraper

Jin Mao Tower, Shanghai, China

88-story, 1381 ft (421m)

FIGURE 8.45 Jin Mao Tower, Shanghai, China: (a) typical office floor framing plan;

Motivation

- Sharing insight from detailed analysis and implementation of code provisions
- Sharing insight from members of ACI committees
- Sharing insight from wide base of spColumn users
- Raising awareness of irregularities and their impact on design
- Conclusions apply to all sections, but especially those of irregular shape and loaded with large number of load cases and combinations, e.g. Shear Walls

Outline

Observations

- P-M Diagram Irregularities
 - Symmetry/Asymmetry
 - Strength Reduction Factor
 - Uniaxial/Biaxial Bending
- Moment Magnification Irregularities
- Conclusions

P-M Diagram

Design

- $(P_{u1}, M_{u1}) \rightarrow NG$
- $(\mathsf{P}_{u2}, \mathsf{M}_{u2}) \rightarrow \mathsf{OK}$
- $(P_{u3}, M_{u3}) \rightarrow NG$
- Notice P_{u1} < P_{u2} < P_{u3} with M_u=const
- One Quadrant OK if
 - $P_u \ge 0$ and $M_u \ge 0$
 - Section shape symmetrical
 - Reinforcement symmetrical

P-M Diagram – Pos./Neg. Load Signs

- All four quadrants are needed if loads change sign
 - If section shape and reinforcement are symmetrical then M- side is a mirror of M+ side

P-M Diagram – Asymmetric Section

Each quadrant different

- $(P_{u1}, M_{u1}) \rightarrow NG$
- $(\mathsf{P}_{\mathsf{u2}}, \mathsf{M}_{\mathsf{u2}}) \to \mathsf{OK}$
- $(\mathsf{P}_{u3}, \mathsf{M}_{u3}) \rightarrow \mathsf{OK}$

•
$$(\mathsf{P}_{\mathsf{u4}}, \mathsf{M}_{\mathsf{u4}}) \rightarrow \mathsf{NG}$$

- Notice:
 - Absolute value of moments same on both sides
 - Larger axial force favorable on M+ side but unfavorable on M- side

P-M Diagram – Asymmetric Steel

Skewed Diagram

- Plastic Centroid ≠ Geometrical Centroid (Concrete Centroid ≠ Steel Centroid)
- $(P_{u1}, M_{u1}) \rightarrow NG, (P_{u2}, M_{u2}) \rightarrow OK, (P_{u3}, M_{u3}) \rightarrow NG$ $|M_{u1}| < |M_{u2}| < |M_{u3}|$ with $P_u = const$

Strength reduction factor $\phi = \phi(\varepsilon_t) \phi$

Usually

Sometimes

 $(c \searrow) \rightarrow (\phi \cdot P_n) \nearrow$

Sections with a narrow portion along height, e.g.: I, L, T, U, Cshaped or irregular sections

• $(P_{u1}, M_{u1}) \rightarrow OK, (P_{u2}, M_{u2}) \rightarrow NG, (P_{u3}, M_{u3}) \rightarrow OK$ $M_{u1} < M_{u2} < M_{u3}$ with P_u = const

■ $(P_{u1}, M_{u1}) \rightarrow OK, (P_{u2}, M_{u2}) \rightarrow NG, (P_{u3}, M_{u3}) \rightarrow OK$ $|M_{u1}| < |M_{u2}| < |M_{u3}|$ with P_u = const

P (kip)

Uniaxial/Biaxial – Symmetric Case

3D failure surface with tips directly on the P axis

- Uniaxial X = Biaxial P- M_x with $M_v = 0$
- Uniaxial Y = Biaxial P- M_v with $M_x = 0$

19

Р

Uniaxial/Biaxial – Asymmetric case

- Tips of 3D failure surface may be off the P axis
- Uniaxial X means N.A. parallel to X axis but this produces M_x ≠ 0 and M_y ≠ 0
- Uniaxial X may be different than Biaxial P-M_x with M_y = 0

Uniaxial/Biaxial – Asymmetric Case

Moment Magnification – Sway Frames

Magnification at column ends (Sway frames)

$$M_2 = M_{2ns} + \delta_s M_{2s}$$

If sign(M_{2ns}) = -sign(M_{2s}) then the magnified moment, M₂, is smaller than first order moment (M_{2ns}+M_{2s}) or it can even change sign, e.g.:

•
$$M_{2ns} = 16 \text{ k-ft}, M_{2s} = -10.0 \text{ k-ft}, \delta = 1.2$$

 $M_2 = 16 + 1.2 (-10.0) = 4.0 \text{ k-ft}$
 $(M_{2ns}+M_{2s}) = 6.0 \text{ k-ft}$

•
$$M_{2ns} = 16 \text{ k-ft}, M_{2s} = -14.4 \text{ k-ft}, \delta = 1.2$$

 $M_2 = 16 + 1.2 (-14.4) = -1.28 \text{ k-ft}$
 $(M_{2ns}+M_{2s}) = 1.6 \text{ k-ft}$

 First-order moment may govern the design rather than second order-moment

Moment Magnification – Sway Frames

- Since ACI 318-08 International First-order analysis moments in compression members in sway frames are magnified both at ends and along length
 Prior to ACI 318 08
- Prior to ACI 318-08 magnification along length applied only if

$$\frac{\ell_{u}}{r} > \frac{35}{\sqrt{\frac{P_{u}}{f_{c}A_{g}}}}$$

Moment Magnification – M_1

- M_1 may govern the design rather than M_2 even though $|M_2| > |M_1|$ and ACI 318, 10.10.6 provision stipulates that compression members shall be designed for $M_c = \delta M_2$. Consider:
 - Double curvature bending (M₁/M₂ < 0)
 - Asymmetric Section
 - $\delta M_2 \rightarrow OK$ but $\delta M_1 \rightarrow NG$

Moment Magnification – M^{2nd}/M^{1st}

ACI 318-11, 10.10.2.1 limits ratio of second-order moment to first-order moments

 $M^{2nd}/M^{1st} < 1.4$

What if ratio is negative, e.g.:

- $M^{1st} = M_{ns} + M_s = 10.0 + (-9.0) = 1.0 \text{ k-ft}$
- $M^{2nd} = \delta(M_{ns} + \delta_s M_s) = 1.05 (10.0+1.3(-9.0)) = -1.78 \text{ k-ft}$
- $M^{2nd}/M^{1st} = -1.78 \rightarrow OK \text{ or } NG ?$

• Check $|M^{2nd}/M^{1st}| = 1.78 > 1.4 \rightarrow NG$

Moment Magnification – M^{2nd}/M^{1st}

■ What if M^{1st} is very small, i.e. M^{1st} < M_{min}, e.g.:

•
$$M^{1st} = M_2 = 0.1 \text{ k-ft}$$
 (Nonsway frame)

•
$$M_{min} = P_u(0.6 + 0.03h) = 5 \text{ k-ft}$$

- $M^{2nd} = M_c = \delta M_{min} = 1.1*5 = 5.5 \text{ k-ft}$
- $M^{2nd}/M^{1st} = 5.5/0.1 = 55 \rightarrow OK \text{ or } NG ?$

• Check
$$M^{2nd}/M_{min} = 1.1 \rightarrow OK$$

Conclusions

Summary

- Irregular shapes of sections and reinforcement patterns lead to irregular and distorted interaction diagrams
- Large number of load cases and load combinations lead to large number of load points potentially covering entire (P, M_x, M_y) space
- Intuition may overlook unusual conditions in tall structures

Conclusions

Recommendations

- Do not eliminate load cases and combinations based on intuition
- Run biaxial rather than uniaxial analysis for asymmetric sections
- Run both 1st order and 2nd order analysis
- Apply engineering judgment rather than following general code provisions literally
- Use reliable software and verify its results

StructurePoint's Productivity Suite of powerful software tools for reinforced concrete analysis & design

Finite element analysis & design of reinforced concrete foundations, combined footings or slabs on grade

Structure Point

CONCRETE SOFTWARE SOLUTIONS

Call: +1-847-966-4357 Email: info@StructurePoint.org

