Observations in Shear Wall Strength in Tall Buildings

Structure Point

CONCRETE SOFTWARE SOLUTIONS

Presented by StructurePoint at ACI Spring 2012 Convention in Dallas, Texas

Metropolitan Tower, New York City

68-story, 716 ft (218m) skyscraper

FIGURE 8.57 Metropolitan Tower, New York City. (a,b) Framing plans.
Reinforced Concrete Design of Tall Buildings by Bungale S. Taranath

Jin Mao Tower, Shanghai, China

88-story, 1381 ft (421m)

FIGURE 8.45 Jin Mao Tower, Shanghai, China: (a) typical office floor framing plan;

Motivation

- Sharing insight from detailed analysis and implementation of code provisions
- Sharing insight from members of ACI committees
- Sharing insight from wide base of spColumn users
- Raising awareness of irregularities and their impact on design
- Conclusions apply to all sections, but especially those of irregular shape and loaded with large number of load cases and combinations, e.g. Shear Walls

Outline

- Observations
- P-M Diagram Irregularities
- Symmetry/Asymmetry
- Strength Reduction Factor
- Uniaxial/Biaxial Bending
- Moment Magnification Irregularities
- Conclusions

P-M Diagram

Design

- $\left(\mathrm{P}_{\mathrm{u} 1}, \mathrm{M}_{\mathrm{u} 1}\right) \rightarrow \mathrm{NG}$
- $\left(\mathrm{P}_{\mathrm{u} 2}, \mathrm{M}_{\mathrm{u} 2}\right) \rightarrow \mathrm{OK}$
- $\left(P_{u 3}, M_{u 3}\right) \rightarrow N G$
- Notice $\mathrm{P}_{\mathrm{u} 1}<\mathrm{P}_{\mathrm{u} 2}<\mathrm{P}_{\mathrm{u} 3}$ with $\mathrm{M}_{\mathrm{u}}=$ const
- One Quadrant OK if
- $P_{u} \geq 0$ and $M_{u} \geq 0$
- Section shape symmetrical
- Reinforcement symmetrical

P-M Diagram - Pos./Neg. Load Signs

- All four quadrants are needed if loads change sign
- If section shape and reinforcement are symmetrical then M - side is a mirror of $\mathrm{M}+$ side

P-M Diagram - Asymmetric Section

Each quadrant different

- $\left(\mathrm{P}_{\mathrm{u} 1}, \mathrm{M}_{\mathrm{u} 1}\right) \rightarrow \mathrm{NG}$
- $\left(\mathrm{P}_{\mathrm{u} 2}, \mathrm{M}_{\mathrm{u} 2}\right) \rightarrow \mathrm{OK}$
- $\left(\mathrm{P}_{\mathrm{u} 3}, \mathrm{M}_{\mathrm{u} 3}\right) \rightarrow \mathrm{OK}$
- $\left(P_{u 4}, M_{u 4}\right) \rightarrow N G$
- Notice:
- Absolute value of moments same on both sides
- Larger axial force favorable on M+ side but unfavorable on M - side

P-M Diagram - Asymmetric Steel

- Skewed Diagram
- Plastic Centroid $=$ Geometrical Centroid (Concrete Centroid \neq Steel Centroid)
- $\left(\mathrm{P}_{\mathrm{u} 1}, \mathrm{M}_{\mathrm{u} 1}\right) \rightarrow \mathrm{NG},\left(\mathrm{P}_{\mathrm{u} 2}, \mathrm{M}_{\mathrm{u} 2}\right) \rightarrow \mathrm{OK},\left(\mathrm{P}_{\mathrm{u} 3}, \mathrm{M}_{\mathrm{u} 3}\right) \rightarrow \mathrm{NG}$ $\left|M_{u 1}\right|<\left|M_{u 2}\right|<\left|M_{u 3}\right|$ with $P_{u}=$ const

P-M Diagram - ϕ Factor

- Strength reduction factor $\phi=\phi\left(\varepsilon_{\mathrm{t}}\right)$

P-M Diagram - ϕ Factor

- Usually

Sometimes

$(\mathrm{c} \searrow) \rightarrow\left(\phi \cdot \mathrm{P}_{\mathrm{n}}\right) \nearrow$

Sections with a narrow portion along height, e.g.: I, L, T, U, Cshaped or irregular sections

P-M Diagram - ϕ Factor

- $\left(\mathrm{P}_{\mathrm{u} 1}, \mathrm{M}_{\mathrm{u} 1}\right) \rightarrow \mathrm{OK},\left(\mathrm{P}_{\mathrm{u} 2}, \mathrm{M}_{\mathrm{u} 2}\right) \rightarrow \mathrm{NG},\left(\mathrm{P}_{\mathrm{u} 3}, \mathrm{M}_{\mathrm{u} 3}\right) \rightarrow \mathrm{OK}$ $M_{u 1}<M_{u 2}<M_{u 3}$ with $P_{u}=$ const

P-M Diagram - ϕ Factor

$\square\left(\mathrm{P}_{\mathrm{u} 1}, \mathrm{M}_{\mathrm{u} 1}\right) \rightarrow \mathrm{OK},\left(\mathrm{P}_{\mathrm{u} 2}, \mathrm{M}_{\mathrm{u} 2}\right) \rightarrow \mathrm{NG},\left(\mathrm{P}_{\mathrm{u} 3}, \mathrm{M}_{\mathrm{u} 3}\right) \rightarrow \mathrm{OK}$ $\left|M_{u 1}\right|<\left|M_{u 2}\right|<\left|M_{u 3}\right|$ with $P_{u}=$ const

P-M Diagram - ϕ Factor

$$
\begin{aligned}
& \left(\mathrm{P}_{\mathrm{u} 1}, \mathrm{M}_{\mathrm{u} 1}\right) \rightarrow \mathrm{OK} \\
& \left(\mathrm{P}_{\mathrm{u} 2}, \mathrm{M}_{\mathrm{u} 2}\right) \rightarrow \mathrm{NG} \\
& \left(\mathrm{P}_{\mathrm{u} 3}, \mathrm{M}_{\mathrm{u} 3}\right) \rightarrow \mathrm{OK} \\
& \mathrm{P}_{\mathrm{u} 1}<\mathrm{P}_{\mathrm{u} 2}<\mathrm{P}_{\mathrm{u} 3} \\
& \text { with } \mathrm{M}_{\mathrm{u}}=\text { const }
\end{aligned}
$$

$$
(\mathrm{c} \searrow) \rightarrow\left\{\begin{array}{l}
\varepsilon_{\mathrm{t}} \nearrow \\
\phi \nearrow \\
\mathrm{M}_{\mathrm{n}} \nearrow \text { or } \searrow \\
\left(\phi \cdot \mathrm{M}_{\mathrm{n}}\right) \nearrow \text { or } \searrow
\end{array}\right.
$$

Uniaxial/Biaxial - Symmetric Case

- 3D failure surface with tips directly on the P axis
- Uniaxial $X=$ Biaxial $P-M_{x}$ with $M_{y}=0$
- Uniaxial $\mathrm{Y}=$ Biaxial $P-\mathrm{M}_{\mathrm{y}}$ with $\mathrm{M}_{\mathrm{x}}=0$

Uniaxial/Biaxial - Asymmetric case

- Tips of 3D failure surface may be off the P axis
- Uniaxial X means N.A. parallel to X axis but this produces $M_{x} \neq 0$ and $\mathrm{M}_{\mathrm{y}} \neq 0$
- Uniaxial X may be different than Biaxial $P-M_{x}$ with $M_{y}=0$

Uniaxial/Biaxial - Asymmetric Case

Structure Point
Structure Point

Moment Magnification - Sway Frames

- Magnification at column ends (Sway frames)
- $\mathrm{M}_{2}=\mathrm{M}_{2 \mathrm{~ns}}+\delta_{\mathrm{s}} \mathrm{M}_{2 \mathrm{~s}}$
- If $\operatorname{sign}\left(\mathrm{M}_{2 n \mathrm{~s}}\right)=-\operatorname{sign}\left(\mathrm{M}_{2 \mathrm{~s}}\right)$ then the magnified moment, M_{2}, is smaller than first order moment $\left(M_{2 n s}+M_{2 s}\right)$ or it can even change sign, e.g.:
- $\mathrm{M}_{2 \mathrm{~ns}}=16 \mathrm{k}-\mathrm{ft}, \mathrm{M}_{2 \mathrm{~s}}=-10.0 \mathrm{k}-\mathrm{ft}, \delta=1.2$
$\mathrm{M}_{2}=16+1.2(-10.0)=4.0 \mathrm{k}-\mathrm{ft}$ $\left(\mathrm{M}_{2 \mathrm{ss}}+\mathrm{M}_{2 \mathrm{~s}}\right)=6.0 \mathrm{k}-\mathrm{ft}$
- $M_{2 n s}=16 \mathrm{k}-\mathrm{ft}, \mathrm{M}_{2 \mathrm{~s}}=-14.4 \mathrm{k}-\mathrm{ft}, \delta=1.2$
$\mathrm{M}_{2}=16+1.2(-14.4)=-1.28 \mathrm{k}-\mathrm{ft}$
$\left(\mathrm{M}_{2 \mathrm{ss}}+\mathrm{M}_{2 \mathrm{~s}}\right)=1.6 \mathrm{k}-\mathrm{ft}$
- First-order moment may govern the design rather than second order-moment

Moment Magnification - Sway Frames

- Since ACI 318-08 moments in compression members in sway frames are magnified both at ends and along length
- Prior to ACI 318-08 magnification along length applied only if

$$
\frac{\ell_{u}}{r}>\frac{35}{\sqrt{\frac{\mathrm{P}_{\mathrm{u}}}{\mathrm{f}_{\mathrm{c}}^{\prime} \mathrm{A}_{\mathrm{g}}}}}
$$

Moment Magnification - M_{1}

- M_{1} may govern the design rather than M_{2} even though $\left|M_{2}\right|>\left|M_{1}\right|$ and ACI 318, 10.10.6 provision stipulates that compression members shall be designed for $\mathrm{M}_{\mathrm{c}}=\delta \mathrm{M}_{2}$. Consider:
- Double curvature bending ($\mathrm{M}_{1} / \mathrm{M}_{2}<0$)
- Asymmetric Section
- $\delta \mathrm{M}_{2} \rightarrow$ OK but $\delta \mathrm{M}_{1} \rightarrow \mathrm{NG}$

Moment Magnification $-\mathrm{M}^{2 \text { nd }} / \mathrm{M}^{1 \text { st }}$

- ACI 318-11, 10.10.2.1 limits ratio of second-order moment to first-order moments

$$
\mathrm{M}^{2 \mathrm{nd}} / \mathrm{M}^{1 \text { st }}<1.4
$$

- What if ratio is negative, e.g.:
$\square \mathrm{M}^{1 \mathrm{st}}=\mathrm{M}_{\mathrm{ns}}+\mathrm{M}_{\mathrm{s}}=10.0+(-9.0)=1.0 \mathrm{k}-\mathrm{ft}$
$\square \mathrm{M}^{2 \mathrm{nd}}=\delta\left(\mathrm{M}_{\mathrm{ns}}+\delta_{\mathrm{s}} \mathrm{M}_{\mathrm{s}}\right)=1.05(10.0+1.3(-9.0))=-1.78 \mathrm{k}-\mathrm{ft}$
$\square \mathrm{M}^{2 \mathrm{nd}} / \mathrm{M}^{1 \text { st }}=-1.78 \rightarrow$ OK or NG ?
- Check $\left|\mathrm{M}^{2 \mathrm{nd}} / \mathrm{M}^{1 \mathrm{st}}\right|=1.78>1.4 \rightarrow \mathrm{NG}$

Moment Magnification $-\mathrm{M}^{2 \mathrm{nd}} / \mathrm{M}^{1 \text { st }}$

\square What if $M^{1 s t}$ is very small, i.e. $M^{1 s t}<M_{\min }$, e.g.:

- $\mathrm{M}^{1 \text { st }}=\mathrm{M}_{2}=0.1 \mathrm{k}-\mathrm{ft}$ (Nonsway frame)
$\square M_{\text {min }}=P_{u}(0.6+0.03 \mathrm{~h})=5 \mathrm{k}-\mathrm{ft}$
$\square M^{2 n d}=M_{c}=\delta M_{\text {min }}=1.1 * 5=5.5 \mathrm{k}-\mathrm{ft}$
$\square \mathrm{M}^{2 \mathrm{nd}} / \mathrm{M}^{1 \text { st }}=5.5 / 0.1=55 \rightarrow$ OK or NG ?
- Check $\mathrm{M}^{2 \mathrm{nd}} / \mathrm{M}_{\text {min }}=1.1 \rightarrow$ OK

Conclusions

- Summary
- Irregular shapes of sections and reinforcement patterns lead to irregular and distorted interaction diagrams
- Large number of load cases and load combinations lead to large number of load points potentially covering entire ($\mathrm{P}, \mathrm{M}_{\mathrm{x}}, \mathrm{M}_{\mathrm{y}}$) space
- Intuition may overlook unusual conditions in tall structures

Conclusions

- Recommendations
- Do not eliminate load cases and combinations based on intuition
- Run biaxial rather than uniaxial analysis for asymmetric sections
- Run both $1^{\text {st }}$ order and $2^{\text {nd }}$ order analysis
- Apply engineering judgment rather than following general code provisions literally
- Use reliable software and verify its results

Work quickly.

 Work simply. Work accurately.
StructurePoint's Productivity Suite of powerful software tools for reinforced concrete analysis \& design

Finite element analysis \& design of reinforced concrete foundations, combined footings or slabs on grade

Structure Point CONCRETE SOFTWARE SOLUTIONS

Call: +1-847-966-4357
 Email: info@StructurePoint.org

