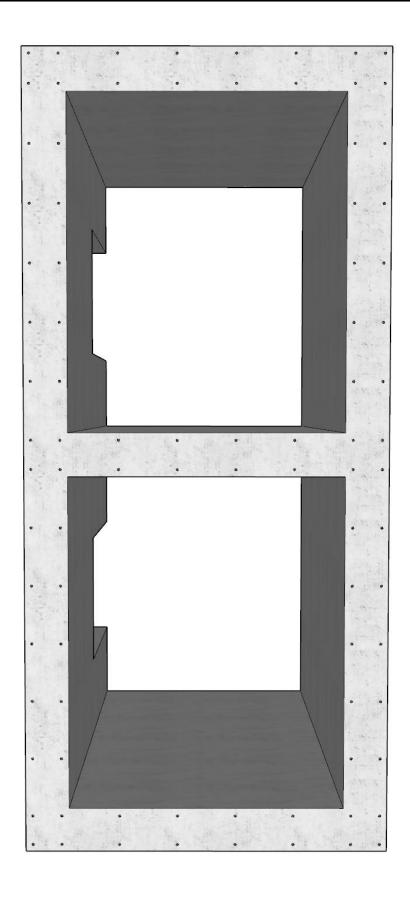


Building Elevator Reinforced Concrete Core Wall Design Strength (ACI 318-19)



Building Elevator Reinforced Concrete Core Wall Design Strength (ACI 318-19)

Reinforced concrete core walls are utilized in building framed with concrete as well as other framing materials such as steel and wood. Used in conjunction with concrete shear walls, core walls house elevator banks, stair cases, MEP chases, and many other service equipment and spaces. Along with important functions such as isolating equipment and elevator vibration and noise reduction, core wall systems regularly double as a building lateral load resistance system. In multi-story concrete, steel, and wood buildings, reinforced concrete cores are subjected to significant axial loads coupled with simultaneous bending moments about two orthogonal axes (biaxial bending). This design example investigates the strength and capacity of a standard two-lift elevator bank reinforced concrete core wall shown below. The P-M interaction diagram about the strong axis (x-axis) is manually developed by determining seven key control points on the P-M interaction diagram. The hand calculated values are then compared with exact values from the complete interaction diagram generated by the spColumn engineering software program from StructurePoint.

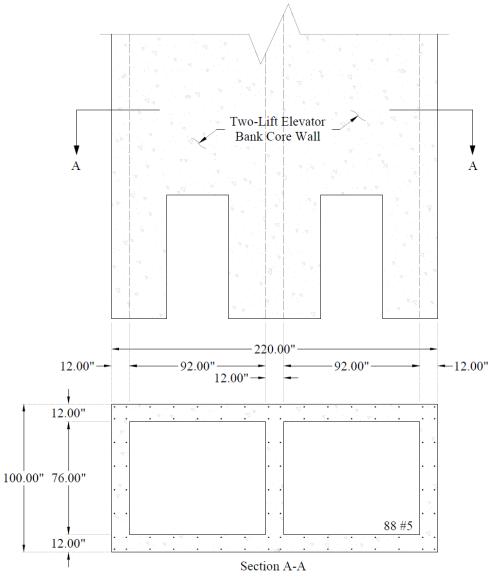


Figure 1 – Reinforced Concrete Core Wall Cross-Section

Version: May-25-2022

Contents

Ι.	Maximum Compression	6
	1.1. Nominal axial compressive strength	6
	1.2. Factored axial compressive strength	6
	1.3. Maximum (allowable) factored axial compressive strength	6
2.	Bar Stress Near Tension Face Equal to Zero, $(\varepsilon_s = f_s = 0)$	7
	2.1. c, <i>a</i> , and strains in the reinforcement	8
	2.2. Forces in the concrete and steel	8
	2.3. ϕP_n and ϕM_n	9
3.	Bar Stress Near Tension Face Equal to $0.5 f_y$, $(f_s = 0.5 f_y)$	11
	3.1. c, <i>a</i> , and strains in the reinforcement	12
	3.2. Forces in the concrete and steel	12
	3.3. ϕP_n and ϕM_n	13
4.	Bar Stress Near Tension Face Equal to f_y , $(f_s = f_y)$	15
	4.1. c, <i>a</i> , and strains in the reinforcement.	16
	4.2. Forces in the concrete and steel	16
	4.3. ϕP_n and ϕM_n	17
5.	Bar Strain Near Tension Face Equal to $\varepsilon_y + 0.003$ in./in., ($\varepsilon_s = 0.00507$ in./in.)	19
	5.1. c, <i>a</i> , and strains in the reinforcement	20
	5.2. Forces in the concrete and steel	20
	5.3. ϕP_n and ϕM_n	21
6.	Pure Bending	23
	6.1. c, <i>a</i> , and strains in the reinforcement.	23
	6.2. Forces in the concrete and steel	23
	6.3. ϕP_n and ϕM_n	24
7.	Maximum Tension	26
	7.1. P_{nt} and ϕP_{nt}	26
	7.2. M_n and ϕM_n	26
8.	Core Wall Interaction Diagram - spColumn Software	27
9.	Summary and Comparison of Design Results	41
10) Conclusions & Observations	42

Code

Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19)

References

- spColumn Engineering Software Program Manual v10.00, STRUCTUREPOINT, 2021
- "Interaction Diagram Tied Reinforced Concrete Column Design Strength (ACI 318-19)" Design Example, STRUCTUREPOINT, 2022
- "Interaction Diagram Circular Spiral Reinforced Concrete Column (ACI 318-19)" Design Example, STRUCTUREPOINT, 2022
- "Interaction Diagram Tied Reinforced Concrete Column with High-Strength Reinforcing Bars (ACI 318-19)"
 Design Example, <u>STRUCTUREPOINT</u>, 2022
- "Interaction Diagram Barbell Concrete Shear Wall Unsymmetrical Boundary Elements (ACI 318-19)" Design Example, <u>STRUCTUREPOINT</u>, 2022

Design Data

```
f_c' = 6,000 psi

f_y = 60,000 psi

Cover = 2 in. (to bar center)
```

The reinforcement size and location selected for this core wall section are shown in the following figure.

Detailed relevant steel bar and concrete shape data are tabulated below.

Table 1 - Reinforcement Data									
Layer	Bar size	A _s /bar, in ²	# of bars	d, in					
1	#5	0.31	8	2.0					
2	#5	0.31	8	10.0					
3	#5	0.31	4	26.0					
4	#5	0.31	4	42.0					
5	#5	0.31	4	58.0					
6	#5	0.31	4	74.0					
7	#5	0.31	4	90.0					
8	#5	0.31	8	106.0					
9	#5	0.31	8	114.0					
10	#5	0.31	4	130.0					
11	#5	0.31	4	146.0					
12	#5	0.31	4	162.0					
13	#5	0.31	4	178.0					
14	#5	0.31	4	194.0					
15	#5	0.31	8	210.0					
16	#5	0.31	8	218.0					

Table 2 - Concrete Shape Data										
Part	h, in	b, in	A _c /part, in ²							
1	12.0	100.0	1200.0							
2	92.0	24.0	2208.0							
3	12.0	100.0	1200.0							
4	92.0	24.0	2208.0							
5	12.0	100.0	1200.0							
	•	A _{c(total)} , in ²	8016.0							

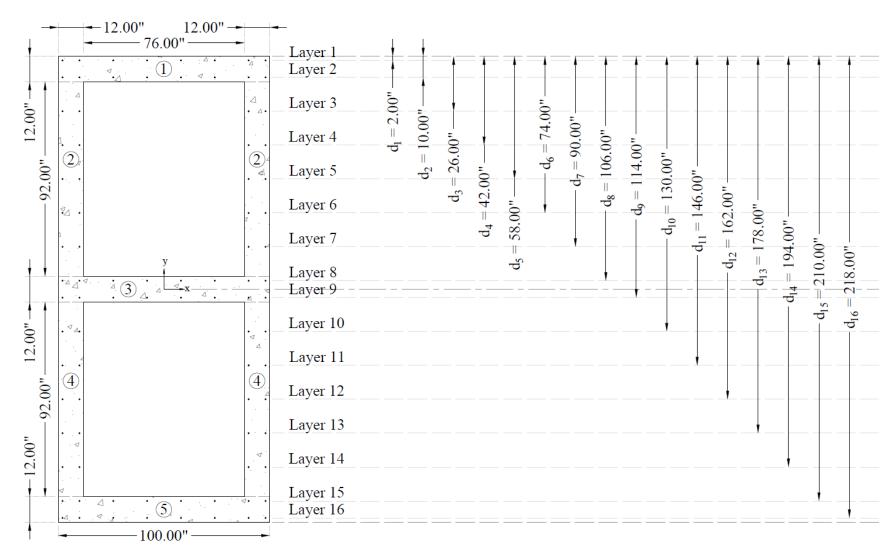


Figure 2 – Reinforced Concrete Core Wall – Cross-Section and Reinforcement Design Data

Solution

Use the traditional detailed approach to generate the interaction diagram for the concrete wall section shown above by determining the following seven control points for positive and negative moment about the x-axis:

Point 1: Maximum compression

Point 2: Bar stress near tension face equal to zero, $(f_s = 0)$

Point 3: Bar stress near tension face equal to $0.5 f_v$ ($f_s = 0.5 f_v$)

Point 4: Bar stress near tension face equal to f_v ($f_s = f_v$)

Point 5: Bar strain near tension face equal to $\varepsilon_y + 0.003$

Point 6: Pure bending

Point 7: Maximum tension

Several terms are used to facilitate the following calculations:

 A_g = gross area of concrete section, in².

 \overline{y} = geometric centroid location along the y-axis, in.

 P_o = nominal axial compressive strength, kip

 ϕP_o = factored axial compressive strength, kip

 ϕM_o = moment strength associated with the factored axial compressive strength, kip-ft

 $\phi P_{n,max}$ = maximum (allowable) factored axial compressive strength, kip

c = distance from the fiber of maximum compressive strain to the neutral axis, in.

a = depth of equivalent rectangular stress block, in.

 A_p = gross area of equivalent rectangular stress block, in².

 \overline{y}_p = plastic centroid location along the y-axis, in.

 C_c = compression force in equivalent rectangular stress block, kip

 $\varepsilon_{s,i}$ = strain value in reinforcement layer i, in./in.

 $C_{s,i}$ = compression force in reinforcement layer i, kip

 $T_{s,i}$ = tension force in reinforcement layer i, kip

<u>Figure 3 – Core Wall Section Interaction Diagram Control Points</u>

1. Maximum Compression

1.1. Nominal axial compressive strength

From Tables 1 and 2:

Calculate total gross cross-sectional area:

$$A_a = b_1 \times h_1 + b_2 \times h_2 + b_3 \times h_3 + b_4 \times h_4 + b_5 \times h_5$$

$$A_g = 100 \times 12 + 24 \times 92 + 100 \times 12 + 24 \times 92 + 100 \times 12 = 8,016 \text{ in.}^2$$

Calculate the center of gravity (geometric centroid):

$$\overline{y} = \frac{\sum_{i=1}^{n=5} b_i \times h_i \times d_i}{\sum_{i=1}^{n=5} b_i \times h_i} = \frac{881,760 \text{ in.}^3}{8,016 \text{ in.}^2} = 110 \text{ in.}$$

Where d_i is the distance from the centroid of segment i to the reference point (top of the section).

Also due to symmetry about the x axis $\overline{y} = \frac{y}{2} = \frac{220 \text{ in.}}{2} = 110 \text{ in.}$

$$A_{st} = 88 \times 0.31 = 27.28 \text{ in.}^2$$

$$P_{o} = 0.85 f_{c}' (A_{o} - A_{st}) + f_{v} A_{st}$$

ACI 318-19 (22.4.2.2)

$$P_o = 0.85 \times 6,000 \times (8,016 - 27.28) + 60,000 \times 27.28 = 42,379 \text{ kips}$$

Since the section is regular (symmetrical) about the x-axis, the moment capacity associated with the maximum axial compressive strength is equal to zero.

$$M_{o} = 0.00 \text{ kip-ft}$$

1.2. Factored axial compressive strength

$$\phi = 0.65$$

ACI 318-19 (Table 21.2.2)

$$\phi P_o = 0.65 \times 42,379 = 27,546.5 \text{ kips}$$

$$\phi M_o = 0.00 \text{ kip-ft}$$

1.3. Maximum (allowable) factored axial compressive strength

$$\phi P_{n,max} = 0.80 \times \phi P_o = 0.80 \times 27,546.5 = 22,037.2 \text{ kips}$$

ACI 318-19 (Table 22.4.2.1)

2. Bar Stress Near Tension Face Equal to Zero, $(\varepsilon_s = f_s = 0)$

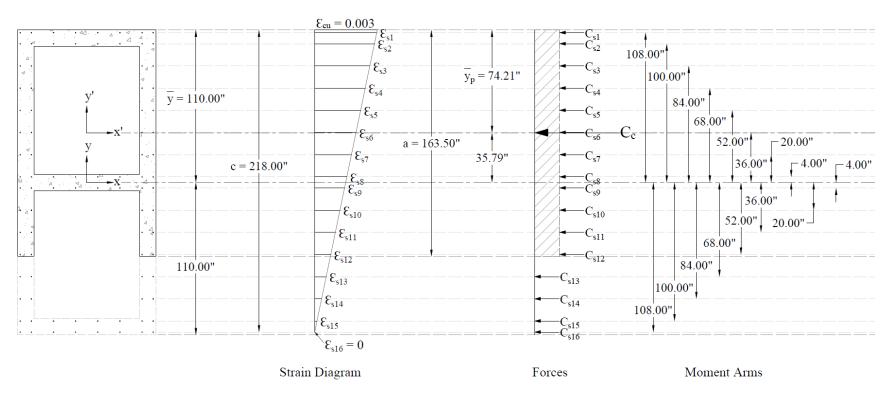


Figure 4 – Strain Diagram, Forces, and Moment Arms ($\varepsilon_t = f_{\varepsilon} = 0$)

Strain ε_s is zero in the extreme layer of tension steel. This case is considered when calculating an interaction diagram because it marks the change from compression lap splices being allowed on all longitudinal bars, to the more severe requirement of tensile lap splices.

ACI 318-19 (10.7.5.2.1 and 2)

The following shows the general procedure to calculate the axial and moment capacities of the core wall section at this control point, all the calculated values are shown in the next Table.

2.1. c, a, and strains in the reinforcement

$$c = d_{16} = 218$$
 in.

Where c is the distance from the fiber of maximum compressive strain to the neutral axis.

ACI 318-19 (22.2.2.4.2)

$$a = \beta_1 \times c = 0.75 \times 218 = 163.5$$
 in.

ACI 318-19 (22.2.2.4.1)

Where:

a = Depth of equivalent rectangular stress block

$$\beta_1 = 0.85 - \frac{0.05 \times (f_c' - 4,000)}{1,000} = 0.85 - \frac{0.05 \times (6,000 - 4,000)}{1,000} = 0.75$$

ACI 318-19 (Table 22.2.2.4.3)

$$\varepsilon_{s,16} = 0$$

$$\therefore \phi = 0.65$$

ACI 318-19 (Table 21.2.2)

$$\varepsilon_{cu} = 0.003$$

ACI 318-19 (22.2.2.1)

$$\varepsilon_{s,i} = \varepsilon_{cu} \left(\frac{d_i}{c} - 1 \right)$$

$$\varepsilon_{y} = \frac{F_{y}}{E_{s}} = \frac{60}{29,000} = 0.00207$$

2.2. Forces in the concrete and steel

Since $h_1 + h_2 + h_3 + h_4 = 208$ in. > a = 163.5 in. $> h_1 + h_2 + h_3 = 116$ in., the area and centroid of the concrete equivalent block (see Figure 2 and 4) can be found as follows:

$$\begin{aligned} A_p &= A_1 + A_2 + A_3 + A_{4a} \\ &= (b_1 \times h_1) + (b_2 \times h_2) + (b_3 \times h_3) + (b_4 \times (a - (h_1 + h_2 + h_3))) \\ &= (100 \times 12) + ((2 \times 12) \times 92) + (100 \times 12) + ((2 \times 12) \times (163.5 - (12 + 92 + 12))) = 5,748 \text{ in.}^2 \end{aligned}$$

$$\overline{y}_p = \frac{A_1 \times d_1 + A_2 \times d_2 + A_3 \times d_3 + A_{4a} \times d_{4a}}{A_n}$$

Where:

$$A_1 \times d_1 = (b_1 \times h_1) \times \left(\frac{h_1}{2}\right) = (100 \times 12) \times \left(\frac{12}{2}\right) = 7,200 \text{ in.}^3$$

$$A_2 \times d_2 = (b_2 \times h_2) \times \left(h_1 + \frac{h_2}{2}\right) = ((2 \times 12) \times 92) \times \left(12 + \frac{92}{2}\right) = 128,064 \text{ in.}^3$$

$$A_3 \times d_3 = (b_3 \times h_3) \times \left(h_1 + h_2 + \frac{h_3}{2}\right) = (100 \times 12) \times \left(12 + 92 + \frac{12}{2}\right) = 132,000 \text{ in.}^3$$

$$A_{4a} \times d_{4a} = \left(b_4 \times \left(a - \left(h_1 + h_2 + h_3\right)\right)\right) \times \left(h_1 + h_2 + h_3 + \frac{\left(a - \left(h_1 + h_2 + h_3\right)\right)}{2}\right)$$

$$= \left(\left(2 \times 12\right) \times \left(163.5 - \left(12 + 92 + 12\right)\right)\right) \times \left(12 + 92 + 12 + \frac{\left(163.5 - \left(12 + 92 + 12\right)\right)}{2}\right) = 159,315 \text{ in.}^3$$

$$\overline{y}_p = \frac{7,200 + 128,064 + 132,000 + 159,315}{5,748} = 74.21 \text{ in.}$$

$$C_c = 0.85 \times f_c' \times A_p = 0.85 \times 6,000 \times 5,748 = 29,314.8 \text{ kip (compression)}$$

ACI 318-19 (22.2.2.4.1)

$$\text{if } \begin{cases} \mathcal{E}_{s,i} \geq \ \mathcal{E}_{y} \rightarrow \text{reinforcement has yielded} \rightarrow f_{s,i} = f_{y} \\ \mathcal{E}_{s,i} < \mathcal{E}_{y} \rightarrow \text{reinforcement has not yielded} \rightarrow f_{s,i} = \mathcal{E}_{s,i} \times E_{s} \end{cases}$$

If the reinforcement layer is located within the depth of the equivalent rectangular stress block (a), it is necessary to subtract $0.85f_c$ ' from $f_{s,i}$ before computing $F_{s,i}$ since the area of the reinforcement in this layer has been included in the area used to compute C_c .

$$if \begin{cases} d_i < a \rightarrow F_{s,i} = (f_{s,i} - 0.85f'_c) \times A_{s,i} \\ d_i > a \rightarrow F_{s,i} = f_{s,i} \times A_{s,i} \end{cases}$$

The force developed in the reinforcement layer $(F_{s,i})$ is considered as compression force $(C_{s,i})$ if the effective depth of this steel layer (d_i) is less than c (the distance from the fiber of maximum compressive strain to the neutral axis), otherwise it is considered as tension force $(T_{s,i})$.

2.3. ϕP_n and ϕM_n

Using values from the next Table:

$$P_n = C_c + \sum_{i=1}^{16} C_{s,i} - \sum_{i=1}^{16} T_{s,i} = -30,229.3 \text{ kip}$$

$$\phi P_n = 0.65 \times -30,229.3 = -19,649.0 \text{ kip}$$

$$M_n = C_c \times (\overline{y} - \overline{y}_p) + \sum_{i=1}^{16} C_{s,i} \times (\overline{y} - d_i) + \sum_{i=1}^{16} T_{s,i} \times (d_i - \overline{y}) = -90,728.74 \text{ kip-ft}$$

$$\phi M_n = 0.65 \times -90,728.74 = -58,973.68 \text{ kip-ft}$$

Table 3 - Axial and Moment Capacity for the Second Control Point										
T								M 1-: 64		
Layer	A _s /bar, in ²	# of bars	d, in	$\varepsilon_{\rm s}$, in./in.	f _{s,i} , ksi	C _{s,i} , kip	T _{s,i} , kip	M _{n,i} , kip-ft		
1	0.31	8	2.0	-0.00297	60.0	-136.2	0.00	-1225.37		
2	0.31	8	10.0	-0.00286	60.0	-136.2	0.00	-1134.60		
3	0.31	4	26.0	-0.00264	60.0	-68.1	0.00	-476.53		
4	0.31	4	42.0	-0.00242	60.0	-68.1	0.00	-385.76		
5	0.31	4	58.0	-0.00220	60.0	-68.1	0.00	-295.00		
6	0.31	4	74.0	-0.00198	57.5	-64.9	0.00	-194.81		
7	0.31	4	90.0	-0.00176	51.1	-57.0	0.00	-95.03		
8	0.31	8	106.0	-0.00154	44.7	-98.2	0.00	-32.73		
9	0.31	8	114.0	-0.00143	41.5	-90.3	0.00	30.09		
10	0.31	4	130.0	-0.00121	35.1	-37.2	0.00	62.04		
11	0.31	4	146.0	-0.00099	28.7	-29.3	0.00	87.92		
12	0.31	4	162.0	-0.00077	22.3	-21.4	0.00	92.68		
13	0.31	4	178.0	-0.00055	16.0	-19.8	0.00	112.17		
14	0.31	4	194.0	-0.00033	9.6	-11.9	0.00	83.14		
15	0.31	8	210.0	-0.00011	3.2	-7.9	0.00	65.98		
16	0.31	8	218.0	0.00000	0.0	0.0	0.00	0.00		
Concrete		$\overline{y}_p =$	74.21			-29314.8	0.00	-87422.92		
<u> </u>						-30229.3	M _n , kip-ft	-90728.74		

3. Bar Stress Near Tension Face Equal to $0.5 f_y$, $(f_s = 0.5 f_y)$

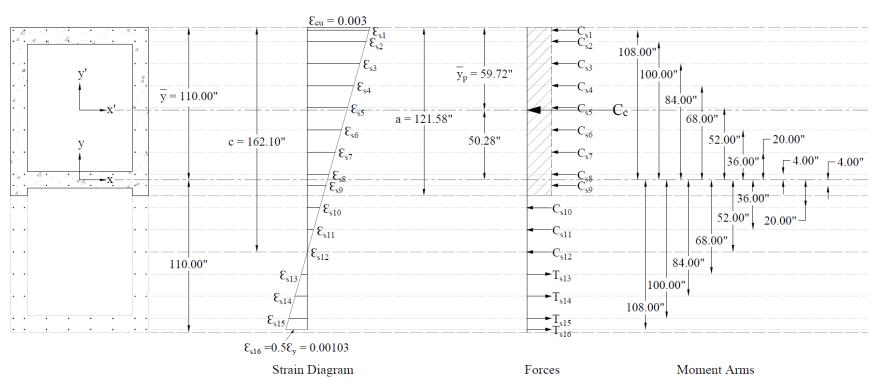


Figure 5 – Strains, Forces, and Moment Arms $(f_{\xi} = 0.5 f_{y})$

The following show the general procedure to calculate the axial and moment capacities of the core wall section at this control point, all the calculated values are shown in the next Table.

3.1. c, a, and strains in the reinforcement

$$\varepsilon_y = \frac{f_y}{E_s} = \frac{60}{29,000} = 0.00207$$

$$\varepsilon_{s,16} = \frac{\varepsilon_y}{2} = \frac{0.00207}{2} = 0.00103 < \varepsilon_y \rightarrow \text{tension reinforcement has not yielded}$$

$$\therefore \phi = 0.65$$

ACI 318-19 (Table 21.2.2)

$$\varepsilon_{cu} = 0.003$$

ACI 318-19 (22.2.2.1)

$$c = \frac{d_{16}}{\varepsilon_{s,16} + \varepsilon_{cu}} \times \varepsilon_{cu} = \frac{218}{0.00103 + 0.003} \times 0.003 = 162.10 \text{ in.}$$

Where c is the distance from the fiber of maximum compressive strain to the neutral axis.

ACI 318-19 (22.2.2.4.2)

$$a = \beta_1 \times c = 0.75 \times 162.10 = 121.58$$
 in.

ACI 318-19 (22.2.2.4.1)

Where:

a = Depth of equivalent rectangular stress block

$$\beta_1 = 0.85 - \frac{0.05 \times (f_c' - 4,000)}{1,000} = 0.85 - \frac{0.05 \times (6,000 - 4,000)}{1,000} = 0.75$$

ACI 318-19 (Table 22.2.2.4.3)

$$\varepsilon_{s,i} = \varepsilon_{cu} \left(\frac{d_i}{c} - 1 \right)$$

3.2. Forces in the concrete and steel

Since $h_1 + h_2 + h_3 + h_4 = 208$ in. > a = 121.58 in. $> h_1 + h_2 + h_3 = 116$ in., the area and centroid of the concrete equivalent block (see Figure 2 and 5) can be found as follows:

$$\begin{split} A_p &= A_1 + A_2 + A_3 + A_{4a} \\ &= \left(b_1 \times h_1\right) + \left(b_2 \times h_2\right) + \left(b_3 \times h_3\right) + \left(b_4 \times \left(a - \left(h_1 + h_2 + h_3\right)\right)\right) \\ &= \left(100 \times 12\right) + \left(\left(2 \times 12\right) \times 92\right) + \left(100 \times 12\right) + \left(\left(2 \times 12\right) \times \left(121.58 - \left(12 + 92 + 12\right)\right)\right) = 4,741.85 \text{ in.}^2 \end{split}$$

$$\overline{y}_{p} = \frac{A_{1} \times d_{1} + A_{2} \times d_{2} + A_{3} \times d_{3} + A_{4a} \times d_{4a}}{A_{p}}$$

Where:

$$A_1 \times d_1 = (b_1 \times h_1) \times \left(\frac{h_1}{2}\right) = (100 \times 12) \times \left(\frac{12}{2}\right) = 7,200 \text{ in.}^3$$

$$A_2 \times d_2 = (b_2 \times h_2) \times \left(h_1 + \frac{h_2}{2}\right) = ((2 \times 12) \times 92) \times \left(12 + \frac{92}{2}\right) = 128,064 \text{ in.}^3$$

$$A_3 \times d_3 = (b_3 \times h_3) \times \left(h_1 + h_2 + \frac{h_3}{2}\right) = (100 \times 12) \times \left(12 + 92 + \frac{12}{2}\right) = 132,000 \text{ in.}^3$$

$$A_{4a} \times d_{4a} = \left(b_4 \times \left(a - \left(h_1 + h_2 + h_3\right)\right)\right) \times \left(h_1 + h_2 + h_3 + \frac{\left(a - \left(h_1 + h_2 + h_3\right)\right)}{2}\right)$$

$$= \left(\left(2 \times 12\right) \times \left(121.58 - \left(12 + 92 + 12\right)\right)\right) \times \left(12 + 92 + 12 + \frac{\left(121.58 - \left(12 + 92 + 12\right)\right)}{2}\right) = 15,899.38 \text{ in.}^3$$

$$\overline{y}_p = \frac{7,200 + 128,064 + 132,000 + 15,899.38}{4,741.85} = 59.72 \text{ in.}$$

$$C_c = 0.85 \times f_c' \times A_p = 0.85 \times 6,000 \times 4,741.85 = 24,183.4 \text{ kip (compression)}$$

ACI 318-19 (22.2.2.4.1)

$$\text{if } \begin{cases} \mathcal{E}_{s,i} \geq \ \mathcal{E}_{y} \rightarrow \text{reinforcement has yielded} \rightarrow f_{s,i} = f_{y} \\ \mathcal{E}_{s,i} < \mathcal{E}_{y} \rightarrow \text{reinforcement has not yielded} \rightarrow f_{s,i} = \mathcal{E}_{s,i} \times E_{s} \end{cases}$$

If the reinforcement layer is located within the depth of the equivalent rectangular stress block (a), it is necessary to subtract $0.85f_c$ ' from $f_{s,i}$ before computing $F_{s,i}$ since the area of the reinforcement in this layer has been included in the area used to compute C_c .

$$if \begin{cases} d_i < a \rightarrow F_{s,i} = (f_{s,i} - 0.85f'_c) \times A_{s,i} \\ d_i > a \rightarrow F_{s,i} = f_{s,i} \times A_{s,i} \end{cases}$$

The force developed in the reinforcement layer $(F_{s,i})$ is considered as compression force $(C_{s,i})$ if the effective depth of this steel layer (d_i) is less than c (the distance from the fiber of maximum compressive strain to the neutral axis), otherwise it is considered as tension force $(T_{s,i})$.

3.3. ϕP_n and ϕM_n

Using values from the next Table:

$$P_n = C_c + \sum_{i=1}^{16} C_{s,i} - \sum_{i=1}^{16} T_{s,i} = -24,724.4 \text{ kip}$$

$$\phi P_n = 0.65 \times -24,724.4 = -16,070.9 \text{ kip}$$

$$M_n = C_c \times (\overline{y} - \overline{y}_p) + \sum_{i=1}^{16} C_{s,i} \times (\overline{y} - d_i) + \sum_{i=1}^{16} T_{s,i} \times (d_i - \overline{y}) = -106,403.22 \text{ kip-ft}$$

$$\phi M_n = 0.65 \times -106,403.22 = -69,162.09 \text{ kip-ft}$$

Table 4 - Axial and Moment Capacity for the Third Control Point										
Layer	A _s /bar, in ²	# of bars	d, in	ϵ_s , in./in.	f _{s,i} , ksi	C _{s,i} , kip	T _{s,i} , kip	$M_{n,i}$, kip-ft		
1	0.31	8	2.0	-0.00296	60.0	-136.2	0.0	-1225.37		
2	0.31	8	10.0	-0.00281	60.0	-136.2	0.0	-1134.60		
3	0.31	4	26.0	-0.00252	60.0	-68.1	0.0	-476.53		
4	0.31	4	42.0	-0.00222	60.0	-68.1	0.0	-385.76		
5	0.31	4	58.0	-0.00193	55.9	-63.0	0.0	-272.81		
6	0.31	4	74.0	-0.00163	47.3	-52.3	0.0	-156.93		
7	0.31	4	90.0	-0.00133	38.7	-41.7	0.0	-69.43		
8	0.31	8	106.0	-0.00104	30.1	-62.0	0.0	-20.68		
9	0.31	8	114.0	-0.00089	25.8	-51.4	0.0	17.13		
10	0.31	4	130.0	-0.00059	17.2	-21.4	0.0	35.61		
11	0.31	4	146.0	-0.00030	8.6	-10.7	0.0	32.15		
12	0.31	4	162.0	0.00000	0.1	-0.1	0.0	0.29		
13	0.31	4	178.0	0.00029	8.5	0.0	10.6	-59.95		
14	0.31	4	194.0	0.00059	17.1	0.0	21.2	-148.60		
15	0.31	8	210.0	0.00089	25.7	0.0	63.8	-531.27		
16	0.31	8	218.0	0.00103	30.0	0.0	74.4	-669.60		
Concrete		$\overline{y}_p =$	59.72			-24183.4	0.0	-101336.87		
			P _n , kip	-24724.4	M _n , kip-ft	-106403.22				

4. Bar Stress Near Tension Face Equal to f_y , $(f_s = f_y)$

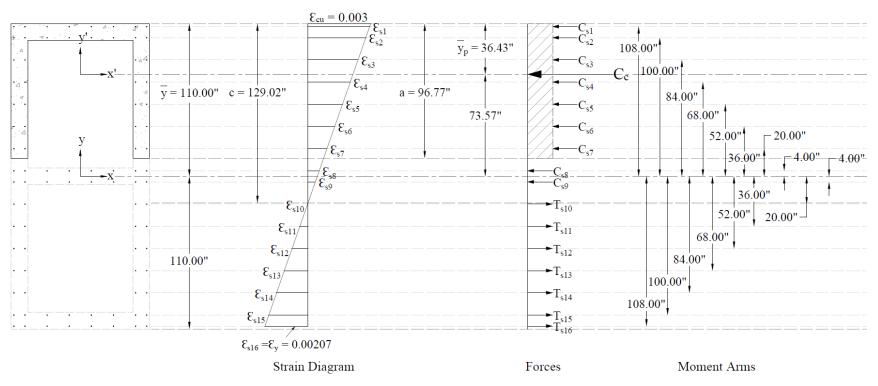


Figure 6 – Strains, Forces, and Moment Arms $(f_s = f_y)$

This strain distribution is called the balanced failure case and the compression-controlled strain limit. It marks the change from compression failures originating by crushing of the compression surface of the section, to tension failures initiated by yield of longitudinal reinforcement. It also marks the start of the transition zone for ϕ for columns and walls in which ϕ increases from 0.65 (or 0.75 for spiral columns) up to 0.90.

The following show the general procedure to calculate the axial and moment capacities of the core wall section at this control point, all the calculated values are shown in the next Table.

4.1. c, a, and strains in the reinforcement

$$\varepsilon_y = \frac{f_y}{E_s} = \frac{60}{29,000} = 0.00207$$

 $\varepsilon_{s,16} = \varepsilon_v = 0.00207 \rightarrow$ tension reinforcement has yielded

$$\therefore \phi = 0.65$$
 ACI 318-19 (Table 21.2.2)

$$\varepsilon_{cu} = 0.003$$
 ACI 318-19 (22.2.2.1)

$$c = \frac{d_{16}}{\varepsilon_{s,16} + \varepsilon_{cu}} \times \varepsilon_{cu} = \frac{218}{0.00207 + 0.003} \times 0.003 = 129.02 \text{ in.}$$

Where c is the distance from the fiber of maximum compressive strain to the neutral axis.

ACI 318-19 (22.2.2.4.2)

$$a = \beta_1 \times c = 0.75 \times 129.02 = 96.77 \text{ in.}$$
 ACI 318-19 (22.2.2.4.1)

Where:

$$\beta_1 = 0.85 - \frac{0.05 \times (f_c' - 4000)}{1000} = 0.85 - \frac{0.05 \times (6,000 \times 4,000)}{1,000} = 0.75$$

$$\underline{ACI 318-19 \ (Table \ 22.2.2.4.3)}$$

$$\varepsilon_{s,i} = \varepsilon_{cu} \left(\frac{d_i}{c} - 1 \right)$$

4.2. Forces in the concrete and steel

Since $h_1 + h_2 = 104$ in. > a = 96.77 in. $> h_1 = 12$ in., the area and centroid of the concrete equivalent block (see Figure 2 and 6) can be found as follows:

$$A_p = A_1 + A_{2a}$$

$$= (b_1 \times h_1) + (b_2 \times (a - h_1))$$

$$= (100 \times 12) + ((2 \times 12) \times (96.77 - 12)) = 3,234.37 \text{ in.}^2$$

$$\overline{y}_p = \frac{A_1 \times d_1 + A_{2a} \times d_{2a}}{A_p}$$

Where:

$$A_1 \times d_1 = (b_1 \times h_1) \times \left(\frac{h_1}{2}\right) = (100 \times 12) \times \left(\frac{12}{2}\right) = 7,200 \text{ in.}^3$$

$$A_{2a} \times d_{2a} = \left(b_2 \times (a - h_1)\right) \times \left(h_1 + \frac{(a - h_1)}{2}\right)$$
$$= \left((2 \times 12) \times (96.77 - 12)\right) \times \left(12 + \frac{(96.77 - 12)}{2}\right) = 110,634.29 \text{ in.}^3$$

$$\overline{y}_p = \frac{7,200 + 110,634.29}{3,234.37} = 36.43 \text{ in.}$$

$$C_c = 0.85 \times f_c' \times A_p = 0.85 \times 6,000 \times 3,234.37 = 16,495.27$$
 kip (compression)

ACI 318-19 (22.2.2.4.1)

$$\text{if } \begin{cases} \mathcal{E}_{s,i} \geq \ \mathcal{E}_y \rightarrow \text{reinforcement has yielded} \rightarrow f_{s,i} = f_y \\ \mathcal{E}_{s,i} < \mathcal{E}_y \rightarrow \text{reinforcement has not yielded} \rightarrow f_{s,i} = \mathcal{E}_{s,i} \times E_s \end{cases}$$

If the reinforcement layer is located within the depth of the equivalent rectangular stress block (a), it is necessary to subtract $0.85f_c$ ' from $f_{s,i}$ before computing $F_{s,i}$ since the area of the reinforcement in this layer has been included in the area used to compute C_c .

$$if \begin{cases} d_i < a \rightarrow F_{s,i} = (f_{s,i} - 0.85f'_c) \times A_{s,i} \\ d_i > a \rightarrow F_{s,i} = f_{s,i} \times A_{s,i} \end{cases}$$

The force developed in the reinforcement layer $(F_{s,i})$ is considered as compression force $(C_{s,i})$ if the effective depth of this steel layer (d_i) is less than c (the distance from the fiber of maximum compressive strain to the neutral axis), otherwise it is considered as tension force $(T_{s,i})$.

4.3. ϕP_n and ϕM_n

Using values from the next Table:

$$P_n = C_c + \sum_{i=1}^{16} C_{s,i} - \sum_{i=1}^{16} T_{s,i} = -16,662.7 \text{ kip}$$

$$\phi P_n = 0.65 \times -16,662.7 = -10,830.7 \text{ kip}$$

$$M_n = C_c \times (\overline{y} - \overline{y}_p) + \sum_{i=1}^{16} C_{s,i} \times (\overline{y} - d_i) + \sum_{i=1}^{16} T_{s,i} \times (d_i - \overline{y}) = -107,980.91 \text{ kip-ft}$$

$$\phi M_n = 0.65 \times -107,980.91 = -70,187.59$$
 kip-ft

Table 5 - Axial and Moment Capacity for the Fourth Control Point										
Layer	A _s /bar, in ²	# of bars	d, in	ϵ_s , in./in.	f _{s,i} , ksi	C _{s,i} , kip	T _{s,i} , kip	$M_{n,i}$, kip-ft		
1	0.31	8	2.0	-0.00295	60.0	-136.2	0.0	-1225.37		
2	0.31	8	10.0	-0.00277	60.0	-136.2	0.0	-1134.60		
3	0.31	4	26.0	-0.00240	60.0	-68.1	0.0	-476.53		
4	0.31	4	42.0	-0.00202	58.7	-66.4	0.0	-376.48		
5	0.31	4	58.0	-0.00165	47.9	-53.1	0.0	-229.92		
6	0.31	4	74.0	-0.00128	37.1	-39.7	0.0	-119.04		
7	0.31	4	90.0	-0.00091	26.3	-26.3	0.0	-43.84		
8	0.31	8	106.0	-0.00054	15.5	-38.5	0.0	-12.83		
9	0.31	8	114.0	-0.00035	10.1	-25.1	0.0	8.37		
10	0.31	4	130.0	0.00002	0.7	0.0	0.8	-1.37		
11	0.31	4	146.0	0.00039	11.5	0.0	14.2	-42.59		
12	0.31	4	162.0	0.00077	22.2	0.0	27.6	-119.50		
13	0.31	4	178.0	0.00114	33.0	0.0	41.0	-232.07		
14	0.31	4	194.0	0.00151	43.8	0.0	54.3	-380.32		
15	0.31	8	210.0	0.00188	54.6	0.0	135.4	-1128.52		
16	0.31	8	218.0	0.00207	60.0	0.0	148.8	-1339.20		
Concrete		$\overline{y}_p =$	36.43			-16495.3	0.0	-101127.10		
				P _n , kip	-16662.7	M _n , kip-ft	-107980.91			

5. Bar Strain Near Tension Face Equal to $\varepsilon_y + 0.003$ in./in., ($\varepsilon_s = 0.00507$ in./in.)

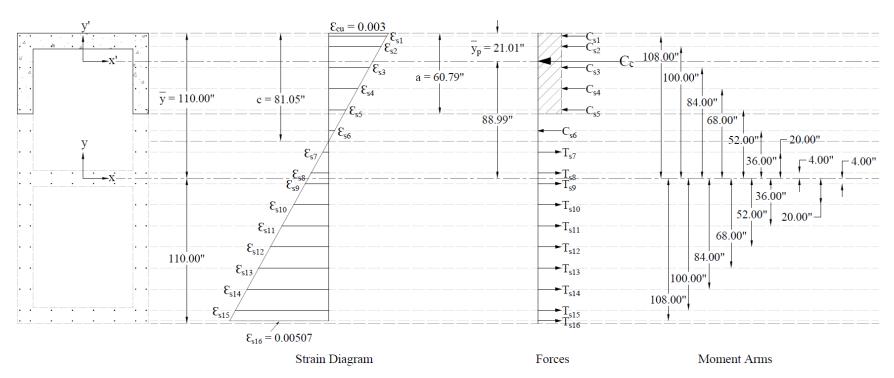


Figure 7 – Strains, Forces, and Moment Arms ($\varepsilon_s = 0.00507$ in./in.)

In ACI 318-19 provisions, this control point corresponds to the tension-controlled strain limit of ε_y + 0.003 (used to be 0.005 in ACI 318-14). It is the strain at the tensile limit of the transition zone for ϕ , used to define a tension-controlled section. Additional resources concerning code provision changes in ACI 318-19 can be found in "ACI 318-19 Code Revisions Impact on StructurePoint Software" technical article.

The following show the general procedure to calculate the axial and moment capacities of the core wall section at this control point, all the calculated values are shown in the next Table.

5.1. c, a, and strains in the reinforcement

$$\varepsilon_{y} = \frac{f_{y}}{E_{s}} = \frac{60}{29,000} = 0.00207$$

$$\varepsilon_{s,16} = \varepsilon_y + 0.003 = 0.00207 + 0.003 = 0.00507 > \varepsilon_y \rightarrow$$
 tension reinforcement has yielded

$$\therefore \phi = 0.9$$
 ACI 318-19 (Table 21.2.2)

$$\varepsilon_{cu} = 0.003$$
 ACI 318-19 (22.2.2.1)

$$c = \frac{d_{16}}{\varepsilon_{s,16} + \varepsilon_{cu}} \times \varepsilon_{cu} = \frac{218}{0.00507 + 0.003} \times 0.003 = 81.05 \text{ in.}$$

Where c is the distance from the fiber of maximum compressive strain to the neutral axis.

ACI 318-19 (22.2.2.4.2)

$$a = \beta_1 \times c = 0.75 \times 81.05 = 60.79 \text{ in.}$$
 ACI 318-19 (22.2.2.4.1)

Where:

$$\beta_1 = 0.85 - \frac{0.05 \times (f_c' - 4,000)}{1,000} = 0.85 - \frac{0.05 \times (6,000 - 4,000)}{1,000} = 0.75$$

$$\underline{ACI 318-19 (Table 22.2.2.4.3)}$$

$$\varepsilon_{s,i} = \varepsilon_{cu} \left(\frac{d_i}{c} - 1 \right)$$

5.2. Forces in the concrete and steel

Since $h_1 + h_2 = 104$ in. > a = 60.79 in. $> h_1 = 12$ in., the area and centroid of the concrete equivalent block (see Figure 2 and 7) can be found as follows:

$$A_p = A_1 + A_{2a}$$

$$= (b_1 \times h_1) + (b_2 \times (a - h_1))$$

$$= (100 \times 12) + ((2 \times 12) \times (60.79 - 12)) = 2,370.9 \text{ in.}^2$$

$$\overline{y}_p = \frac{A_1 \times d_1 + A_{2a} \times d_{2a}}{A_p}$$

Where:

$$A_1 \times d_1 = (b_1 \times h_1) \times \left(\frac{h_1}{2}\right) = (100 \times 12) \times \left(\frac{12}{2}\right) = 7,200 \text{ in.}^3$$

$$A_{2a} \times d_{2a} = \left(b_2 \times (a - h_1)\right) \times \left(h_1 + \frac{(a - h_1)}{2}\right)$$
$$= \left((2 \times 12) \times (60.79 - 12)\right) \times \left(12 + \frac{(60.79 - 12)}{2}\right) = 42,614.84 \text{ in.}^3$$

$$\overline{y}_p = \frac{7,200 + 42,614.84}{2,383.5} = 21.01 \text{ in.}$$

$$C_c = 0.85 \times f_c' \times A_p = 0.85 \times 6,000 \times 2,370.9 = 12,091.71 \text{ kip (compression)}$$

ACI 318-19 (22.2.2.4.1)

$$\text{if } \begin{cases} \mathcal{E}_{s,i} \geq \ \mathcal{E}_y \rightarrow \text{reinforcement has yielded} \rightarrow f_{s,i} = f_y \\ \mathcal{E}_{s,i} < \mathcal{E}_y \rightarrow \text{reinforcement has not yielded} \rightarrow f_{s,i} = \mathcal{E}_{s,i} \times E_s \end{cases}$$

If the reinforcement layer is located within the depth of the equivalent rectangular stress block (a), it is necessary to subtract $0.85f_c$ ' from $f_{s,i}$ before computing $F_{s,i}$ since the area of the reinforcement in this layer has been included in the area used to compute C_c .

$$if \begin{cases} d_i < a \rightarrow F_{s,i} = (f_{s,i} - 0.85f'_c) \times A_{s,i} \\ d_i > a \rightarrow F_{s,i} = f_{s,i} \times A_{s,i} \end{cases}$$

The force developed in the reinforcement layer $(F_{s,i})$ is considered as compression force $(C_{s,i})$ if the effective depth of this steel layer (d_i) is less than c (the distance from the fiber of maximum compressive strain to the neutral axis), otherwise it is considered as tension force $(T_{s,i})$.

5.3. ϕP_n and ϕM_n

Using values from the next Table:

$$P_n = C_c + \sum_{i=1}^{16} C_{s,i} - \sum_{i=1}^{16} T_{s,i} = -11,683.9 \text{ kip}$$

$$\phi P_n = 0.9 \times -11,757.9 = -10,515.6 \text{ kip}$$

$$M_n = C_c \times (\overline{y} - \overline{y}_p) + \sum_{i=1}^{16} C_{s,i} \times (\overline{y} - d_i) + \sum_{i=1}^{16} T_{s,i} \times (d_i - \overline{y}) = -97,053.40 \text{ kip-ft}$$

$$\phi M_n = 0.9 \times -97,053.40 = -87,348.06$$
 kip-ft

	Ta	ble 6 - Axial	and Mor	nent Capacity	for the F	ifth Control F	Point	
Layer	A _s /bar, in ²	# of bars	d, in	ε_s , in./in.	f _{s,i} , ksi	C _{s,i} , kip	T _{s,i} , kip	M _{n,i} , kip-ft
1	0.31	8	2.0	-0.00293	60.00	-136.2	0.0	-1225.37
2	0.31	8	10.0	-0.00263	60.00	-136.2	0.0	-1134.60
3	0.31	4	26.0	-0.00204	59.09	-66.9	0.0	-468.65
4	0.31	4	42.0	-0.00145	41.92	-45.7	0.0	-258.70
5	0.31	4	58.0	-0.00085	24.74	-24.4	0.0	-105.55
6	0.31	4	74.0	-0.00026	7.57	-9.4	0.0	-28.16
7	0.31	4	90.0	0.00033	9.61	0.0	11.9	19.85
8	0.31	8	106.0	0.00092	26.78	0.0	66.4	22.14
9	0.31	8	114.0	0.00122	35.37	0.0	87.7	-29.24
10	0.31	4	130.0	0.00181	52.54	0.0	65.2	-108.59
11	0.31	4	146.0	0.00240	60.00	0.0	74.4	-223.20
12	0.31	4	162.0	0.00300	60.00	0.0	74.4	-322.40
13	0.31	4	178.0	0.00359	60.00	0.0	74.4	-421.60
14	0.31	4	194.0	0.00418	60.00	0.0	74.4	-520.80
15	0.31	8	210.0	0.00477	60.00	0.0	148.8	-1240.00
16	0.31	8	218.0	0.00507	60.00	0.0	148.8	-1339.20
Concrete		$\overline{y}_p =$	21.01			-12091.7	0.0	-89669.34
					P _n , kip	-11683.9	M _n , kip-ft	-97053.40

6. Pure Bending

This corresponds to the case where the nominal axial load capacity, P_n , is equal to zero. The following show the general iterative procedure to calculate the moment capacity of the core wall section at this control point, all the calculated values are shown in the next Table.

6.1. c, a, and strains in the reinforcement

Try
$$c = 3.67$$
 in.

Where c is the distance from the fiber of maximum compressive strain to the neutral axis.

ACI 318-19 (22.2.2.4.2)

$$a = \beta_1 \times c = 0.85 \times 3.67 = 2.75$$
 in.

ACI 318-19 (22.2.2.4.1)

Where:

$$\beta_1 = 0.85 - \frac{0.05 \times (f_c' - 4,000)}{1,000} = 0.85 - \frac{0.05 \times (6,000 - 4,000)}{1,000} = 0.75$$

ACI 318-19 (Table 22.2.2.4.3)

$$\varepsilon_{cu} = 0.003$$

ACI 318-19 (22.2.2.1)

$$\varepsilon_y = \frac{f_y}{E_s} = \frac{60}{29,000} = 0.00207$$

$$\varepsilon_{s,16} = 0.003 \times \left(\frac{d_{16}}{c} - 1\right) = 0.003 \times \left(\frac{218}{3.67} - 1\right) = 0.17535 \text{ (Tension)} > \varepsilon_y \rightarrow \text{tension reinforcement has yielded}$$

$$\therefore \phi = 0.9$$

ACI 318-19 (Table 21.2.2)

$$\varepsilon_{s,i} = \varepsilon_{cu} \left(\frac{d_i}{c} - 1 \right)$$

6.2. Forces in the concrete and steel

Since a = 2.75 in. $< h_1 = 12$ in., the area and centroid of the concrete equivalent block can be found as follows:

$$A_p = a \times b_1 = 2.75 \times 100 = 275 \text{ in.}^2$$

$$\overline{y}_p = \frac{a}{2} = \frac{2.75}{2} = 1.375 \text{ in.}$$

$$C_c = 0.85 \times f_c' \times A_p = 0.85 \times 6,000 \times 275 = 1402.57 \text{ kip (compression)}$$

ACI 318-19 (22.2.2.4.1)

$$\text{if } \begin{cases} \varepsilon_{s,i} \geq \ \varepsilon_{y} \rightarrow \text{reinforcement has yielded} \rightarrow f_{s,i} = f_{y} \\ \varepsilon_{s,i} < \varepsilon_{y} \rightarrow \text{reinforcement has not yielded} \rightarrow f_{s,i} = \varepsilon_{s,i} \times E_{s} \end{cases}$$

If the reinforcement layer is located within the depth of the equivalent rectangular stress block (a), it is necessary to subtract $0.85f_c$ ' from $f_{s,i}$ before computing $F_{s,i}$ since the area of the reinforcement in this layer has been included in the area used to compute C_c .

$$if \begin{cases} d_i < a \rightarrow F_{s,i} = \left(f_{s,i} - 0.85 f_c' \right) \times A_{s,i} \\ d_i > a \rightarrow F_{s,i} = f_{s,i} \times A_{s,i} \end{cases}$$

The force developed in the reinforcement layer $(F_{s,i})$ is considered as compression force $(C_{s,i})$ if the effective depth of this steel layer (d_i) is less than c (the distance from the fiber of maximum compressive strain to the neutral axis), otherwise it is considered as tension force $(T_{s,i})$.

6.3. ϕP_n and ϕM_n

Using values from the next Table:

$$P_n = C_c + \sum_{i=1}^{16} C_{s,i} - \sum_{i=1}^{16} T_{s,i} \approx 0 \text{ kip}$$

The assumption that c = 3.67 in. is correct

$$M_{n} = C_{c} \times (\overline{y} - \overline{y}_{p}) + \sum_{i=1}^{16} C_{s,i} \times (\overline{y} - d_{i}) + \sum_{i=1}^{16} T_{s,i} \times (d_{i} - \overline{y}) = -14,804.25 \text{ kip-ft}$$

$$\phi M_n = 0.9 \times -14,804.25 = -13,323.82 \text{ kip-ft}$$

	Table 7 - Axial and Moment Capacity for the Sixth Control Point										
Layer	A _s /bar, in ²	# of bars	d, in	ε_s , in./in.	f _{s,i} , ksi	C _{s,i} , kip	T _{s,i} , kip	M _{n,i} , kip-ft			
1	0.31	8	2.0	-0.00136	39.55	-85.4	0.0	-768.88			
2	0.31	8	10.0	0.00518	60.00	0.0	148.8	1240.00			
3	0.31	4	26.0	0.01827	60.00	0.0	74.4	520.80			
4	0.31	4	42.0	0.03136	60.00	0.0	74.4	421.60			
5	0.31	4	58.0	0.04445	60.00	0.0	74.4	322.40			
6	0.31	4	74.0	0.05754	60.00	0.0	74.4	223.20			
7	0.31	4	90.0	0.07063	60.00	0.0	74.4	124.00			
8	0.31	8	106.0	0.08372	60.00	0.0	148.8	49.60			
9	0.31	8	114.0	0.09027	60.00	0.0	148.8	-49.60			
10	0.31	4	130.0	0.10336	60.00	0.0	74.4	-124.00			
11	0.31	4	146.0	0.11645	60.00	0.0	74.4	-223.20			
12	0.31	4	162.0	0.12954	60.00	0.0	74.4	-322.40			
13	0.31	4	178.0	0.14263	60.00	0.0	74.4	-421.60			
14	0.31	4	194.0	0.15572	60.00	0.0	74.4	-520.80			
15	0.31	8	210.0	0.16881	60.00	0.0	148.8	-1240.00			
16	0.31	8	218.0	0.17535	60.00	0.0	148.8	-1339.20			
Concrete		$\overline{y}_p =$	1.38			-1402.6	0.0	-12696.17			
				P _n , kip	0.0	M _n , kip-ft	-14804.25				

7. Maximum Tension

The final loading case to be considered is concentric axial tension. The strength under maximum axial tension is computed by assuming that the section is completely cracked through and subjected to a uniform strain greater than or equal to the yield strain in tension. The axial tensile strength under such a loading is equal to the yield strength of the reinforcement in tension.

7.1. $\underline{P_{nt}}$ and ϕP_{nt}

$$P_{nt} = f_y \times A_{st} = 60,000 \times 27.28 = 1,636.8 \text{ kip}$$

ACI 318-19 (22.4.3.1)

ACI 318-19 (Table 21.2.2)

Where:

$$A_{st} = \# \text{ of bars} \times A_{s/bar} = 55 \times 0.31 = 27.28 \text{ in.}^2$$

$$\phi = 0.9$$

$$\phi P_{nt} = 0.90 \times 1,636.8 = 1,473.1 \text{kip}$$

7.2. \underline{M}_n and ϕM_n

Since the section is regular about the x-axis, the moment capacity associated with the maximum axial tensile strength is equal to zero.

$$M_n = 0.00 \text{ kip-ft}$$

 $\phi M_n = 0.9 \times 0.00 = 0.00 \text{ kip-ft}$

As a summary, the following table shows the values for the control points necessary to create the interaction diagram for the core wall investigated in this example (when the moment is applied about the positive x-axis):

Table 8 - Control Points (Moment Applied about the X-Axis)											
Control Point	φP _n , kip	φM _n , kip-ft	φM _n , kip-ft c, in		ф						
Maximum Compression	27,546.5	0.00	-		0.65						
Allowable Compression	22,037.2				0.65						
$f_{s} = 0.0$	19,649.0	58,973.68	218.00	0.00000	0.65						
$f_s = 0.5f_y$	16,070.9	69,162.09	162.10	0.00103	0.65						
Balanced Point	10,830.7	70,187.59	129.02	0.00207	0.65						
Tension Control	10,515.6	87,348.06	81.05	0.00507	0.90						
Pure Bending	0.0	13,323.82	3.67	0.17535	0.90						
Maximum Tension	1,473.1	0.00			0.90						

8. Core Wall Interaction Diagram - spColumn Software

spColumn is a StructurePoint software program that performs the analysis and design of reinforced concrete sections subjected to axial force combined with uniaxial or biaxial bending. Using the provisions of the Strength Design Method and Unified Design Provisions, slenderness considerations are used for moment magnification due to second order effect (P-Delta) for sway and non-sway frames.

For this core wall section, investigation mode was used with no loads (the program will only report control points) and no slenderness considerations using ACI 318-19.

The model editor in <u>spColumn</u> was used to model the section including multiple openings for elevator banks, place the steel reinforcing bars, and define the concrete cover. These steps illustrate handling of irregular shapes and unusual and/or complicated bar arrangements often found in building shear and core walls.

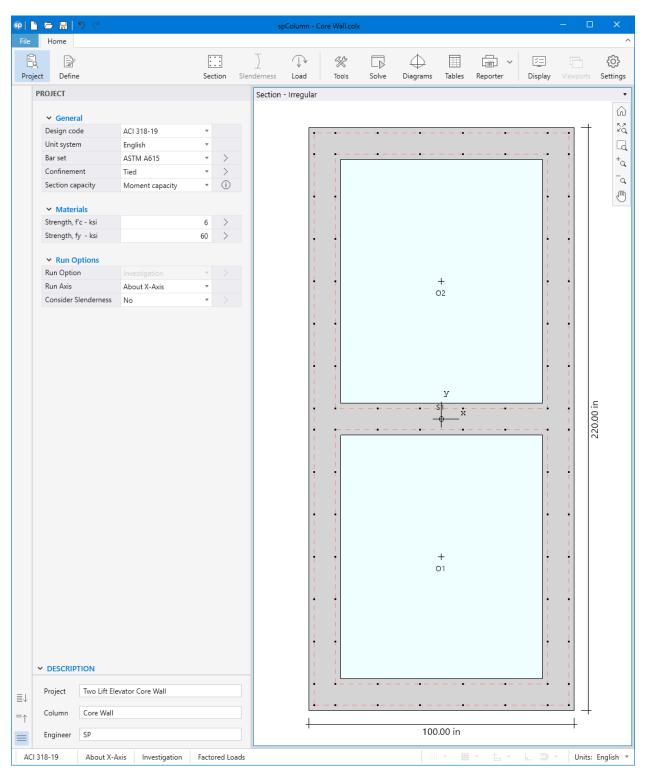


Figure 8 - Core Wall spColumn Modeling

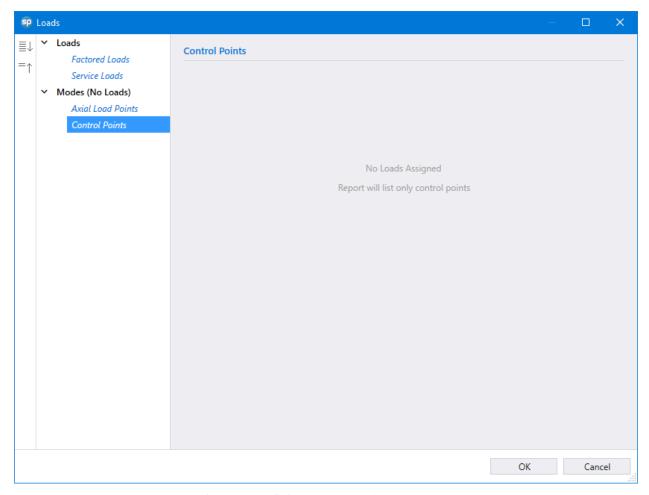
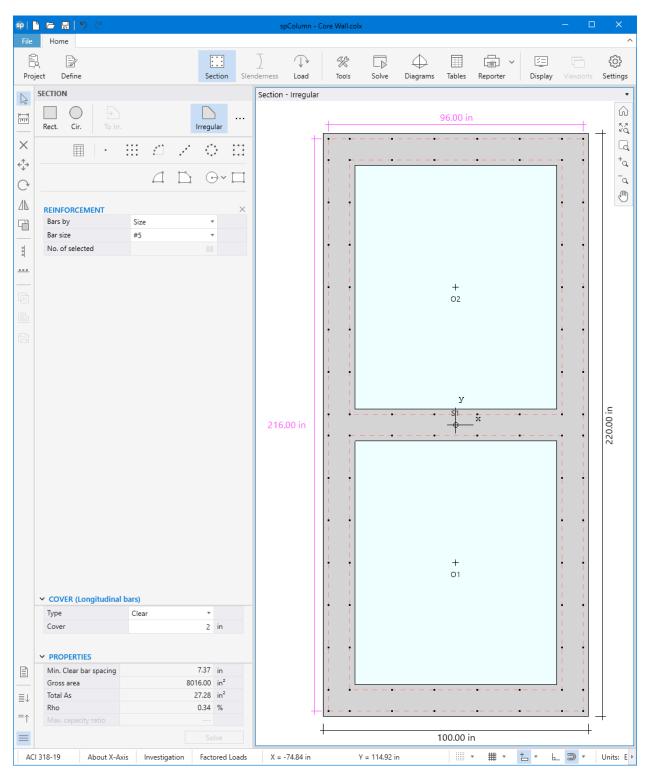



Figure 9 – Defining Loads / Modes (spColumn)

<u>Figure 10 – Core Wall in spColumn Model Editor</u>

Alternatively, the section, openings, and reinforcement arrangement can be imported to $\underline{spColumn}$ as an AutoCad file (.dxf). The following figure shows the section being imported to $\underline{spColumn}$ directly from AutoCad.

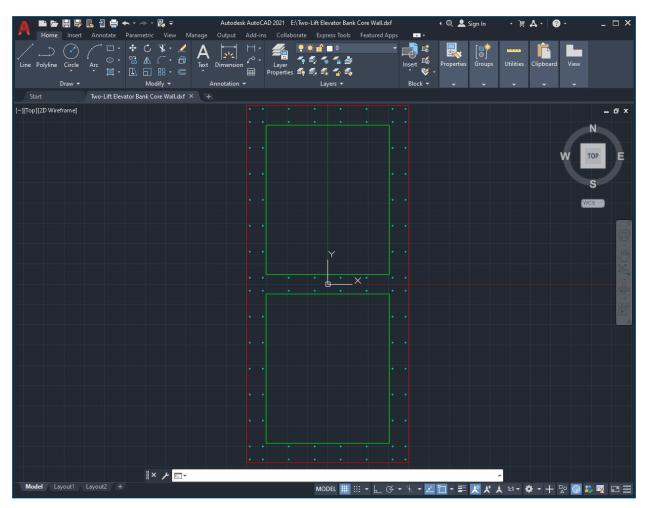


Figure 11 – Core wall Section Using AutoCad (.dxf file)

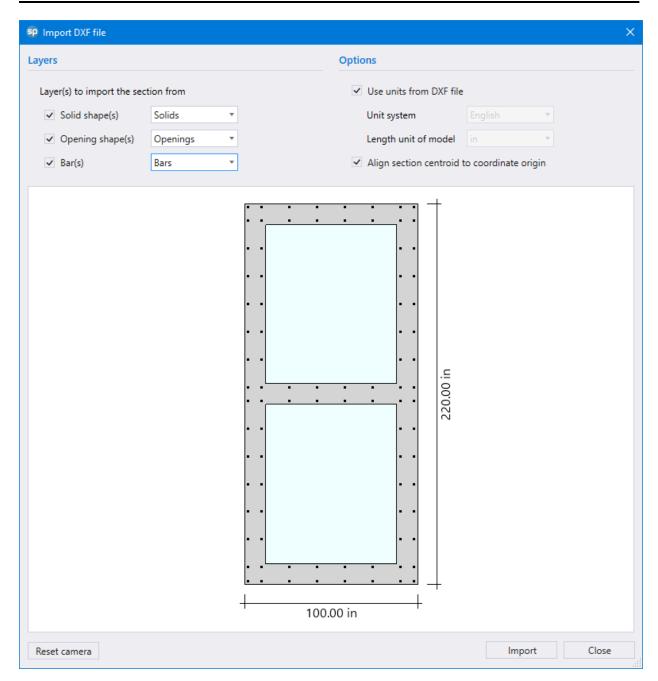


Figure 12 – Importing Core wall Section from DXF file to spColumn

The following shows the P-M interaction diagram and input/output report generated by spColumn for the core wall.

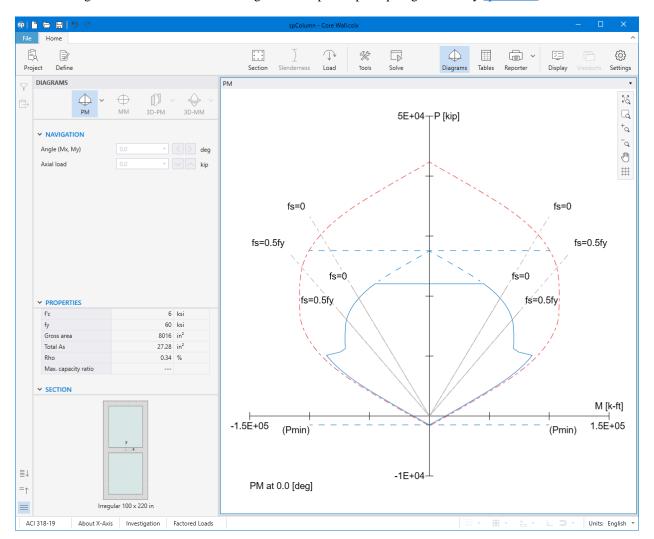
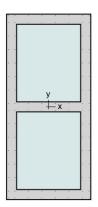


Figure 13 – Core Wall P-M Interaction Diagram about the X-Axis (spColumn)



spColumn v10.00 (TM)

Computer program for the Strength Design of Reinforced Concrete Sections
Copyright - 1988-2021, STRUCTUREPOINT, LLC.
All rights reserved

Structure Point

Licensee stated below acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program. Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1

STRUCTUREPOINT - spColumn	v10.00 (TM)
icensed to: StructurePoint, LLC.	License ID: 00000-0000000-4-20FC1-20FC1
E:\StructurePoint\spColumn\Core	Wall.colx

Page | 2 4/28/2022 9:36 AM

Contents

Contonto	
1. General Information	. 3
2. Material Properties	. 3
2.1. Concrete	. 3
2.2. Steel	. 3
3. Section	
3.1. Shape and Properties	. 3
3.2. Section Figure	4
3.3. Solids	4
3.3.1. S1	4
3.4. Openings	4
3.4.1. O1	4
3.4.2. O2	
4. Reinforcement	
4.1. Bar Set: ASTM A615	4
4.2. Confinement and Factors	
4.3. Arrangement	
4.4. Bars Provided	
5. Control Points	
6. Diagrams	
6.1. PM at θ=0 [deg]	. 7
List of Figures	
Figure 1: Column section	4

STRUCTUREPOINT - spColumn v10.00 (TM)
Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1
E:\StructurePoint\spColumn\Core Wall.colx

Page | 3 4/28/2022 9:36 AM

1. General Information

File Name	E:\StructurePoint\spColumn\Core Wall.colx
Project	Two Lift Elevator Core Wall
Column	Core Wall
Engineer	SP
Code	ACI 318-19
Bar Set	ASTM A615
Units	English
Run Option	Investigation
Run Axis	X - axis
Slendemess	Not Considered
Column Type	Structural
Capacity Method	Moment capacity

2. Material Properties

2.1. Concrete

Type	Standard
f _c	6 ksi
f _c E _c	4415.21 ksi
f _c	5.1 ksi
ε _u	0.003 in/i
β1	0.75

2.2. Steel

Туре	Standard	
f _y	60	ksi
E _s	29000	ksi
ε _{ty}	0.00206897	in/in

3. Section

3.1. Shape and Properties

Туре	Irregular
A _g	8016 in ²
l _x	4.10572e+007 in4
l _y r _x	1.16024e+007 in4
Γ _x	71.5675 in
Гу	38.0447 in
r _y X _o	0 in
Y.	0 in

STRUCTUREPOINT - spColumn v10.00 (TM)
Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1
E:\StructurePoint\spColumn\Core Wall.colx

Page | **4** 4/28/2022 9:36 AM

3.2. Section Figure

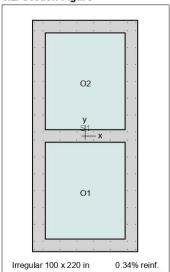


Figure 1: Column section

3.3. Solids

3.3.1. S1

Points	х	Y	Points	X	Y	Points	х	Υ
	in	in		in	in		in	in
1	-50.0	-110.0	2	50.0	-110.0	3	50.0	110.0
4	-50.0	110 0						

3.4. Openings

3.4.1. 01

Points	х	Y	Points	х	Υ	Points	х	Υ
	in	in		in	in		in	in
1	-38.0	-98.0	2	38.0	-98.0	3	38.0	-6.0
4	-38.0	-6.0						

3.4.2. O2

Points	Х	Y	Points	х	Υ	Points	х	Υ
	in	in		in	in		in	in
1	-38.0	6.0	2	38.0	6.0	3	38.0	98.0
4	-38.0	98.0						

4. Reinforcement

4.1. Bar Set: ASTM A615

Bar	Diameter	Area	Bar	Diameter	Area	Bar	Diameter	Area
	in	in ²		in	in ²		in	in ²
#3	0.38	0.11	#4	0.50	0.20	#5	0.63	0.31
#6	0.75	0.44	#7	0.88	0.60	#8	1.00	0.79

STRUCTUREPOINT - spColumn v10.00 (TM)
Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1
E\StructurePoint\spColumn\Core Wall.colx

Page | **5** 4/28/2022 9:36 AM

Bar	Diameter	Area	Bar	Diameter	Area	Bar	Diameter	Area
	in	in ²		in	in ²		in	in²
#9	1.13	1.00	#10	1.27	1.27	#11	1.41	1.56
#14	1.69	2.25	#18	2.26	4.00			

4.2. Confinement and Factors

Confinement type	Tied
For #10 bars or less	#3 ties
For larger bars	#4 ties
Capacity Reduction Factors	
Axial compression, (a)	0.8
Tension controlled φ, (b)	0.9
Compression controlled φ, (c)	0.65

4.3. Arrangement

Pattern	Irregular		
Bar layout	2 -11		
Cover to	1		
Clear cover	12 <u>22</u>		
Bars	2==		
Total steel area, A _s	27.28 in ²		
Rho	0.34 %		
Minimum clear spacing	7.37 in		

(Note: Rho < 0.50%)

4.4. Bars Provided

Area	х	Υ	Area	х	Υ	Area	х	Υ
in²	in	in	in ²	in	in	in ²	in	in
0.31	-48.0	-108.0	0.31	-40.0	-108.0	0.31	-48.0	-100.0
0.31	-40.0	-100.0	0.31	-24.0	-100.0	0.31	-24.0	-108.0
0.31	-8.0	-100.0	0.31	-8.0	-108.0	0.31	8.0	-100.0
0.31	8.0	-108.0	0.31	24.0	-100.0	0.31	24.0	-108.0
0.31	40.0	-100.0	0.31	40.0	-108.0	0.31	48.0	-108.0
0.31	48.0	-100.0	0.31	-48.0	-84.0	0.31	-40.0	-84.0
0.31	-48.0	-68.0	0.31	-40.0	-68.0	0.31	-48.0	-52.0
0.31	-40.0	-52.0	0.31	-48.0	-36.0	0.31	-40.0	-36.0
0.31	-48.0	-20.0	0.31	-40.0	-20.0	0.31	-48.0	-4.0
0.31	-40.0	-4.0	0.31	-48.0	4.0	0.31	-40.0	4.0
0.31	40.0	-84.0	0.31	48.0	-84.0	0.31	40.0	-68.0
0.31	48.0	-68.0	0.31	40.0	-52.0	0.31	48.0	-52.0
0.31	40.0	-36.0	0.31	48.0	-36.0	0.31	40.0	-20.0
0.31	48.0	-20.0	0.31	48.0	-4.0	0.31	40.0	-4.0
0.31	48.0	4.0	0.31	40.0	4.0	0.31	-48.0	108.0
0.31	-40.0	108.0	0.31	-48.0	100.0	0.31	-40.0	100.0
0.31	-24.0	100.0	0.31	-24.0	108.0	0.31	-8.0	100.0
0.31	-8.0	108.0	0.31	8.0	100.0	0.31	8.0	108.0
0.31	24.0	100.0	0.31	24.0	108.0	0.31	40.0	100.0
0.31	40.0	108.0	0.31	48.0	108.0	0.31	48.0	100.0
0.31	-48.0	84.0	0.31	-40.0	84.0	0.31	-48.0	68.0
0.31	-40.0	68.0	0.31	-48.0	52.0	0.31	-40.0	52.0

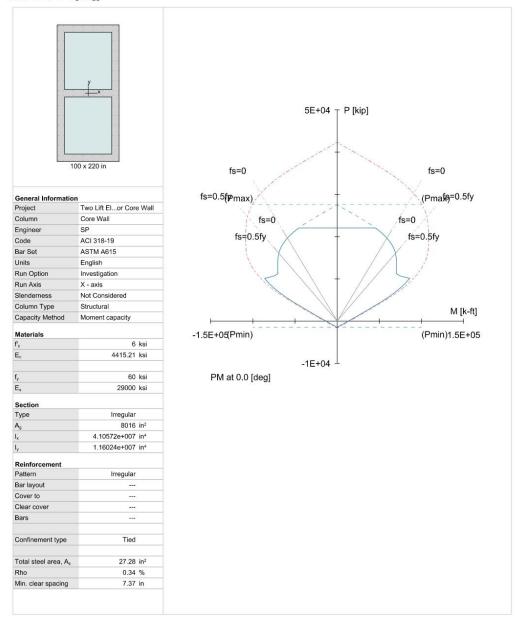
STRUCTUREPOINT - spColumn v10.00 (TM)
Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1
E\StructurePoint\spColumn\Core Wall.colx

Page | 6 4/28/2022 9:36 AM

Area	х	Υ	Area	Х	Υ	Area	Х	Υ
in ²	in	in	in ²	in	in	in²	in	in
0.31	-48.0	36.0	0.31	-40.0	36.0	0.31	-48.0	20.0
0.31	-40.0	20.0	0.31	40.0	84.0	0.31	48.0	84.0
0.31	40.0	68.0	0.31	48.0	68.0	0.31	40.0	52.0
0.31	48.0	52.0	0.31	40.0	36.0	0.31	48.0	36.0
0.31	40.0	20.0	0.31	48.0	20.0	0.31	-24.0	-4.0
0.31	-24.0	4.0	0.31	-8.0	-4.0	0.31	-8.0	4.0
0.31	8.0	-4.0	0.31	8.0	4.0	0.31	24.0	-4.0
0.31	24.0	4.0						

5. Control Points

About Point	Р	X-Moment	Y-Moment	NA Depth	d _t Depth	ε _t	ф
	kip	k-ft	k-ft	in	in		
X @ Max compression	27546.5	0.00	0.00	702.44	218.00	-0.00207	0.65000
X @ Allowable comp.	22037.2	45554.40	0.01	256.29	218.00	-0.00045	0.65000
$X @ f_s = 0.0$	19649.0	58973.67	-0.01	218.00	218.00	0.00000	0.65000
$X @ f_s = 0.5 f_y$	16070.9	69161.98	-0.01	162.10	218.00	0.00103	0.65000
X @ Balanced point	10830.7	70187.57	-0.01	129.02	218.00	0.00207	0.65000
X @ Tension control	10515.6	87348.01	0.00	81.05	218.00	0.00507	0.90000
X @ Pure bending	0.0	13323.82	0.00	3.67	218.00	0.17535	0.90000
X @ Max tension	-1473.1	0.00	0.00	0.00	218.00	9.99999	0.90000
-X @ Max compression	27546.5	0.01	0.00	702.44	218.00	-0.00207	0.65000
 -X @ Allowable comp. 	22037.2	-45554.43	-0.02	256.29	218.00	-0.00045	0.65000
$-X @ f_s = 0.0$	19649.0	-58973.66	0.01	218.00	218.00	0.00000	0.65000
$-X @ f_s = 0.5 f_y$	16070.9	-69161.98	-0.01	162.10	218.00	0.00103	0.65000
-X @ Balanced point	10830.7	-70187.57	0.01	129.02	218.00	0.00207	0.65000
-X @ Tension control	10515.6	-87348.01	0.00	81.05	218.00	0.00507	0.90000
-X @ Pure bending	0.0	-13323.82	-0.01	3.67	218.00	0.17535	0.90000
-X @ Max tension	-1473.1	0.00	0.00	0.00	218.00	9.99999	0.90000



STRUCTUREPOINT - spColumn v10.00 (TM)
Licensed to: StructurePoint, LLC. License ID: 00000-000000-4-20FC1-20FC1
E\StructurePoint\spColumn\Core Wall.colx

Page | **7** 4/28/2022 9:36 AM

6. Diagrams

6.1. PM at θ=0 [deg]

9. Summary and Comparison of Design Results

Table 9 - Comparison of Results (Moment about X-Axis)							
Comment	φί	P _n , kip	ϕM_n , kip-ft				
Support	Hand	<u>spColumn</u>	Hand	<u>spColumn</u>			
Max compression	27,546.5	27,546.5	0.00	0.00			
Allowable compression	22,037.2	22,037.2					
$f_s = 0.0$	19,649.0	19,649.0	58,973.68	58,973.67			
$f_s = 0.5 f_y$	16,070.9	16,070.9	69,162.09	69,161.98			
Balanced point	10,830.7	10,830.7	70,187.59	70,187.57			
Tension control	10,515.6	10,515.6	87,348.06	87,348.01			
Pure bending	0.0	0.0	13,323.82	13,323.82			
Max tension	1,473.1	1,473.1	0.00	0.00			

In all of the hand calculations in this example and illustrated above, the results are in precise agreement with the automated exact results obtained from the spColumn program.

10. Conclusions & Observations

The analysis of the reinforced concrete section performed by <u>spColumn</u> conforms to the provisions of the Strength Design Method and Unified Design Provisions with all conditions of strength satisfying the applicable conditions of equilibrium and strain compatibility.

In the calculation shown above, a P-M interaction diagram was generated with moments about the X-Axis. Since the section and reinforcement distribution are not symmetrical, a different P-M interaction diagram is required for the other orthogonal direction (where moments are about the Y-Axis) (The following Figures illustrate the two conditions for the case where $f_s = f_y$).

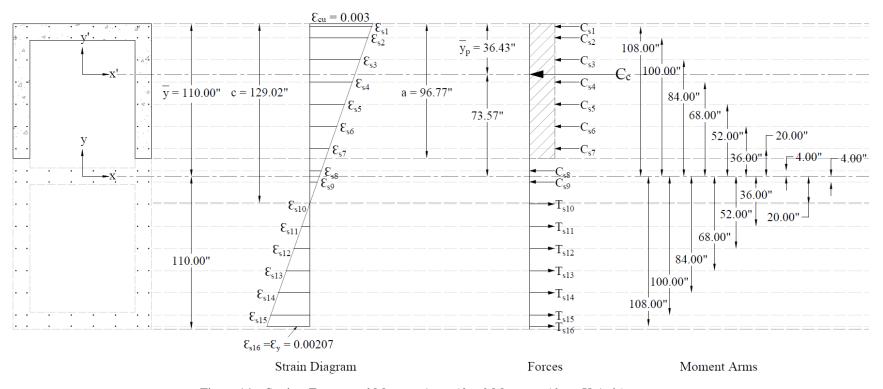


Figure 14 – Strains, Forces, and Moment Arms ($f_s = f_y$ Moments About X-Axis)

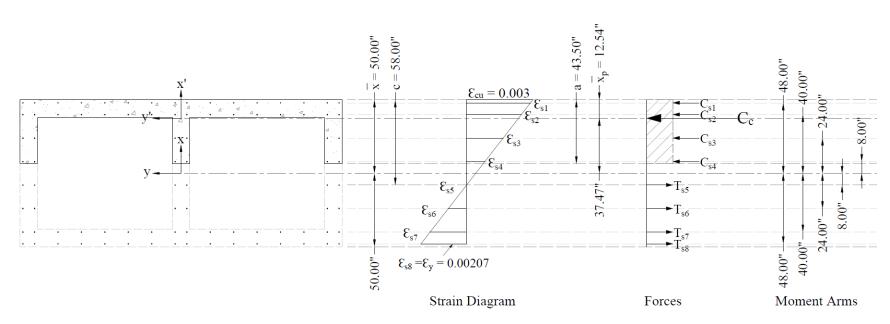


Figure 15 – Strains, Forces, and Moment Arms ($f_s = f_y$ Moments About Y-Axis)

When running about the y-axis in spColumn, 8 layers of reinforcement are participating, instead of 16 layers of reinforcement when running about x-axis, resulting in a completely different P-M interaction diagram as shown in the following spColumn output. The P-M diagrams about x-axis and y-axis are symmetrical since the section is also symmetrical.

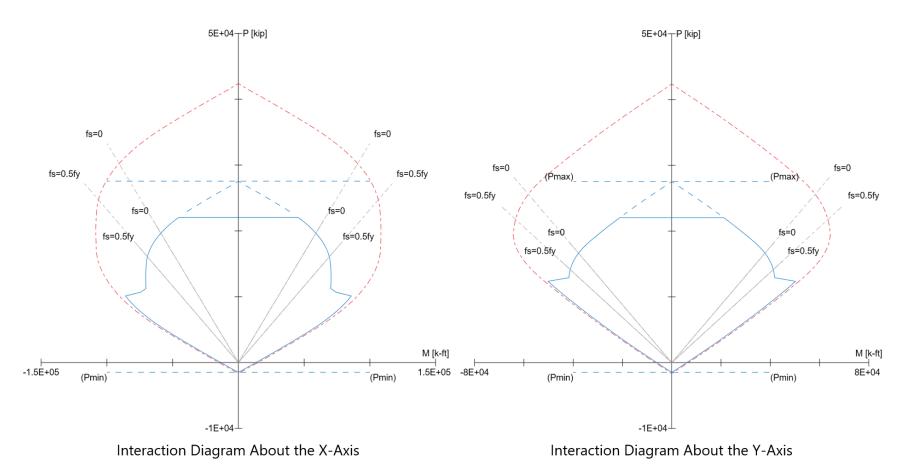


Figure 16 - Comparison of Core Wall Interaction Diagrams about X-Axis and Y-Axis (spColumn)

In most building design calculations, such as the examples shown in the StructurePoint website, all building columns and walls are subjected to M_x and M_y due to lateral forces and unbalanced moments from both directions of analysis. This requires an evaluation of the column or wall P-M interaction diagram in two directions simultaneously (biaxial bending) instead of the uniaxial investigation illustrated here.

StucturePoint's <u>spColumn</u> program can also investigate column and wall sections in biaxial mode to produce the results shown in the following Figure for the wall section in this example. In biaxial run mode, M_x and M_y diagrams at each axial force level can be viewed in 2D and 3D views.

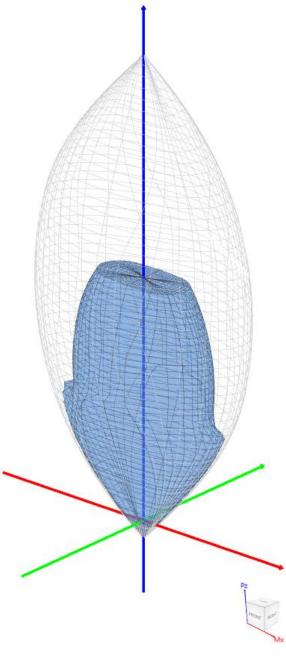
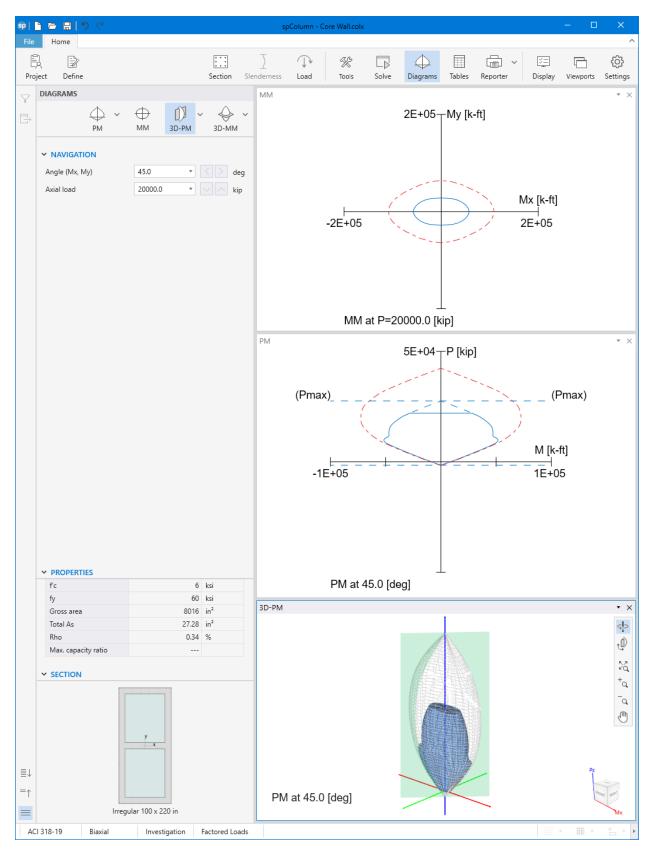



Figure 17 - Core Wall Nominal & Design 3D failure Surfaces (Biaxial) (spColumn)

<u>Figure 18 – Core Wall Interaction Diagram and 3D failure Surface Viewer (spColumn)</u>

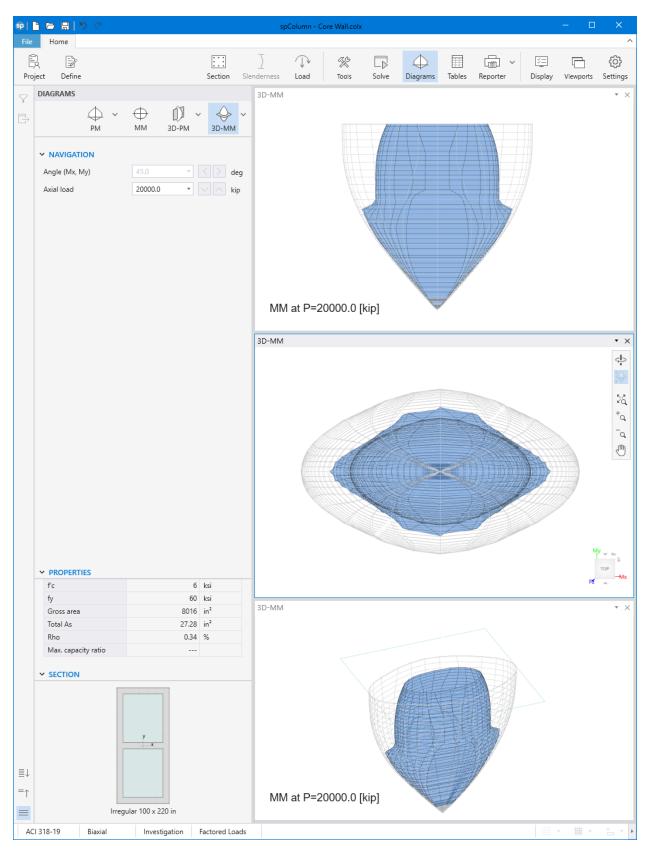


Figure 19 – Core Wall 3D Failure Surface with a Horizontal Plane Cut at P = 20,000 kip (spColumn)

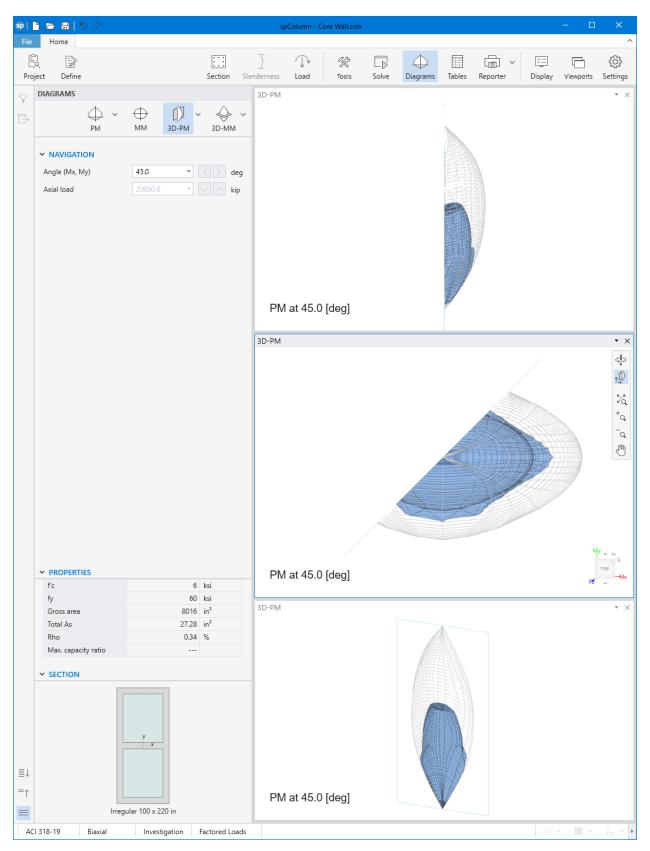


Figure 20 – Core Wall 3D Failure Surface with a Vertical Plane Cut at 45° (spColumn)