
Interaction Diagram - Circular Spiral Reinforced Concrete Column (ACI 318-19)

Interaction Diagram - Circular Spiral Reinforced Concrete Column (ACI 318-19)

Develop an interaction diagram for the circular concrete column shown in the figure below about the x-axis. Determine seven control points on the interaction diagram and compare the calculated values with the Reference and exact values from the complete interaction diagram generated by <u>spColumn</u> engineering software program from <u>StructurePoint</u>.

Figure 1 - Circular Reinforced Concrete Column Cross-Section

Contents

1.	Maximum Compression	.4
	1.1. Nominal axial compressive strength at zero eccentricity	.4
	1.2. Factored axial compressive strength at zero eccentricity	.4
	1.3. Maximum (allowable) factored axial compressive strength	.4
2.	Bar Stress Near Tension Face Equal to Zero, $(\varepsilon_s = f_s = 0)$. 5
3.	Bar Stress Near Tension Face Equal to $0.5 f_y$, $(f_s = 0.5 f_y)$. 8
4.	Bar Stress Near Tension Face Equal to f_y , $(f_s = f_y)$	11
5.	Bar Strain Near Tension Face Equal to $\varepsilon_y + 0.003$ in./in., ($\varepsilon_s = 0.00507$ in./in.)	14
6.	Pure Bending	17
7.	Maximum Tension	20
8.	Column Interaction Diagram - spColumn Software	21
9.	Summary and Comparison of Design Results	31
10	Conclusions & Observations	32

Code

Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19)

References

- Reinforced Concrete Design, 9th Edition, 2021, Pincheira J. et. al., Oxford University Press, Example 10.18.1
- spColumn Engineering Software Program Manual v10.00, STRUCTUREPOINT, 2021
- "Interaction Diagram Tied Reinforced Concrete Column Design Strength (ACI 318-19)" Design Example, STRUCTUREPOINT, 2022
- "Interaction Diagram Tied Reinforced Concrete Column with High-Strength Reinforcing Bars (ACI 318-19)" Design Example, <u>STRUCTUREPOINT</u>, 2022
- "Interaction Diagram Barbell Concrete Shear Wall Unsymmetrical Boundary Elements (ACI 318-19)" Design Example, <u>STRUCTUREPOINT</u>, 2022
- "Interaction Diagram Building Elevator Reinforced Concrete Core Wall Design Strength (ACI 318-19)" Design Example, <u>STRUCTUREPOINT</u>, 2022

Design Data

 $f_c' = 5000 \text{ psi}$

 $f_{\rm y} = 60000 \ {\rm psi}$

Clear Cover = 1.5 in.

Column Diameter = 20 in.

Stirrups, longitudinal reinforcement and reinforcement locations are shown in Figure 1 and Table 1.

Table 1 - Reinforcement Configuration						
Layer, i	d_i , in	n _i	A_{si} , in ²	nA_{si} , in^2		
1	2.64	1	1.27	1.27		
2	4.79	2	1.27	2.54		
3	10.00	2	1.27	2.54		
4	15.21	2	1.27	2.54		
5	17.37	1	1.27	1.27		
			$A_{st} = \Sigma n_i A_{si}$	10.16		

CONCRETE SOFTWARE SOLUTIONS

Solution

Use the traditional hand calculations approach to generate the interaction diagram for the concrete column section shown above by determining the following seven control points:

Point 1: Maximum compression

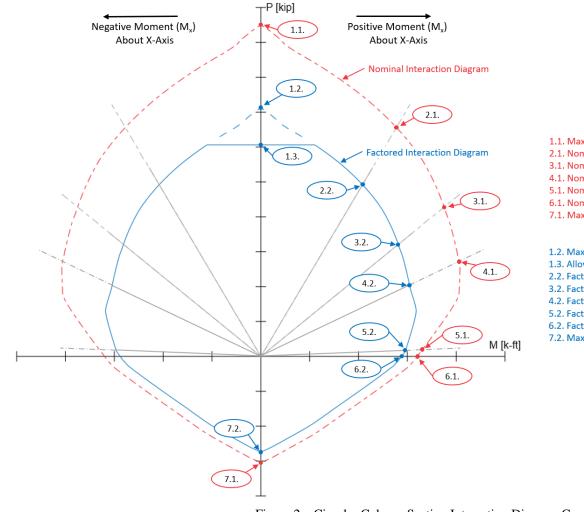
Point 2: Bar stress near tension face equal to zero, $(f_s = 0)$

Point 3: Bar stress near tension face equal to $0.5 f_y (f_s = 0.5 f_y)$

Point 4: Bar stress near tension face equal to f_y ($f_s = f_y$)

Point 5: Bar strain near tension face equal to $\varepsilon_y + 0.003$

Point 6: Pure bending


Point 7: Maximum tension

Several terms are used to facilitate the following calculations:

A_{comp}	= concrete area in compression, in^2 .
\overline{y}	= geometric centroid location along the y-axis, in.
P_o	= nominal axial compressive strength, kip
ϕP_o	= factored axial compressive strength, kip
$\phi P_{n,max}$	= maximum (allowable) factored axial compressive strength, kip
С	= distance from the fiber of maximum compressive strain to the neutral axis, in.
а	= depth of equivalent rectangular stress block, in.
C_c	= compression force in equivalent rectangular stress block, kip
$\mathcal{E}_{s,i}$	= strain value in reinforcement layer, in./in.
C_s	= compression force in reinforcement, kip
T_s	= tension force in reinforcement, kip

1.1. Maximum Nominal Axial Strength in Compression (P_o)

- 2.1. Nominal Control Point at Zero Stress in Tension Reinforcement
- 3.1. Nominal Control Point at Tension Reinforcement Stress = 0.5f_v
- 4.1. Nominal Control Point at Tension Reinforcement Stress = f_v
- 5.1. Nominal Control Point at Tension Reinforcement Stress = $\epsilon_v + 0.003$ in./in.
- 6.1. Nominal Control Point at Pure Bending
- 7.1. Maximum Nominal Axial Strength in Tension

1.2. Maximum Factored Axial Strength in Compression

- 1.3. Allowable Factored Axial Strength in Compression ($\phi P_{n,max}$)
- 2.2. Factored Control Point at Zero Stress in Tension Reinforcement
- 3.2. Factored Control Point at Tension Reinforcement Stress = $0.5f_y$
- 4.2. Factored Control Point at Tension Reinforcement Stress = f_y
- 5.2. Factored Control Point at Tension Reinforcement Stress = ϵ_{y} + 0.003 in./in.
- 6.2. Factored Control Point at Pure Bending
- 7.2. Maximum Factored Axial Strength in Tension

Figure 2 – Circular Column Section Interaction Diagram Control Points

CONCRETE SOFTWARE SOLUTIONS

 ϕ

1. Maximum Compression

1.1. Nominal axial compressive strength at zero eccentricity

$$P_{o} = 0.85 f_{c}'(A_{g} - A_{st}) + f_{y}A_{st}$$

$$\underline{ACI 318-19 (22.4.2.2)}$$

$$P_{o} = 0.85 \times 5000 \times \left(\frac{\pi}{4} \times 20^{2} - 8 \times 1.27\right) + 60000 \times 8 \times 1.27 = 1902 \text{ kips}$$

1.2. Factored axial compressive strength at zero eccentricity

Since this column is a spiral column with steel strain in compression:

 $\phi P_o = 0.75 \times 1902 = 1426.2$ kips

Since the section is regular (symmetrical) about the x-axis, the moment capacity associated with the maximum axial compressive strength is equal to zero.

 $M_{o} = \phi M_{o} = 0.00$ kip-ft

1.3. Maximum (allowable) factored axial compressive strength

 $\phi P_{n,max} = 0.85 \times \phi P_o = 0.85 \times 1426.2 = 1212.3$ kips

ACI 318-19 (Table 22.4.2.1)

2. Bar Stress Near Tension Face Equal to Zero, $(\varepsilon_s = f_s = 0)$

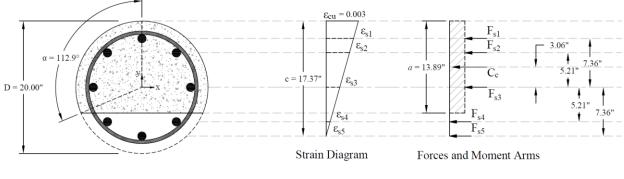


Figure 3 – Strains, Forces, and Moment Arms ($\varepsilon_t = f_s = 0$)

Strain ε_s is zero in the extreme layer of tension steel. This case is considered when calculating an interaction diagram because it marks the change from compression lap splices being allowed on all longitudinal bars, to the more severe requirement of tensile lap splices. <u>ACI 318-19 (10.7.5.2.1 and 2)</u>

For Concrete: $c = d_5 = 17.37$ in. $\varepsilon_{s5} = 0 < \varepsilon_y = \frac{F_y}{E_s} = \frac{60}{29000} = 0.00207$ $\therefore \phi = 0.75$ $\Delta CI 318-19 (Table 21.2.2)$ $\varepsilon_{cu} = 0.003$ ACI 318-19 (22.2.1)Where c is the distance from the fiber of maximum compressive strain to the neutral axis.

<u>ACI 318-19 (22.2.2.4.2)</u>

 $a = \beta_1 \times c = 0.80 \times 17.37 = 13.89$ in. <u>ACI 318-19 (22.2.2.4.1)</u>

Where:

a = Depth of equivalent rectangular stress block

$$\beta_1 = 0.85 - \frac{0.05 \times (f_c' - 4000)}{1000} = 0.85 - \frac{0.05 \times (5000 - 4000)}{1000} = 0.80$$
 ACI 318-19 (Table 22.2.2.4.3)

$$C_c = 0.85 \times f'_c \times A_{comp} = 0.85 \times 5000 \times 232.9 = 989.9 \text{ kip}$$
 (Compression) ACI 318-19 (22.2.2.4.1)

Where:

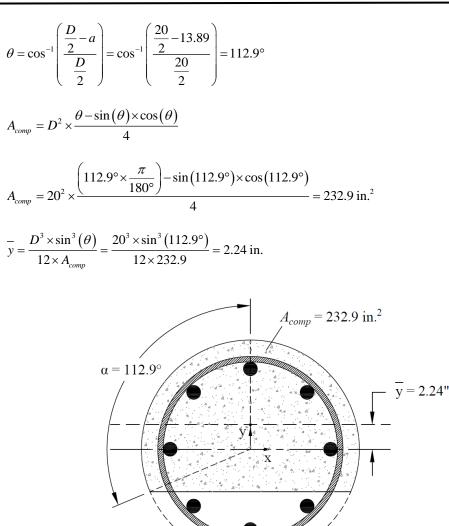


Figure 4 – Cracked Column Section Properties ($\varepsilon_t = f_s = 0$)

For Reinforcement:

$$\varepsilon_{s4} = (c - d_4) \times \frac{\varepsilon_{cu}}{c} = (17.37 - 15.21) \times \frac{0.003}{17.37} = 0.00037 \text{ (Compression)} < \varepsilon_y = \frac{F_y}{E_s} = \frac{60}{29000} = 0.00207$$

 $f_{s5} = 0 \text{ psi} \rightarrow F_{s5} = f_{s5} \times A_{s5} = 0 \text{ kip}$

Since $\varepsilon_{s4} < \varepsilon_y \rightarrow$ reinforcement has not yielded

: $f_{s4} = \varepsilon_{s4} \times E_s = 0.00037 \times 29000000 = 10808$ psi

The area of the reinforcement in this layer is not included in the area (*ab*) used to compute C_c . As a result, it is NOT necessary to subtract $0.85f_c$ ' from f_{s4} before computing F_{s4} :

$F_{s4} = f_{s4} \times A_{s4} = 10808 \times (2 \times 1.27) = 27.45 \text{ kip}$ (Compression)

The same procedure shown above can be repeated to calculate the forces in the remaining reinforcement layers, results are summarized in the following table:

Table 2 - Strains and internal force resultants ($\varepsilon_s = f_s = 0$)								
Layer	d, in.	ε, in./in.	f _s , psi	F _s , kip	C _c , kip	Moment arm (r), in.	Moment, kip-ft	
Concrete		0.00300			989.86	2.24	184.55	
1	2.64	0.00254	60000	70.80^*		7.37	43.46	
2	4.79	0.00217	60000	141.61*		5.21	61.45	
3 10.0		0.00127	36899 82.93*		0.00	0.00		
4	15.21	0.00037	10808 27	27.45		-5.21	-11.91	
5	17.37	0.00000	0	0.00		-7.37	0.00	
Axial F	Axial Force and Bending				1312.64	M _n , kip-ft	277.54	
Moment			φP _n , kip	984.48		φM _n , kip-ft	208.16	
* The area of the reinforcement in this layer has been included in the area (<i>ab</i>) used to compute C_c . As a result, $0.85f_c$ ' is subtracted from f_s in the computation of F_s .								

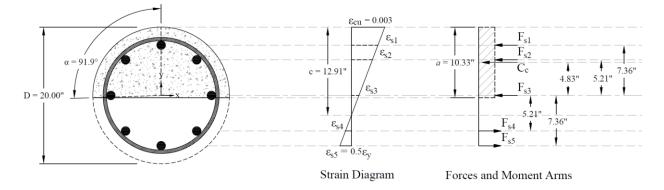
Where:

$$P_n = C_c + \sum F_s$$

 $\phi P_n = \phi \times P_n = 0.75 \times P_n$

$$M_n = C_c \times \left(\frac{h}{2} - \frac{a}{2}\right) + \sum_{i=1}^{n=5} \left(F_{si} \times \left(\frac{h}{2} - d_i\right)\right)$$

(+) = Counter Clockwise (-) = Clockwise


(-) = Tension

(+) = Compression

 $\phi M_n = \phi \times M_n = 0.75 \times M_n$

3. Bar Stress Near Tension Face Equal to $0.5 f_y$, $(f_s = 0.5 f_y)$

For Concrete:

$$\begin{split} \varepsilon_{y} &= \frac{f_{y}}{E_{s}} = \frac{60}{29,000} = 0.00207 \\ \varepsilon_{s5} &= -\frac{\varepsilon_{y}}{2} = -\frac{0.00207}{2} = -0.00103 \text{ (Tension)} < \varepsilon_{y} \rightarrow \text{tension reinforcement has not yielded} \\ \varepsilon_{s5} < \varepsilon_{y} \\ \therefore \phi &= 0.75 \\ \varepsilon_{cu} &= 0.003 \\ c &= \frac{d_{5}}{\varepsilon_{s5} + \varepsilon_{cu}} \times \varepsilon_{cu} = \frac{17.37}{0.00103 + 0.003} \times 0.003 = 12.91 \text{ in.} \end{split}$$

Where c is the distance from the fiber of maximum compressive strain to the neutral axis.

ACI 318-19 (22.2.2.4.2)

$$a = \beta_1 \times c = 0.80 \times 12.91 = 10.33$$
 in. ACI 318-19 (22.2.2.4.1)

Where:

a = Depth of equivalent rectangular stress block

$$\beta_{1} = 0.85 - \frac{0.05 \times (f_{c}' - 4000)}{1000} = 0.85 - \frac{0.05 \times (5000 - 4000)}{1000} = 0.80 \qquad \underline{ACI 318-19 \ (Table 22.2.2.4.3)}$$

$$C_{c} = 0.85 \times f_{c}' \times A_{comp} = 0.85 \times 5000 \times 163.7 = 695.63 \text{ kip (Compression)} \qquad \underline{ACI 318-19 \ (22.2.2.4.1)}$$

Where:

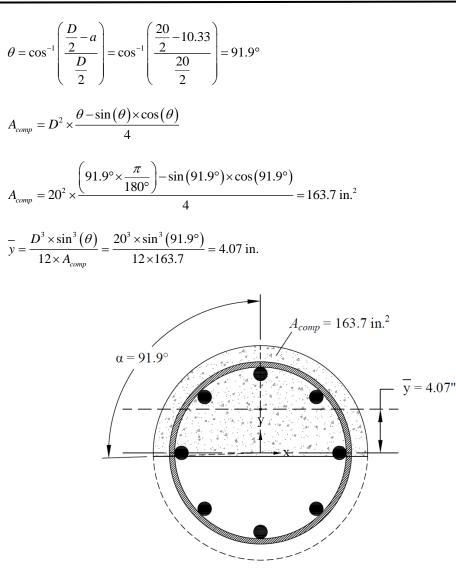


Figure 6 – Cracked Column Section Properties ($f_s = 0.5 f_y$)

For Reinforcement:

$$\varepsilon_{s5} = -\frac{\varepsilon_y}{2} = -\frac{0.00207}{2} = -0.00103 \text{ (Tension)} < \varepsilon_y \rightarrow \text{reinforcement has not yielded}$$

$$\therefore f_{s5} = \varepsilon_{s5} \times E_s = -0.00053 \times 29000000 = -30000 \text{ psi}$$

The area of the reinforcement in this layer is not included in the area (*ab*) used to compute C_c . As a result, it is NOT necessary to subtract $0.85f_c$ ' from f_{s5} before computing F_{s5} :

 $F_{s5} = f_{s5} \times A_{s5} = -30000 \times (1 \times 1.27) = -38.1 \text{ kip}$ (Tension)

$$\varepsilon_{s4} = (c - d_4) \times \frac{\varepsilon_{cu}}{c} = (12.91 - 15.21) \times \frac{0.003}{12.91} = -0.00053 \text{ (Tension)} < \varepsilon_y \rightarrow \text{reinforcement has not yielded}$$

:
$$f_{s4} = \varepsilon_{s4} \times E_s = -0.00053 \times 29000000 = -15465$$
 psi

The area of the reinforcement in this layer is not included in the area (*ab*) used to compute C_c . As a result, it is NOT necessary to subtract $0.85f_c$ ' from f_{s4} before computing F_{s4} :

$$F_{s4} = f_{s4} \times A_{s4} = -15465 \times (2 \times 1.27) = -39.28 \text{ kip}$$
 (Tension)

The same procedure shown above can be repeated to calculate the forces in the remaining reinforcement layers, results are summarized in the following table:

Table 3 - Strains and internal force resultants ($f_s = 0.5 f_y$)							
Layer	d, in.	ε, in./in.	f _s , psi	F _s , kip	C _c , kip	Moment arm (r), in.	Moment, kip-ft
Concrete		0.00300			695.63	4.07	235.73
1	2.64	0.00239	60000	70.80^*		7.37	43.46
2	2 4.79 0.00189 3 10.00 0.00068 4 15.21 -0.00053		54712	128.17^{*}		5.21	55.62
3			19623	39.05*		0.00	0.00
4			-15465	-39.28		-5.21	17.05
5	17.37	-0.00103	-30000	-38.1		-7.37	23.38
Axial Force and Bending			P _n , kip		856.27	M _n , kip-ft	375.24
Moment			φP _n , kip		642.20	φM _n , kip-ft	281.43
* The area of the reinforcement in this layer has been included in the area (<i>ab</i>) used to compute C_c . As a result, $0.85f_c$ ' is subtracted from f_s in the computation of F_s .							

Where:

$$P_n = C_c + \sum F_s$$
 (+) = Compression (-) = Tension

$$\phi P_n = \phi \times P_n = 0.75 \times P_n$$

$$\boldsymbol{M}_{n} = \boldsymbol{C}_{c} \times \left(\frac{h}{2} - \frac{a}{2}\right) + \sum_{i=1}^{n=5} \left(\boldsymbol{F}_{si} \times \left(\frac{h}{2} - \boldsymbol{d}_{i}\right)\right)$$

(+) = Counter Clockwise (-) = Clockwise

 $\phi M_n = \phi \times M_n = 0.75 \times M_n$

4. Bar Stress Near Tension Face Equal to f_y , $(f_s = f_y)$

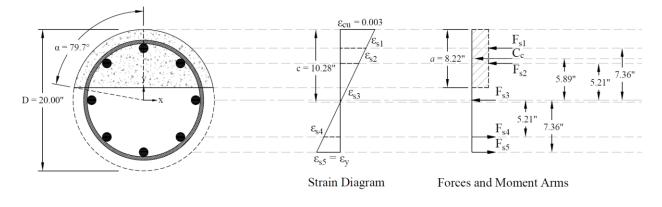


Figure 7 – Strains, Forces, and Moment Arms $(f_s = f_y)$

This strain distribution is called the balanced failure case and the compression-controlled strain limit. It marks the change from compression failures originating by crushing of the compression surface of the section, to tension failures initiated by yield of longitudinal reinforcement. It also marks the start of the transition zone for ϕ for columns in which ϕ increases from 0.75 for spiral columns (or 0.65 for tied columns) up to 0.90.

For Concrete:

$$\varepsilon_{y} = \frac{f_{y}}{E_{s}} = \frac{60}{29,000} = 0.00207$$

$$\varepsilon_{s5} = -\varepsilon_{y} = -0.00207 \text{ (Tension)} = \varepsilon_{y} \rightarrow \text{tension reinforcement has yielded}$$

$$\therefore \phi = 0.75 \qquad \qquad \underline{ACI 318-19 (Table 21.2.2)}$$

$$\varepsilon_{cu} = 0.003 \qquad \qquad \underline{ACI 318-19 (22.2.2.1)}$$

$$c = \frac{d_{5}}{\varepsilon_{s5} + \varepsilon_{cu}} \times \varepsilon_{cu} = \frac{17.37}{0.00207 + 0.003} \times 0.003 = 10.28 \text{ in.}$$
Where *c* is the distance from the fiber of maximum compressive strain to the neutral axis.

$$\underline{ACI 318-19 (22.2.2.4.2)}$$

 $a = \beta_1 \times c = 0.80 \times 10.28 = 8.22$ in. <u>ACI 318-19 (22.2.2.4.1)</u>

Where:

a = Depth of equivalent rectangular stress block

$$\beta_1 = 0.85 - \frac{0.05 \times (f_c' - 4000)}{1000} = 0.85 - \frac{0.05 \times (5000 - 4000)}{1000} = 0.80 \qquad \underline{ACI 318-19 \ (Table \ 22.2.2.4.3)}$$

$$C_c = 0.85 \times f'_c \times A_{comp} = 0.85 \times 5000 \times 121.7 = 517.24 \text{ kip} (\text{Compression})$$

ACI 318-19 (22.2.2.4.1)

Where:

y

$$\theta = \cos^{-1} \left(\frac{D}{2} - a}{\frac{D}{2}} \right) = \cos^{-1} \left(\frac{20}{2} - 8.22}{\frac{20}{2}} \right) = 79.8^{\circ}$$

$$A_{comp} = D^{2} \times \frac{\theta - \sin(\theta) \times \cos(\theta)}{4}$$

$$A_{comp} = 20^{2} \times \frac{\left(79.8^{\circ} \times \frac{\pi}{180^{\circ}} \right) - \sin(79.8^{\circ}) \times \cos(79.8^{\circ})}{4} = 121.7 \text{ in.}^{2}$$

$$\overline{y} = \frac{D^{3} \times \sin^{3}(\theta)}{12 \times A_{comp}} = \frac{20^{3} \times \sin^{3}(79.8^{\circ})}{12 \times 121.7} = 5.22 \text{ in.}$$

$$\alpha = 79.7^{\circ}$$

$$A_{comp} = 121.7 \text{ in.}^{2}$$

$$\overline{y} = \frac{121.7 \text{ in.}^{2}}{\sqrt{12} \times \sqrt{12} \times \sqrt{12}}$$

Figure 8 – Cracked Column Section Properties $(f_s = f_y)$

For Reinforcement:

 $\varepsilon_{s5} = -\varepsilon_y = -0.00207$ (Tension) = $\varepsilon_y \rightarrow$ reinforcement has yielded

 $\therefore f_{s5} = f_y = -60000 = -60000 \text{ psi}$

The area of the reinforcement in this layer is not included in the area (ab) used to compute C_c . As a result, it is NOT necessary to subtract $0.85f_c$ ' from f_{s5} before computing F_{s5} :

 $F_{s5} = f_{s5} \times A_{s5} = -60000 \times (1 \times 1.27) = -76.2 \text{ kip}$ (Tension)

$$\varepsilon_{s4} = (c - d_4) \times \frac{\varepsilon_{cu}}{c} = (10.28 - 15.21) \times \frac{0.003}{10.28} = -0.00144 \text{ (Tension)} < \varepsilon_y \rightarrow \text{reinforcement has not yielded}$$

:
$$f_{s4} = \varepsilon_{s4} \times E_s = -0.00144 \times 29000000 = -41739$$
 psi

The area of the reinforcement in this layer is not included in the area (*ab*) used to compute C_c . As a result, it is NOT necessary to subtract $0.85f_c$ ' from f_{s4} before computing F_{s4} :

$$F_{s4} = f_{s4} \times A_{s4} = -41739 \times (2 \times 1.27) = -106.02 \text{ kip}$$
 (Tension)

The same procedure shown above can be repeated to calculate the forces in the remaining reinforcement layers, results are summarized in the following table:

Table 4 - Strains and internal force resultants $(f_s = f_y)$							
Layer	d, in.	ε, in./in.	f _s , psi	F _s , kip	C _c , kip	Moment arm (r), in.	Moment, kip-ft
Concrete		0.00300			517.24	5.22	225.00
1	1 2.64 0.00223 2 4.79 0.00160 3 10.00 0.00008		60000	70.8^*		7.37	43.46
2			46433	107.14^*		5.21	46.50
3			2347	5.96*		0.00	0.00
4	15.21	-0.00144	-41739	-106.02		-5.21	46.01
5	17.37	-0.00207	-60000	-76.20		-7.37	46.77
Axial F	Axial Force and Bending				518.93	M _n , kip-ft	407.73
Moment			φP _n , kip		389.20	φM _n , kip-ft	305.80
* The area of the reinforcement in this layer has been included in the area (<i>ab</i>) used to compute C_c . As a result, $0.85f_c$ ' is subtracted from f_s in the computation of F_s .							

Where:

$$P_n = C_c + \sum F_s$$
 (+) = Compression (-) = Tension

$$\phi P_n = \phi \times P_n = 0.75 \times P_n$$

$$\boldsymbol{M}_{n} = \boldsymbol{C}_{c} \times \left(\frac{h}{2} - \frac{a}{2}\right) + \sum_{i=1}^{n=5} \left(\boldsymbol{F}_{si} \times \left(\frac{h}{2} - \boldsymbol{d}_{i}\right)\right)$$

(+) = Counter Clockwise (-) = Clockwise

 $\phi M_n = \phi \times M_n = 0.75 \times M_n$

5. Bar Strain Near Tension Face Equal to $\varepsilon_y + 0.003$ in./in., ($\varepsilon_s = 0.00507$ in./in.)

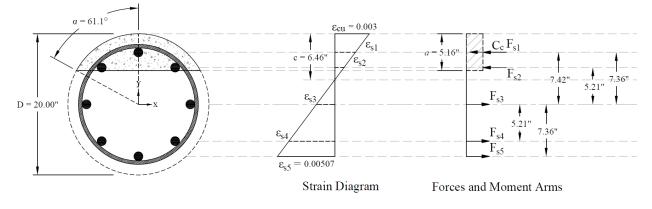


Figure 9 – Strains, Forces, and Moment Arms ($\varepsilon_s = 0.00507$ in./in.)

In ACI 318-19 provisions, this control point corresponds to the tension-controlled strain limit of $\varepsilon_y + 0.003$ (used to be 0.005 in ACI 318-14). It is the strain at the tensile limit of the transition zone for ϕ , used to define a tension-controlled section. Additional resources concerning code provision changes in ACI 318-19 can be found in "<u>ACI 318-19</u> Code Revisions Impact on StructurePoint Software" technical article.

For Concrete:

 $\varepsilon_{y} = \frac{f_{y}}{E_{s}} = \frac{60}{29,000} = 0.00207$ $\varepsilon_{s5} = \varepsilon_{y} + 0.003 = 0.00207 + 0.003 = -0.00507 \text{ (Tension)} > \varepsilon_{y} \rightarrow \text{tension reinforcement has yielded}$ $\therefore \phi = 0.90 \qquad \qquad \underline{ACI \ 318-19 \ (Table \ 21.2.2)}$ $\varepsilon_{cu} = 0.003 \qquad \qquad \underline{ACI \ 318-19 \ (22.2.2.1)}$ $c = \frac{d_{5}}{\varepsilon_{s5} + \varepsilon_{cu}} \times \varepsilon_{cu} = \frac{17.37}{0.00507 + 0.003} \times 0.003 = 6.46 \text{ in.}$ Where *c* is the distance from the fiber of maximum compressive strain to the neutral axis. $\underline{ACI \ 318-19 \ (22.2.2.4.2)}$ $a = \beta_{1} \times c = 0.80 \times 6.46 = 5.16 \text{ in.}$ Where:

a = Depth of equivalent rectangular stress block

$$\beta_1 = 0.85 - \frac{0.05 \times (f_c' - 4000)}{1000} = 0.85 - \frac{0.05 \times (5000 - 4000)}{1000} = 0.80$$
 ACI 318-19 (Table 22.2.2.4.3)

 $C_c = 0.85 \times f'_c \times A_{comp} = 0.85 \times 5000 \times 64.29 = 273.24 \text{ kip} (Compression)$ <u>ACI 318-19 (22.2.2.4.1)</u>

spcolumn

Where:

$$\theta = \cos^{-1} \left(\frac{D}{2} - a \right) = \cos^{-1} \left(\frac{20}{2} - 5.16 \right) = 61.1^{\circ}$$

$$A_{comp} = D^{2} \times \frac{\theta - \sin(\theta) \times \cos(\theta)}{4}$$

$$A_{comp} = 20^{2} \times \frac{\left(61.1^{\circ} \times \frac{\pi}{180^{\circ}} \right) - \sin(61.1^{\circ}) \times \cos(61.1^{\circ})}{4} = 64.29 \text{ in.}^{2}$$

$$\overline{y} = \frac{D^{3} \times \sin^{3}(\theta)}{12 \times A_{comp}} = \frac{20^{3} \times \sin^{3}(61.1^{\circ})}{12 \times 64.29} = 6.95 \text{ in.}$$

$$\alpha = 61.1^{\circ}$$

$$A_{comp} = 64.29 \text{ in.}^{2}$$

$$\overline{y} = 6.95^{\circ}$$

Figure 10 – Cracked Column Section Properties ($\varepsilon_s = 0.00507$ in./in.)

For Reinforcement:

 $\varepsilon_{s5} = -0.00507$ (Tension) > $\varepsilon_y \rightarrow$ reinforcement has yielded

: $f_{s5} = f_y = -60000 \text{ psi}$

The area of the reinforcement in this layer is not included in the area (*ab*) used to compute C_c . As a result, it is NOT necessary to subtract $0.85f_c$ ' from f_{s5} before computing F_{s5} :

$$F_{s5} = f_{s5} \times A_{s5} = -60000 \times (1 \times 1.27) = -76.2 \text{ kip}$$
 (Tension)

$$\varepsilon_{s4} = (c - d_4) \times \frac{\varepsilon_{cu}}{c} = (6.46 - 15.21) \times \frac{0.003}{6.46} = -0.00407 \text{ (Tension)} > \varepsilon_y \rightarrow \text{reinforcement has yielded}$$

$$\therefore f_{s4} = f_{y} = -60000 \text{ psi}$$

The area of the reinforcement in this layer is not included in the area (*ab*) used to compute C_c . As a result, it is NOT necessary to subtract $0.85f_c$ ' from f_{s4} before computing F_{s4} :

$$F_{s4} = f_{s4} \times A_{s4} = -60000 \times (2 \times 1.27) = -152.4 \text{ kip}$$
 (Tension)

The same procedure shown above can be repeated to calculate the forces in the remaining reinforcement layers, results are summarized in the following table:

Table 5 - Strains and internal force resultants ($\varepsilon_s = 0.00507$ in./in.)							
Layer	d, in.	ε, in./in.	f _s , psi	F _s , kip	C _c , kip	Moment arm (r), in.	Moment, kip-ft
Concrete		0.00300			273.24	6.95	158.36
1	2.64	0.00178	51492	60.00^*		7.37	36.82
2 4.79 0.00077		22423	46.16*		5.21	20.03	
3	3 10.00 -0.00165		-47754	-121.29		0.00	0.00
4	15.21	-0.00407	-60000	-152.4		-5.21	66.14
5	17.37	-0.00507	-60000	-76.20		-7.37	46.77
Axial Force and Bending			P _n , kip		29.50	M _n , kip-ft	328.13
Moment			φP _n , kip	26.55		φM _n , kip-ft	295.31
* The area of the reinforcement in this layer has been included in the area (<i>ab</i>) used to compute C_c . As a result, $0.85f_c$ is subtracted from f_s in the computation of F_s .							

Where:

$$P_n = C_c + \sum F_s$$
 (+) = Compression (-) = Tension

$$\phi P_n = \phi \times P_n = 0.90 \times P_n$$

$$M_n = C_c \times \left(\frac{h}{2} - \frac{a}{2}\right) + \sum_{i=1}^{n=5} \left(F_{si} \times \left(\frac{h}{2} - d_i\right)\right)$$

(+) = Counter Clockwise (-) = Clockwise

 $\phi M_n = \phi \times M_n = 0.90 \times M_n$

CONCRETE SOFTWARE SOLUTIONS

oint

6. Pure Bending

Structure P

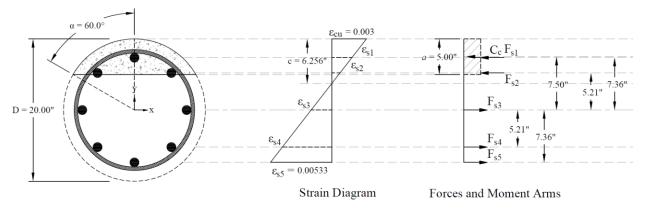


Figure 11 - Strains, Forces, and Moment Arms (Pure Moment)

This corresponds to the case where the nominal axial load capacity, P_n , is equal to zero. Iterative procedure is used to determine the nominal moment capacity as follows:

Try c = 6.256 in.

Where c is the distance from the fiber of maximum compressive strain to the neutral axis.

ACI 318-19 (22.2.2.4.2)

$$\begin{split} \varepsilon_{y} &= \frac{f_{y}}{E_{s}} = \frac{60}{29,000} = 0.00207 \\ \varepsilon_{s5} &= (c - d_{5}) \times \frac{\varepsilon_{cu}}{c} = (6.256 - 17.36) \times \frac{0.003}{6.256} = -0.00533 \text{ (Tension)} > \varepsilon_{y} \rightarrow \text{reinforcement has yielded} \\ \varepsilon_{s5} &> 0.005 \\ \therefore \phi &= 0.9 \\ a &= \beta_{1} \times c = 0.80 \times 6.256 = 5.00 \text{ in.} \\ \varepsilon_{cu} &= 0.003 \\ \text{Where:} \\ a &= \text{Depth of equivalent rectangular stress block} \\ \beta_{1} &= 0.85 - \frac{0.05 \times (f_{c}' - 4000)}{1000} = 0.85 - \frac{0.05 \times (5000 - 4000)}{1000} = 0.80 \\ \underline{ACI 318 - 19 (Table 21.2.2)} \\ ACI 318 - 19 (22.2.2.4.3)} \\ \underline{ACI 318 - 19 (Table 22.2.2.4.3)} \\ \end{array}$$

$$C_c = 0.85 \times f'_c \times A_{comp} = 0.85 \times 5000 \times 61.5 = 261.38 \text{ kip} (Compression)$$
 ACI 318-19 (22.2.2.4.1)

Where:

$$\theta = \cos^{-1} \left(\frac{\frac{D}{2} - a}{\frac{D}{2}} \right) = \cos^{-1} \left(\frac{\frac{20}{2} - 5.00}{\frac{20}{2}} \right) = 60.0^{\circ}$$

$$A_{comp} = D^{2} \times \frac{\theta - \sin(\theta) \times \cos(\theta)}{4}$$

$$A_{comp} = 20^{2} \times \frac{\left(60.0^{\circ} \times \frac{\pi}{180^{\circ}} \right) - \sin(60.0^{\circ}) \times \cos(60.0^{\circ})}{4} = 61.5 \text{ in.}^{2}$$

$$\frac{1}{2} = \frac{D^{3} \times \sin^{3}(\theta)}{4} = \frac{20^{3} \times \sin^{3}(60.0^{\circ})}{4} = 7.05 \text{ in.}$$

$$y = \frac{12 \times A_{comp}}{12 \times 61.5} = 7$$

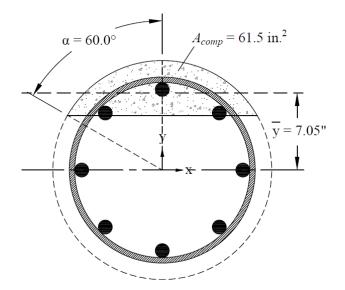


Figure 12 - Cracked Column Section Properties (Pure Moment)

 $\varepsilon_{s5} = -0.00533$ (Tension) > $\varepsilon_y \rightarrow$ reinforcement has yielded

: $f_{s5} = f_y = -60000 \text{ psi}$

The area of the reinforcement in this layer is not included in the area (*ab*) used to compute C_c . As a result, it is NOT necessary to subtract $0.85f_c$ ' from f_{ss} before computing F_{ss} :

$$\begin{aligned} \mathbf{F}_{s5} &= f_{s5} \times A_{s5} = -60000 \times (1 \times 1.27) = -76.2 \text{ kip (Tension)} \\ \varepsilon_{s4} &= (c - d_4) \times \frac{\varepsilon_{cu}}{c} = (6.256 - 15.21) \times \frac{0.003}{6.256} = -0.00429 \text{ (Tension)} > \varepsilon_y \rightarrow \text{reinforcement has yielded} \\ \therefore f_{s4} &= f_y = -60000 \text{ psi} \end{aligned}$$

The area of the reinforcement in this layer is not included in the area (*ab*) used to compute C_c . As a result, it is NOT necessary to subtract $0.85f_c$ ' from f_{s4} before computing F_{s4} :

$$F_{s4} = f_{s4} \times A_{s4} = -60000 \times (2 \times 1.27) = -152.4 \text{ kip}$$
 (Tension)

The same procedure shown above can be repeated to calculate the forces in the remaining reinforcement layers, results are summarized in the following table:

	Table 6 - Strains and internal force resultants (Pure Moment)							
Layer	d, in.	ε, in./in.	f _s , psi	F _s , kip	C _c , kip	Moment arm (r), in.	Moment, kip-ft	
Concrete		0.00300			261.38	7.05	153.51	
1	2.64	0.00174	50356	58.55^{*}		7.37	35.94	
2	2 4.79 0.00070		20357	40.91*		5.21	17.75	
3	3 10.00 -0.00180		-52066	-132.25		0.00	0.00	
4	15.21	-0.00429	-60000	-152.4		-5.21	66.14	
5	17.37	-0.00533	-60000	-76.20		-7.37	46.77	
Axial Force and Bending			P _n , kip		0.00	M _n , kip-ft	320.11	
Moment			φP _n , kip		0.00	φM _n , kip-ft	288.09	
* The area of the reinforcement in this layer has been included in the area (<i>ab</i>) used to compute C_c . As a result, $0.85f_c$ ' is subtracted from f_s in the computation of F_s .								

Where:

$$P_n = C_c + \sum F_s$$
 (+) = Compression (-) = Tension
 $\phi P_n = \phi \times P_n = 0.90 \times P_n$

Since $P_n = \phi P_n = 0$ kip, the assumption that c = 3.25 in. is correct.

$$M_n = C_c \times \left(\frac{h}{2} - \frac{a}{2}\right) + \sum_{i=1}^{n=5} \left(F_{si} \times \left(\frac{h}{2} - d_i\right)\right)$$
(+) = Counter Clockwise (-) = Clockwise

 $\phi M_n = \phi \times M_n = 0.90 \times M_n$

ACI 318-19 (Table 21.2.2)

7. Maximum Tension

The final loading case to be considered is concentric axial tension. The strength under pure axial tension is computed by assuming that the section is completely cracked through and subjected to a uniform strain greater than or equal to the yield strain in tension. The strength under such a loading is equal to the yield strength of the reinforcement in tension.

$$P_{nt} = f_y \times \sum_{i=1}^{n=5} n_i A_{si} = 60,000 \times (8 \times 1.27) = -609.60 \text{ kip (Tension)}$$
 ACI 318-19 (22.4.3.1)

 $\phi = 0.90$

 $\phi P_{nt} = 0.90 \times 609.60 = -548.64$ kip (Tension)

Since the section is symmetrical

 $M_n = \phi M_n = 0$ kip.ft

8. Column Interaction Diagram - spColumn Software

<u>spColumn</u> is a StructurePoint software program that performs the analysis and design of reinforced concrete sections subjected to axial force combined with uniaxial or biaxial bending. Using the provisions of the Strength Design Method and Unified Design Provisions, slenderness considerations are used for moment magnification due to second order effect (P-Delta) for sway and non-sway frames.

For this column section, investigation mode was used with no loads (the program will only report control points) and no slenderness considerations using ACI 318-19.

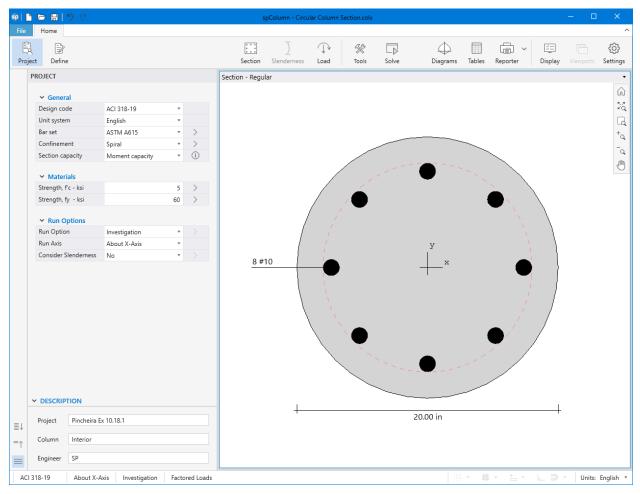


Figure 13 – spColumn Interface

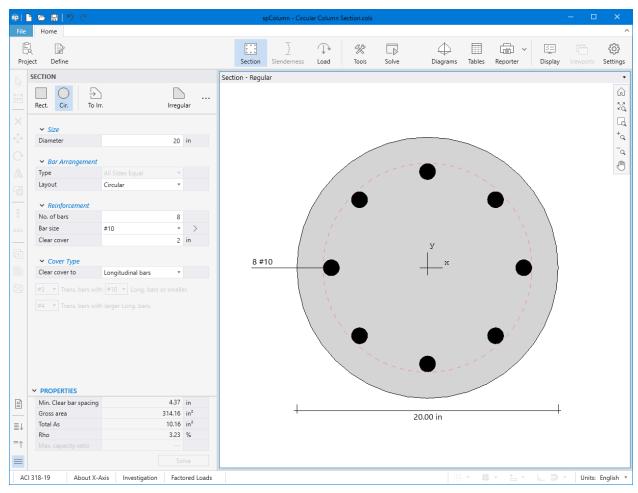
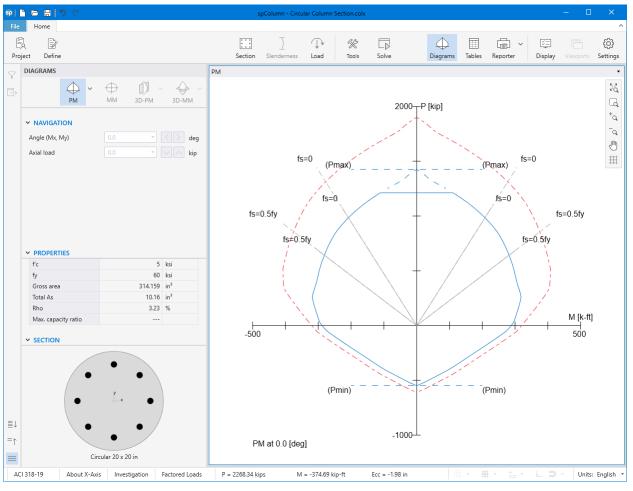
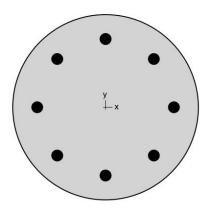


Figure 14 – spColumn Model Editor

sp	Loa	ds		—		(
≣↓ =↑		Loads Factored Loads Service Loads	Control Points			
	~	Modes (No Loads) Axial Load Points				
		Control Points				
			No Loads Assigned			
			Report will list only control points			
			OK		Cancel	

Figure 15 – Defining Loads / Modes (spColumn)




Figure 16 - Column P-M Interaction Diagram about the X-Axis (spColumn)

spColumn v10.00 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright - 1988-2021, STRUCTUREPOINT, LLC. All rights reserved

Structure Point

Structure|Point Licensee stated below acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims ail responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program. Licensed to: StructurePoint, LLC. License ID: 00000-000000-4-20FC1-20FC1

Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1 4/2	Page 2 27/2022 5:15 PM
Contents 1. General Information	3
2. Material Properties 2.1. Concrete 2.2. Steel	3
 Section	3
Reinforcement 4.1. Bar Set: ASTM A615 4.2. Confinement and Factors	4 4
4.3. Arrangement 5. Control Points	4 5
6. Diagrams 6.1. PM at θ=0 [deg]	6 6

List of Figures

e 1: Column section

STRUCTUREPOINT - spColumn v10.00 (TM) Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1 E:\StructurePoint\spColumn\Circular Column Section.colx Page | **3** 4/27/2022 5:15 PM

1. General Information

File Name	E:\StructurePoint\Circular Column Section.colx		
Project	Pincheira Ex 10.18.1		
Column	Interior		
Engineer	SP		
Code	ACI 318-19		
Bar Set	ASTM A615		
Units	English		
Run Option	Investigation		
Run Axis	X - axis		
Slenderness	Not Considered		
Column Type	Structural		
Capacity Method	Moment capacity		

2. Material Properties

2.1. Concrete

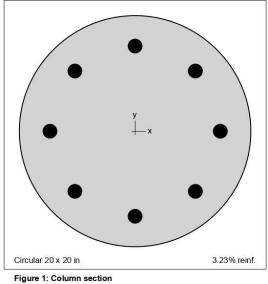
Type Standar		
f' _c	5 ksi	
E₀ f₀	4030.51 ksi	
f _c	4.25 ksi	
ε _u	0.003 in/i	
β1	0.8	

2.2. Steel

Туре	Standard		
f _y	60	ksi	
E,	29000	ksi	
ε _{ty}	0.00206897	in/in	

3. Section

3.1. Shape and Properties


Туре	Circular		
Diameter	20 in		
Ag	314.159 in		
l _x	7853.98 in		
l _y r _x	7853.98 in		
r _x	5 in		
г _у	5 in		
r _y X₀ Y₀	0 in		
Y	0 in		

STRUCTUREPOINT - spColumn v10.00 (TM) Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1 E:\StructurePoint\spColumn\Circular Column Section.colx Page | 4 4/27/2022 5:15 PM

3.2. Section Figure

rigure 1. column sector

4. Reinforcement 4.1. Bar Set: ASTM A615

Bar	Diameter	Area	Bar	Diameter	Area	Bar	Diameter	Area
	in	in ²		in	in ²		in	in ²
#3	0.38	0.11	#4	0.50	0.20	#5	0.63	0.31
#6	0.75	0.44	#7	0.88	0.60	#8	1.00	0.79
#9	1.13	1.00	#10	1.27	1.27	#11	1.41	1.56
#14	1.69	2.25	#18	2.26	4.00			

4.2. Confinement and Factors

Confinement type	Spiral
For #10 bars or less	#3 ties
For larger bars	#4 ties
Capacity Reduction Factors	
Axial compression, (a)	0.85
Tension controlled ϕ , (b)	0.9
Compression controlled ϕ , (c)	0.75

4.3. Arrangement

Pattern	All sides equal		
Bar layout	Circular		
Cover to	Longitudal bars		
Clear cover	2 ir		
Bars	8 #10		

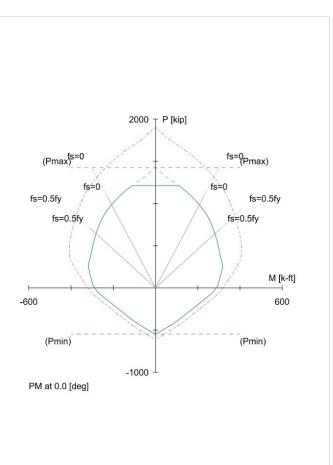
1

STRUCTUREPOINT - spColumn v10.00 (TM) Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1 E:\StructurePoint\spColumn\Circular Column Section.colx Page | **5** 4/27/2022 5:15 PM

Total steel area, A _s	10.16	in ²
Rho	3.23	%
Minimum clear spacing	4.37	in

5. Control Points

About Point	Р	X-Moment	Y-Moment	NA Depth	d, Depth	ε _t	φ
	kip	k-ft	k-ft	in	in		
X @ Max compression	1426.2	0.00	0.00	55.95	17.36	-0.00207	0.75000
X @ Allowable comp.	1212.3	110.60	0.00	21.50	17.36	-0.00058	0.75000
X @ $f_s = 0.0$	984.5	208.16	0.00	17.36	17.36	0.00000	0.75000
$X @ f_s = 0.5 f_y$	642.2	281.43	0.00	12.91	17.36	0.00103	0.75000
X @ Balanced point	389.2	305.80	0.00	10.28	17.36	0.00207	0.75000
X @ Tension control	26.6	295.31	0.00	6.46	17.36	0.00507	0.90000
X @ Pure bending	0.0	288.10	0.00	6.26	17.36	0.00533	0.90000
X @ Max tension	-548.6	0.00	0.00	0.00	17.36	9.99999	0.90000
-X @ Max compression	1426.2	0.00	0.00	55.95	17.36	-0.00207	0.75000
-X @ Allowable comp.	1212.3	-110.60	0.00	21.50	17.36	-0.00058	0.75000
-X @ f _s = 0.0	984.5	-208.16	0.00	17.36	17.36	0.00000	0.75000
$-X @ f_s = 0.5 f_v$	642.2	-281.43	0.00	12.91	17.36	0.00103	0.75000
-X @ Balanced point	389.2	-305.80	0.00	10.28	17.36	0.00207	0.75000
-X @ Tension control	26.6	-295.31	0.00	6.46	17.36	0.00507	0.90000
-X @ Pure bending	0.0	-288.10	0.00	6.26	17.36	0.00533	0.90000
-X @ Max tension	-548.6	0.00	0.00	0.00	17.36	9.99999	0.90000



STRUCTUREPOINT - spColumn v10.00 (TM) Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1 E:\StructurePoint\spColumn\Circular Column Section.colx Page | 6 4/27/2022 5:15 PM

6. Diagrams 6.1. PM at θ=0 [deg]

•	• •			
$\setminus \bullet$	• •	/		
20	.00 in diam.			
General Information				
Project	Pincheira Ex 10.18	.1		
Column	Interior			
Engineer	SP			
Code	ACI 318-19			
Bar Set	ASTM A615			
Units	English			
Run Option	Investigation			
Run Axis	X - axis			
Slenderness		Not Considered		
Column Type	Structural			
Capacity Method	Moment capacity			
Materials				
r _c	5	ksi		
E.	4030.51			
fv	60	ksi		
, E,	29000			
Section	0			
Type	Circular			
Diameter	20			
A _g	314.159			
l _x	7853.98			
l _y	7853.98	in ⁴		
Reinforcement				
Pattern	All sides equal	3		
Bar layout	Circular	8		
Cover to	Longitudal bars	8		
Clear cover	2	in		
Bars	8 #10	<u></u>		
Confinement type	Spiral			
	10.10	in ²		
Total steel area A				
	10.16			
Total steel area, A _s Rho Min. clear spacing	3.23	%		

Structure Point CONCRETE SOFTWARE SOLUTIONS

M_n, kip-ft

> 519 408

Table 7 - Comparison of Results (Balanced Point)						
Parameter	Reference	Hand	<u>spColumn</u>			
c, in.	10.28	10.28	10.28			
d5, in.	17.36	17.36	17.36			
ε_{s5} , in./in.	0.00207	0.00207	0.00207			
P _n , kip	519	519	519			

408

408

9. Summary and Comparison of Design Results

Table 8 - Comparison of Results						
Control Point		∮P _n , kip	φM _n , kip-ft			
Control Folin	Hand	Hand <u>spColumn</u>		<u>spColumn</u>		
Max compression	1426.2	1426.2	0.00	0.00		
Allowable compression	1212.3	1212.3				
$f_{s} = 0.0$	984.5	984.5	208.16	208.16		
$f_s = 0.5 f_y$	642.2	642.2	281.43	281.43		
Balanced point	389.2	389.2	305.80	305.80		
Tension control	26.6	26.6	295.31	295.31		
Pure bending	0.0	0.0	288.09	288.10		
Max tension	-548.6	-548.6	0.00	0.00		

In all of the hand calculations and the reference used illustrated above, the results are in precise agreement with the automated exact results obtained from the spColumn program.

10. Conclusions & Observations

The analysis of the reinforced concrete section performed by <u>spColumn</u> conforms to the provisions of the Strength Design Method and Unified Design Provisions with all conditions of strength satisfying the applicable conditions of equilibrium and strain compatibility.

In most building design calculations, such as the examples shown for <u>flat plate</u> or <u>flat slab</u> concrete floor systems, all building columns are subjected to M_x and M_y due to lateral forces and unbalanced moments from both directions of analysis. This requires an evaluation of the column P-M interaction diagram in two directions simultaneously (biaxial bending).

StucturePoint's <u>spColumn</u> program can also evaluate column sections in biaxial mode to produce the results shown in the following Figures for the column section in this example.

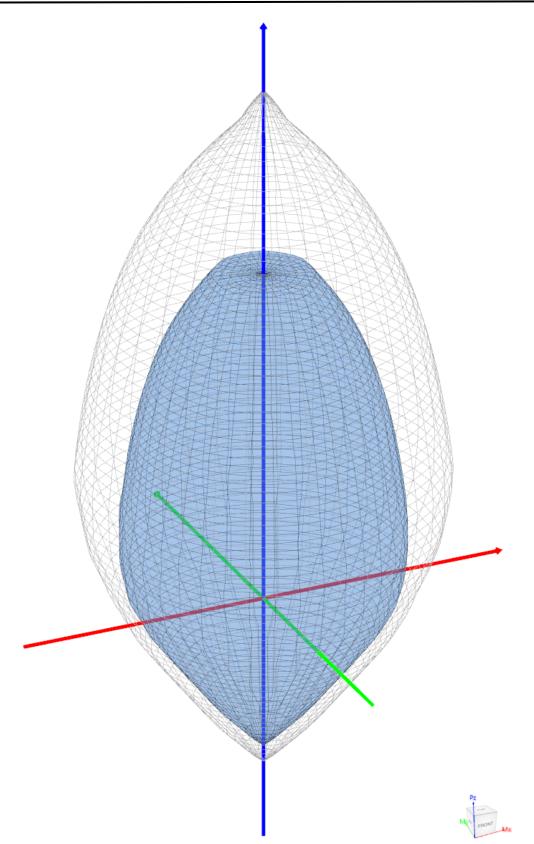


Figure 17 – Nominal & Design Interaction Diagram in Two Directions (Biaxial) (spColumn)

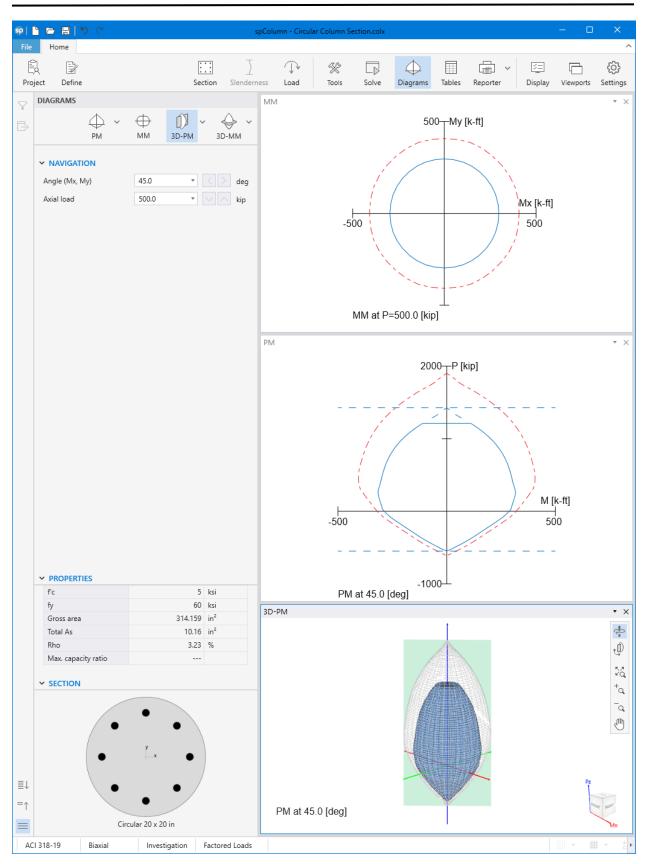


Figure 18 - Circular Column Interaction Diagram and 3D failure Surface Viewer (spColumn)

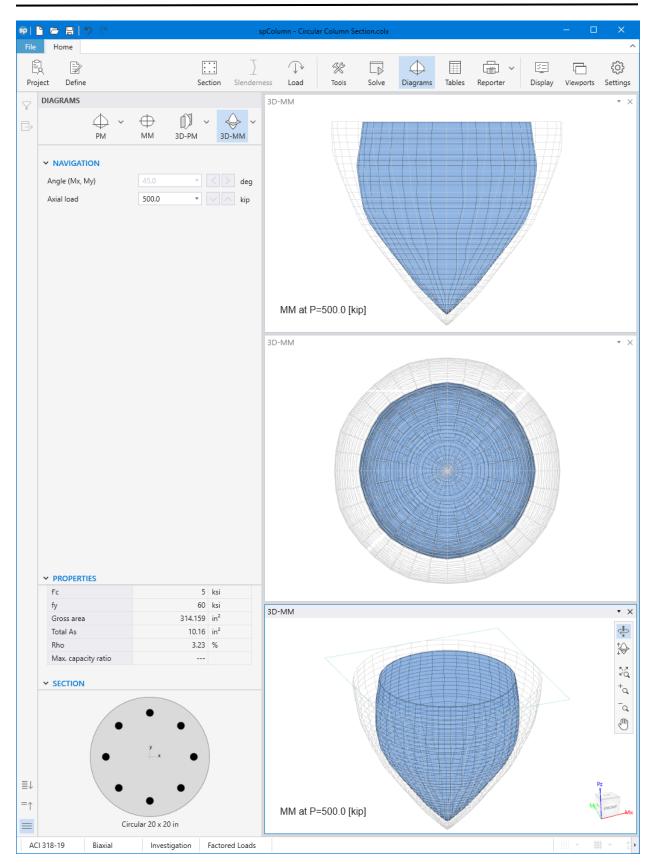


Figure 19 – Circular Column 3D Failure Surface with a Horizontal Plane Cut at P = 500 kip (spColumn)

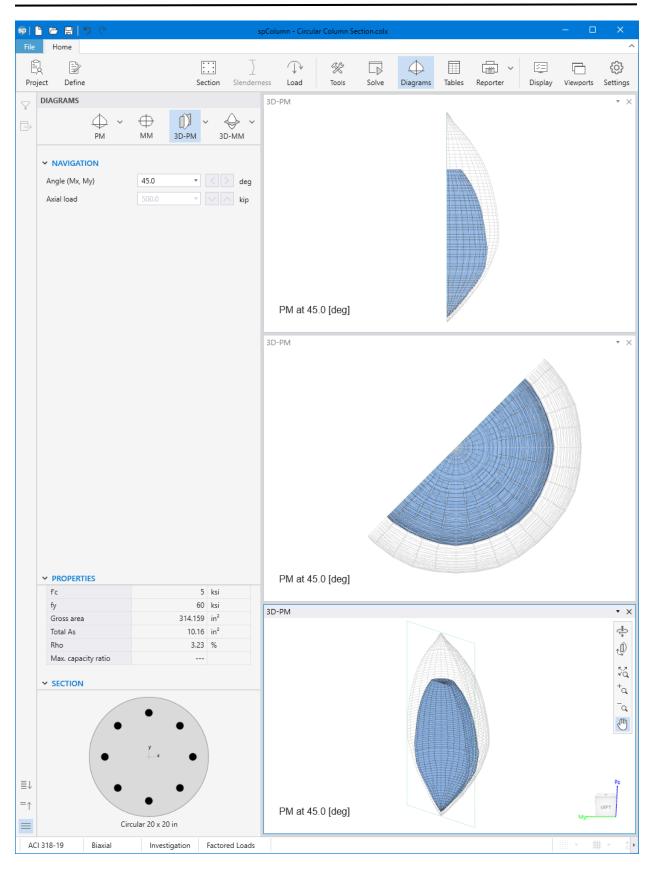


Figure 20 - Circular Column 3D Failure Surface with a Vertical Plane Cut at 45° (spColumn)