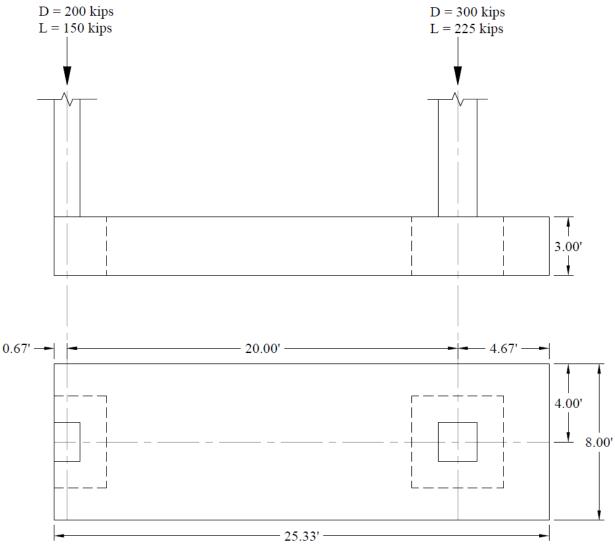


Reinforced Concrete Column Combined Footing Analysis and Design



Reinforced Concrete Column Combined Footing Analysis and Design

A combined footing was selected to support a 24 in. x 16 in. exterior column near a property line and a 24 in. x 24 in. Interior column. Each column carries the service dead and live loads shown in the following figure. The footing dimensions (25 ft 4 in. x 8 ft) were selected such that the centroid of the area in contact with soil coincides with the resultant of the column loads supported by the footing.

Check if the selected combined footing preliminary thickness of 36 in. is sufficient to resist two-way punching shear around the interior and exterior columns supported by the footing. Compare the calculated results with the values presented in the Reference and model results from <u>spMats</u> engineering software program from <u>StructurePoint</u>.

Contents

1.	Preliminary Member Sizing	4
	1.1. Footing Cross Sectional Dimensions	4
	1.2. Factored Net Pressure	4
2.	Two-Way (Punching) Shear Capacity Check	5
	2.1. Interior column	5
	2.2. Exterior column	7
3.	One-Way Shear Capacity Check	9
4.	Flexural Reinforcement Design	.10
	4.1. Negative Moment (Midspan)	.10
	4.2. Positive Moment (At Interior Column)	.11
5.	Combined Footing Analysis and Design – spMats Software	.11
6.	Design Results Comparison and Conclusions	.18

Structure Point

CONCRETE SOFTWARE SOLUTIONS

Code

Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)

Reference

Reinforced Concrete Mechanics and Design, 7th Edition, 2016, James Wight, Pearson, Example 15-5 spMats Engineering Software Program Manual v8.12, StucturePoint LLC., 2016

Design Data

 $f_c' = 3,000$ psi normal weight concrete

 $f_y = 60,000 \text{ psi}$

Preliminary footing thickness = 36 in.

Dead load, D = 200 kips for exterior column and 300 kips for interior column

Live load, L = 150 kips for exterior column and 225 kips for interior column

Soil density, $\gamma_s = 120 \text{ pcf}$

Concrete density, $\gamma_c = 150$ pcf for normal weight concrete

Allowable soil pressure, $q_a = 5000 \text{ psf}$

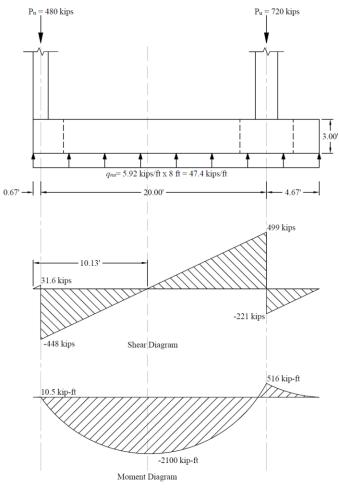
Footing length = 25 ft 4 in.

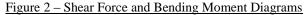
Footing width = 8 ft

Preliminary footing depth = 36 in. with effective depth, d = 32.5 in.

1. Preliminary Member Sizing

1.1. Footing Cross Sectional Dimensions

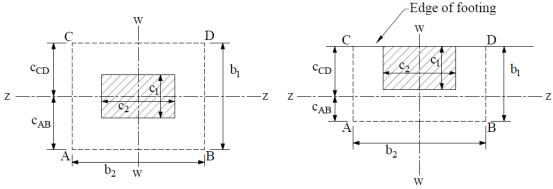

The footing dimensions (25 ft 4 in. $x \ 8 \ ft$) were selected by the reference such that the centroid of the area in contact with soil coincides with the resultant of the column loads supported by the footing to achieve uniform soil pressures.


1.2. Factored Net Pressure

The factored net pressure that will be used in the design of the concrete and reinforcement is equal to:

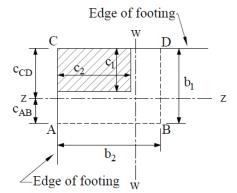
$$q_{nu} = \frac{P_u}{A_{footing}} = \frac{1.2 \times (200 + 300) + 1.6 \times (150 + 225)}{25.33 \times 8} = 5.92 \text{ ksf}$$

The following Figure shows the shear and moment diagrams for the combined footing based on the factored columns loads and the factored net pressure.



2. Two-Way (Punching) Shear Capacity Check

Two-way shear is critical on a rectangular section located at d/2 away from the face of the column as shown in the following Figures, Where:


 b_1 = Dimension of the critical section b_o measured in the direction of the span for which moments are determined in ACI 318, Chapter 8.

 b_2 = Dimension of the critical section b_o measured in the direction perpendicular to b_1 in ACI 318, Chapter 8 (see Figure 5).

Critical shear perimeter for interior column

Critical shear perimeter for exterior column

Critical shear perimeter for corner column

```
Figure 3 - Critical Shear Perimeters around Columns
```

2.1. Interior column

The factored shear force (V_u) at the critical section is computed as the reaction at the centroid of the critical section minus the force due to soil pressure acting within the critical section (d/2 away from column face).

$$V_u = 720 - 5.92 \left(\frac{56.5}{12}\right)^2 = 589 \text{ kips}$$

The factored unbalanced moment used for shear transfer, M_{unb} , is computed as the sum of the joint moments to the left and right. Moment of the vertical reaction with respect to the centroid of the critical section is also taken into account.

$$M_{unb} = 0$$
 kips-ft

$$b_1 = c_1 + d = 24 + 32.5 = 56.5$$
 in.

$$b_2 = c_2 + d = 24 + 32.5 = 56.5$$
 in.

For the interior column, the location of the centroidal axis z-z is:

$$c_{AB} = \frac{b_1}{2} = \frac{56.5}{2} = 28.25$$
 in.

The polar moment J_c of the shear perimeter is:

$$\begin{aligned} \mathbf{J}_{c} &= 2 \left(\frac{b_{1}d^{3}}{12} + \frac{db_{1}^{3}}{12} + (b_{1}d) \left(\frac{b_{1}}{2} - c_{AB} \right)^{2} \right) + 2b_{2}dc_{AB}^{2} \\ \mathbf{J}_{c} &= 2 \left(\frac{56.5 \times 32.5^{3}}{12} + \frac{32.5 \times 56.5^{3}}{12} + (56.5 \times 32.5)(0)^{2} \right) + 2 \times 56.5 \times 32.5 \times 28.25^{2} = 4,231,103 \text{ in.}^{4} \\ \gamma_{f} &= \frac{1}{1 + (2/3) \times \sqrt{b_{1}/b_{2}}} \\ \gamma_{f} &= \frac{1}{1 + (2/3) \times \sqrt{56.5/56.5}} = 0.600 \\ \gamma_{v} &= 1 - \gamma_{f} = 1 - 0.600 = 0.400 \\ \end{aligned}$$

The length of the critical perimeter for the exterior column:

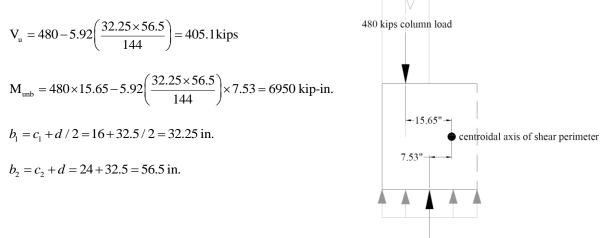
$$b_o = 4 \times 56.5 = 226$$
 in.

The two-way shear stress (v_u) can then be calculated as:

$$v_{u} = \frac{V_{u}}{b_{o} \times d} + \frac{\gamma_{v} M_{unb} (b_{1} - c_{AB})}{J_{c}}$$

$$v_{u} = \frac{589 \times 1000}{226 \times 32.5} + \frac{0.400 \times (0 \times 1000) \times (56.5 - 28.25)}{4,231,103} = 80.20 \text{ psi}$$

$$v_{c} = \min \left[4\lambda \sqrt{f_{c}}, \left(2 + \frac{4}{\beta}\right) \lambda \sqrt{f_{c}}, \left(\frac{\alpha_{s}d}{b_{o}} + 2\right) \lambda \sqrt{f_{c}} \right]$$
ACI 318-14 (Table 22.6.5.2)


$$\mathbf{v}_{c} = \min\left[4 \times 1 \times \sqrt{3000} , \left(2 + \frac{4}{1}\right) \times 1 \times \sqrt{3000} , \left(\frac{40 \times 32.5}{226} + 2\right) \times 1 \times \sqrt{3000}\right]$$

$$v_c = min[219.1, 328.6, 424.6] = 219.1 psi$$

$$\phi v_c = 0.75 \times 219.1 = 164.3 \text{ psi}$$

Since $\phi v_c > v_u$ at the critical section, the slab has adequate two-way shear strength at this joint.

2.2. Exterior column

74.9 kips soil force

For the exterior column, the location of the centroidal axis z-z is:

$$c_{AB} = \frac{\text{moment of area of the sides about AB}}{\text{area of the sides}} = \frac{2(32.5 \times 32.25 \times 32.25/2)}{2 \times 32.25 \times 32.5} = 8.60 \text{ in.}$$

The polar moment J_c of the shear perimeter is:

$$\begin{aligned} \mathbf{J}_{c} &= 2 \left(\frac{b_{1}d^{3}}{12} + \frac{db_{1}^{3}}{12} + (b_{1}d) \left(\frac{b_{1}}{2} - c_{AB} \right)^{2} \right) + b_{2}dc_{AB}^{2} \\ \mathbf{J}_{c} &= 2 \left(\frac{32.25 \times 32.5^{3}}{12} + \frac{32.5 \times 32.25^{3}}{12} + (32.25 \times 32.5) \left(\frac{32.25}{2} - 8.60 \right)^{2} \right) + 56.5 \times 32.5 \times 8.60^{2} = 620,710 \text{ in.}^{4} \\ \gamma_{f} &= \frac{1}{1 + (2/3) \times \sqrt{b_{1}/b_{2}}} \\ \gamma_{f} &= \frac{1}{1 + (2/3) \times \sqrt{32.25/56.5}} = 0.665 \\ \gamma_{v} &= 1 - \gamma_{f} = 1 - 0.665 = 0.335 \end{aligned}$$

The length of the critical perimeter for the exterior column:

$$b_o = 2 \times (32.25) + (56.5) = 121$$
 in.

The two-way shear stress (v_u) can then be calculated as:

$$\begin{aligned} \mathbf{v}_{u} &= \frac{\mathbf{V}_{u}}{\mathbf{b}_{o} \times \mathbf{d}} + \frac{\gamma_{v} \mathbf{M}_{unb} \left(b_{1} - c_{AB} \right)}{J_{c}} & \underline{ACI \ 318 - 14 \ (R.8.4.4.2.3)} \\ \mathbf{v}_{u} &= \frac{405.1 \times 1000}{121 \times 32.5} + \frac{0.335 \times (6950 \times 1000) \times (32.25 - 8.60)}{620,710} = 192 \text{ psi} \\ \mathbf{v}_{c} &= \min \left[4\lambda \sqrt{f_{c}}, \left(2 + \frac{4}{\beta} \right) \lambda \sqrt{f_{c}}, \left(\frac{\alpha_{s}d}{b_{o}} + 2 \right) \lambda \sqrt{f_{c}} \right] & \underline{ACI \ 318 - 14 \ (Table \ 22.6.5.2)} \\ \mathbf{v}_{c} &= \min \left[4 \times 1 \times \sqrt{3000}, \left(2 + \frac{4}{1} \right) \times 1 \times \sqrt{3000}, \left(\frac{30 \times 32.5}{121} + 2 \right) \times 1 \times \sqrt{3000} \right] \\ \mathbf{v}_{c} &= \min \left[219.1, \ 328.6, \ 550.9 \right] = 219.1 \text{ psi} \\ \phi v_{c} &= 0.75 \times 219.1 = 164 \text{ psi} \end{aligned}$$

Since $\phi v_c < v_u$ at the critical section, the slab does not have adequate two-way shear strength at this joint. Increase the footing thickness to 40 in. with effective depth, d = 36.5 in.

$$V_{u} = 480 - 5.92 \left(\frac{34.25 \times 60.5}{144}\right) = 394.8 \text{ kips}$$
$$M_{unb} = 480 \times 17.16 - 5.92 \left(\frac{34.25 \times 60.5}{144}\right) \times 8.04 = 7552 \text{ kip-in.}$$
$$b_{1} = c_{1} + d/2 = 16 + 36.5/2 = 34.25 \text{ in.}$$
$$b_{2} = c_{2} + d = 24 + 36.5 = 60.5 \text{ in.}$$

For the exterior column, the location of the centroidal axis z-z is:

$$c_{AB} = \frac{\text{moment of area of the sides about AB}}{\text{area of the sides}} = \frac{2(36.5 \times 34.25 \times 34.25 \times 2)}{2 \times 34.25 \times 36.5 + 60.5 \times 36.5} = 9.09 \text{ in.}$$

The polar moment J_c of the shear perimeter is:

$$J_{c} = 2\left(\frac{b_{1}d^{3}}{12} + \frac{db_{1}^{3}}{12} + (b_{1}d)\left(\frac{b_{1}}{2} - c_{AB}\right)^{2}\right) + b_{2}dc_{AB}^{2}$$
$$J_{c} = 2\left(\frac{34.25 \times 36.5^{3}}{12} + \frac{36.5 \times 34.25^{3}}{12} + (34.25 \times 36.5)\left(\frac{34.25}{2} - 9.09\right)^{2}\right) + 60.5 \times 36.5 \times 9.09^{2} = 865,875 \text{ in.}^{4}$$

$$\gamma_{f} = \frac{1}{1 + (2/3) \times \sqrt{b_{1}/b_{2}}}$$

$$\gamma_{f} = \frac{1}{1 + (2/3) \times \sqrt{34.25/60.5}} = 0.666$$

$$\gamma_{v} = 1 - \gamma_{f} = 1 - 0.666 = 0.334$$
ACI 318-14 (Eq. 8.4.4.2.2)
The length of the critical perimeter for the exterior column:
$$b_{a} = 2 \times (34.25) + (60.5) = 129 \text{ in.}$$

The two-way shear stress (v_u) can then be calculated as:

$$\begin{aligned} v_{u} &= \frac{V_{u}}{b_{o} \times d} + \frac{\gamma_{v} M_{unb} (b_{l} - c_{sb})}{J_{c}} \end{aligned} \qquad \underline{ACI 318-14 (R.8.4.4.2.3)} \\ v_{u} &= \frac{394.8 \times 1000}{129 \times 34.5} + \frac{0.334 \times (7552 \times 1000) \times (34.25 - 9.09)}{865,875} = 157 \text{ psi} \end{aligned}$$

$$v_{c} &= \min \bigg[4\lambda \sqrt{f_{c}}, \left(2 + \frac{4}{\beta} \right) \lambda \sqrt{f_{c}}, \left(\frac{\alpha_{s} d}{b_{o}} + 2 \right) \lambda \sqrt{f_{c}} \bigg] \qquad \underline{ACI 318-14 (R.8.4.4.2.3)} \\ v_{c} &= \min \bigg[4 \times 1 \times \sqrt{3000}, \left(2 + \frac{4}{l} \right) \times 1 \times \sqrt{3000}, \left(\frac{30 \times 32.5}{121} + 2 \right) \times 1 \times \sqrt{3000} \bigg] \end{aligned}$$

$$v_{c} &= \min \bigg[219.1, 328.6, 550.9 \bigg] = 219.1 \text{ psi} \end{aligned}$$

$$\phi_{v_{c}} &= 0.75 \times 219.1 = 164 \text{ psi} \end{aligned}$$

Since $\varphi v_c > v_u$ at the critical section, the slab has adequate two-way shear strength at this joint.

Use a combined footing 25 ft 4 in. by 8 ft in plan, 3 ft 4 in. thick, with effective depth 36.5 in.

3. One-Way Shear Capacity Check

The critical section for one-way shear is located at distance d from the face of the column. The one-way shear capacity of the foundation can be calculated using the following equation:

$$\phi V_c = \phi \times 2 \times \lambda \times \sqrt{f_c} \times b_w \times d$$
ACI 318-14 (22.5.5.1)

Where $\phi = 0.75$

This example focus on the calculation of two-way shear capacity for combined foundation. For more details on the one-way shear check for foundation check "<u>Reinforced Concrete Shear Wall Foundation (Strip Footing)</u> <u>Analysis and Design</u>" example.

ACI 318-14 (Table 21.2.1)

4. Flexural Reinforcement Design

4.1. Negative Moment (Midspan)

The critical section for moment is shown in the moment diagram in Figure 2. The design moment is:

 $M_u = 2100$ kip-ft

Use d = 36.5 in.

To determine the area of steel, assumptions have to be made whether the section is tension or compression controlled, and regarding the distance between the resultant compression and tension forces along the footing section (jd). In this example, tension-controlled section will be assumed so the reduction factor ϕ is equal to 0.9, and jd will be taken equal to 0.95d. The assumptions will be verified once the area of steel in finalized.

Assume $jd = 0.95 \times d = 34.68$ in.

$$A_s = \frac{M_u}{\varphi f_y jd} = \frac{2100 \times 12000}{0.9 \times 60000 \times 34.68} = 13.5 \text{ in.}^2$$

Recalculate 'a' for the actual $A_s = 13.5 \text{ in.}^2 \rightarrow a = \frac{A_s f_y}{0.85 f'_c b} = \frac{13.5 \times 60000}{0.85 \times 3000 \times 8 \times 12} = 3.30 \text{ in.}$

$$c = \frac{a}{\beta_1} = \frac{3.30}{0.85} = 3.88 \text{ in.}$$
$$\varepsilon_t = \left(\frac{0.003}{c}\right) d_t - 0.003 = \left(\frac{0.003}{3.88}\right) \times 36.5 - 0.003 = 0.0252 > 0.005$$

Therefore, the assumption that section is tension-controlled is valid.

$$A_s = \frac{M_u}{\phi f_v (d - a/2)} = \frac{2100 \times 12000}{0.9 \times 60000 \times (36.5 - 3.30/2)} = 13.4 \text{ in.}^2$$

Depending of the method of analysis the minimum area of reinforcement shall be calculated using beam provisions or one-way slab provisions. In this case both beam and slab provisions will be illustrated. For beam provisions:

$$A_{s,\min} = \text{Greater of} \left\{ \begin{array}{l} \frac{3\sqrt{f_c}}{f_y} \\ \frac{200}{f_y} \\ \frac{200}{60,000} \\ \frac{3\sqrt{3000}}{60,000} \\ \frac{200}{60,000} \end{array} \right\} \times (8 \times 12) \times 36.5 = \frac{200}{60,000} \times (8 \times 12) \times 36.5 = 11.7 \text{ in.}^2 < 13.4 \text{ in.}^2$$

ACI 318-14 (7.6.1.1)

Use 17-#8 top bars with $A_s = 13.43$ in.² at midspan.

For slab provisions:

$$A_{s,\min} = \text{Greater of} \left\{ \frac{0.0018 \times 60,000}{f} \right\} \times b \times h$$

$$0.0014$$

 $A_{s.min} = 0.0018 \times (8 \times 12) \times 40 = 6.91 \text{ in.}^2 < 13.4 \text{ in.}^2$

Use 17-#8 top bars with $A_s = 13.43$ in.² at midspan.

In spMats, the slab provisions for minimum reinforcement can be used since the finite element analysis calculates the required area of steel in both the x (longitudinal) and y (transverse) direction independently.

4.2. Positive Moment (At Interior Column)

For beam provisions:

Repeating the same process at Section 4.1, $A_s = 3.3$ in.² << $A_{s,min} = 11.7$ in.². Thus, use 15-#8 bottom bars with $A_s = 11.9$ in.² at the interior column.

For slab provisions:

Repeating the same process at Section 4.1, $A_s = 3.3 \text{ in.}^2 \ll A_{s,min} = 6.91 \text{ in.}^2$. Thus, use 9-#8 bottom bars with $A_s = 7.11 \text{ in.}^2$ at the interior column.

Note code provisions permit the use of reinforcement of one third more than is required by analysis in some cases.

5. Combined Footing Analysis and Design – spMats Software

<u>spMats</u> uses the Finite Element Method for the structural modeling and analysis of reinforced concrete slab systems or mat foundations subject to static loading conditions.

The slab, mat, or footing is idealized as a mesh of rectangular elements interconnected at the corner nodes. The same mesh applies to the underlying soil with the soil stiffness concentrated at the nodes. Slabs of irregular geometry can be idealized to conform to geometry with rectangular boundaries. Even though slab and soil properties can vary between elements, they are assumed uniform within each element.

For illustration and comparison purposes, the following figures provide a sample of the input modules and results obtained from <u>spMats</u> models created for the reinforced concrete combined footing at a property line in this example. Two models were created for this example (the first model for the footing with 36 in. thickness that failed in punching shear check around the exterior column, and the second model for the same footing with a revised thickness of 40 in.).

Loads - Concentrated Insert Delete Modify Import	Concentrated
No Label Case P2 (kips) Mx (k-ft) My (k-ft) 1 D1 A · DEAD -200.0000 0.0000 0.0000 2 D2 A · DEAD -300.0000 0.0000 0.0000 3 L1 B · LIVE -150.0000 0.0000 0.0000 4 L2 B · LIVE -225.0000 0.0000 0.0000	
	Insert Delete Modify Import No Label Case P2 (kips) Mx (k-ft) My (k-ft) 1 D1 A · DEAD -200.0000 0.0000 0.0000 2 D2 A · DEAD -300.0000 0.0000 0.0000 3 L1 B · LIVE -150.0000 0.0000 0.0000

Figure 4 – Defining Service Loads (spMats)

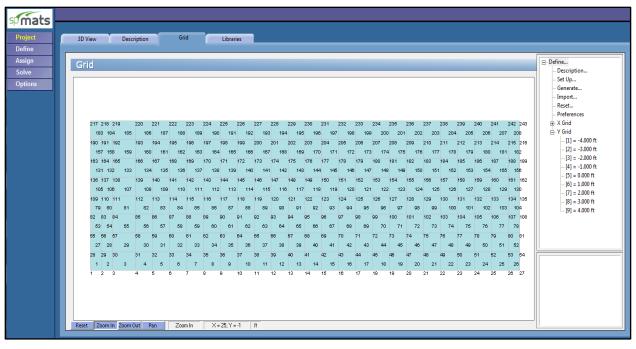

Project Define Assign Solve	Column Dimensions	-Thickness Mat40	
Options	C16×24 Rectangle ▼ Label Type C16×24 Rectangle	24.0000 24.0000	Add helete fodify Add - Clay - Clay - Ca - Ca

Figure 5 – Defining Columns Dimensions (spMats)

CONCRETE SOFTWARE SOLUTIONS

Structure Point

CONCRETE SOFTWARE SOLUTIONS

STRUCTUREPOINT - spMats v8.12 (TM) Licensed to: StructurePoint, License ID: 66184-1055149-4-2C6B6-2C6B6 C:\TSDA\Combined Footing\Combined Footing_36.ma8 B6 - Punching Shear Around Columns (Ultimate Load Combinations): _____ Units --> Applied Shear Force Vu (kips), Applied Moments Mux, Muy (k-ft) Factored Shear Stress vu (psi), Factored Shear Resistance Phi*vc (psi) Concrete Strength f'c (psi), distances X_Offset, Y_Offset (ft) Average depth (in), Dimensions Bx, By (ft) Area (in^2), Jxx, Jyy, Jxy (in^4) Geometry of Resisting Area Column Average Dimensions Centroid Centroid 109 C16X24Edge32.502.694.711.97-0.00130 C24X24Inner32.504.714.71-0.00-0.00 Properties of Resisting Area _____ Node Column Label Area Jxx Jyy Jxy _____ 109 C16X243932.502323047.50620710.000.00130 C24X247345.004231102.504231102.500.00 Ultimate Load Combination: U1 _____ Factored Applied Forces: _____ Node Column Label Vu Mux Gamma_X Muy Gamma_Y 109 C16X24-480.00-0.00.469-316.90.335130 C24X24-720.00-0.00.4000.00.400 Factored Stress and Capacity: _____ _Critical Point__
 109 C16X24
 -266.99
 3000.00
 164.32
 0.00
 2.35 Unsafe

 130 C24X24
 -98.03
 3000.00
 164.32
 2.35
 2.35 Safe

B7 - Punching Shear Around Piles (Ultimate Load Combinations):

* No piles assigned

Figure 7 - Punching Shear Output 36 in. Strip Footing (spMats)

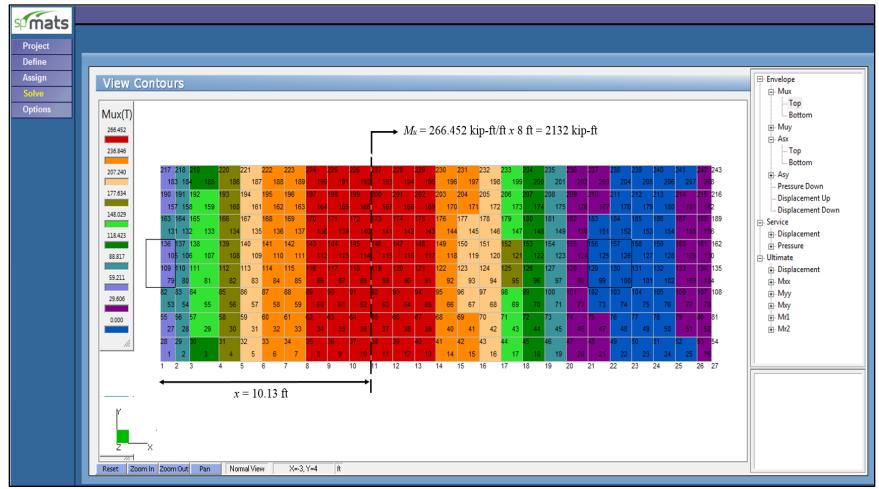


Figure 8 – Ultimate Moment Contour 40 in. Footing (spMats)

spimats

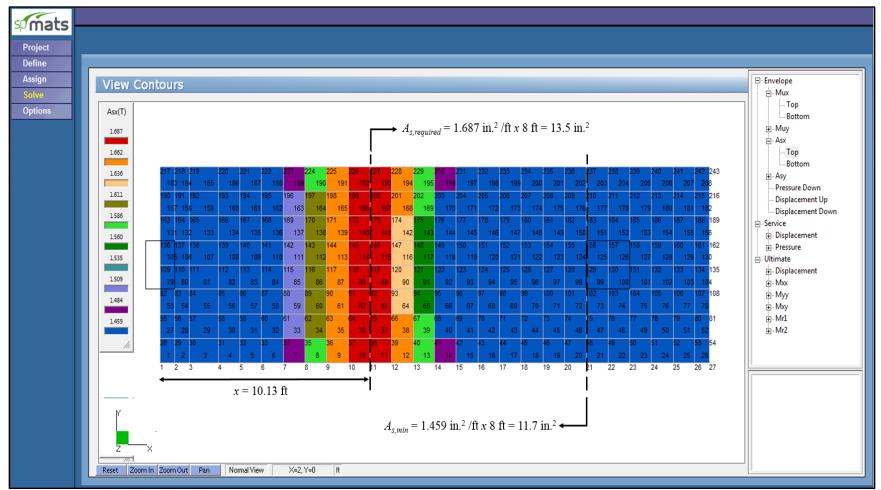


Figure 9 – Required Reinforcement Contour 40 in. Footing (spMats)

spimats

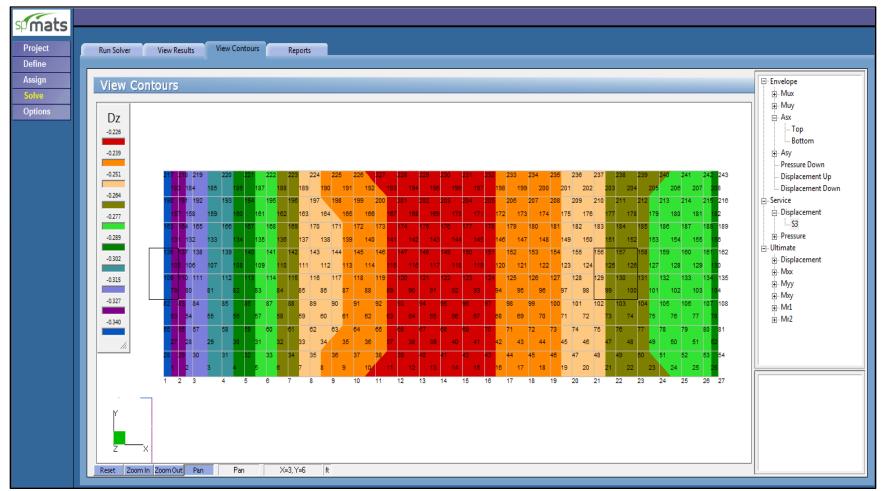


Figure 10 – Vertical Displacement Contour 40 in. Footing (spMats)

spimats

Structure Point

Table 1 - Comparison of Two-Way (Punching) Shear Check Results for Footing with 36 in. Thickness									
C	b ₁ , in.			b ₂ , in.			c _{AB} , in.		
Support	Reference	Hand	<u>spMats</u>	Reference	Hand	<u>spMats</u>	Reference	Hand	<u>spMats</u>
Exterior	32.25	32.25	32.25	56.5	56.5	56.5	8.6	8.6	8.6
Interior	56.5	56.5	56.5	56.5	56.5	56.5	28.25	28.25	28.25
C	J _c , in. ⁴			γv			V _u , kips		
Support	Reference	Hand	<u>spMats</u>	Reference	Hand	<u>spMats</u>	Reference	Hand	<u>spMats</u>
Exterior	621,000	620,710	620,710	0.335	0.335	0.335	480	480	480
Interior		4,231,103	4,231,103		0.4	0.4	720	720	720
C	M _{u,punching} , kips-ft			v _u , psi			φv _c , psi		
Support	Reference	Hand	<u>spMats</u>	Reference	Hand	<u>spMats</u>	Reference	Hand	<u>spMats</u>
Exterior	579	579	943	192	192	267	164	164.3	164.3
Interior	0	0	0	80.2	80.2	98	164	164.3	164.3

6. Design Results Comparison and Conclusions

Table 2 - Flexural Reinforcement Comparison - Longitudinal Direction										
	M _u , kips-ft		A _{s,required} , in. ²			$A_{s,min}$, in. ²				
Reference	Hand	<u>spMats</u>	Reference	Hand	<u>spMats</u>	Reference	Hand [*]	<u>spMats[*]</u>		
2100	2100	2132	13.5	13.4	13.5	11.7	11.7	11.7		
[*] Using beam provisions to find A _{s,min} to be consistent with Reference approach. However, engineering judgment need to be taken to decide if the combined footing need to be treated as a one-way slab or beam.										

The results of all the hand calculations and the reference used illustrated above are in agreement with the automated exact results obtained from the <u>spMats</u> program except for v_u values.

In <u>spMats</u>, the factored unbalanced moment used for shear transfer, M_{unb} , is calculated as the sum of the moments at finite element nodes within the critical section (resisting zone). Moment of the vertical reaction with respect to the centroid of the critical section is also taken into account. The reference take into account only the moments of the vertical reaction and soil pressure with respect to the centroid of the critical section.