

Reinforced Concrete Shear Wall Analysis and Design (ACI 318-14)

Reinforced Concrete Shear Wall Analysis and Design (ACI 318-14)

A structural reinforced concrete shear wall in a 5-story building provides lateral and gravity load resistance for the applied load as shown in the figure below. Shear wall section and assumed reinforcement is investigated after analysis to verify suitability for the applied loads.

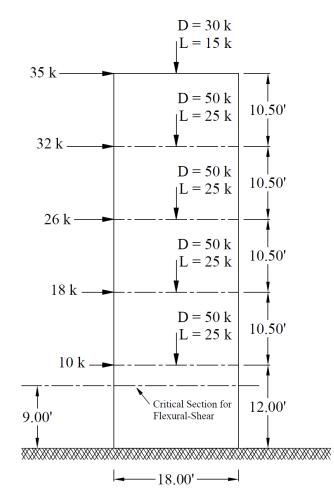


Figure 1 - Reinforced Concrete Shear Wall Geometry and Loading

Contents

1.	Minimum Reinforcement Requirements (Reinforcement Percentage and Spacing)	2
	1.1. Horizontal Reinforcement Check	2
	1.2. Vertical Reinforcement Check	2
2.	Neutral Axis Depth Determination	3
3.	Moment Capacity Check	4
4.	Shear Capacity Check	5
5.	Shear Wall Analysis and Design – spWall Software	7
6.	Design Results Comparison and Conclusions	.33
7.	Appendix – Commentary on Reinforcement Arrangement Impact on Wall Capacity	.34
	7.1. Discussion	.34
	7.2. Conclusions and Observations	.42

Code

Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)

Reference

- Reinforced Concrete Mechanics and Design, 7th Edition, 2016, James Wight, Pearson, Example 18-2
- spWall Engineering Software Program Manual v10.00, STRUCTUREPOINT, 2022

Design Data

 $f_c' = 4,000 \text{ psi normal weight concrete}$ $f_y = 60,000 \text{ psi}$ Slab thickness = 7 in. Wall thickness = 10 in. Wall length = 18 ft Vertical reinforcement: #5 bars at 18 in. on centers in each face (A_{s, vertical} = #5 @ 18 in.) Horizontal reinforcement: #4 bars at 16 in. on centers in each face (A_{s, horizontal} = #4 @ 16 in.)

1. Minimum Reinforcement Requirements (Reinforcement Percentage and Spacing)

1.1. Horizontal Reinforcement Check

$$\rho_{t} = \frac{A_{v,horizontal}}{h \times s_{2}} = \frac{2 \times 0.2}{10 \times 16} = 0.0025$$

$$\rho_{t} = 0.0025 \ge \rho_{t,\min} = 0.0025 \text{ (o.k)}$$

$$\frac{ACI 318-14 (11.6.2(b))}{ACI 318-14 (11.6.2(b))}$$

$$s_{t,\max} = \text{smallest of} \begin{cases} 3 \times h \\ 18 \text{ in.} \\ l_{w} / 5 \end{cases} = \text{smallest of} \begin{cases} 3 \times 10 \\ 18 \text{ in.} \\ 18 / 5 \end{cases} = \text{smallest of} \begin{cases} 30 \text{ in.} \\ 18 \text{ in.} \\ 43.2 \text{ in.} \end{cases} = 18 \text{ in.}$$

$$\frac{ACI 318-14 (11.7.3.1)}{ACI 318-14 (11.7.3.1)}$$

$$s_{t, provided} = 16 \text{ in.} < s_{t, \text{max}} = 18 \text{ in.} (\text{o.k})$$

1.2. Vertical Reinforcement Check

$$\rho_l = \frac{A_{v,vertical}}{h \times s_1} = \frac{2 \times 0.31}{10 \times 18} = 0.00344$$
ACI 318-14 (2.2)

$$\rho_{l,\min} = \text{greater of} \begin{cases} 0.0025 + 0.5 \left(2.5 - \frac{h_w}{l_w} \right) (\rho_t - 0.0025) \\ 0.0025 \end{cases}$$
 ACI 318-14 (11.6.2(a))

$$\rho_{l,\min} = \text{greater of} \left\{ \begin{array}{l} 0.0025 + 0.5 \left(2.5 - \frac{h_w}{l_w} \right) (0.0025 - 0.0025) \\ 0.0025 \end{array} \right\} = \text{greater of} \left\{ \begin{array}{l} 0.0025 \\ 0.0025 \end{array} \right\} = 0.0025$$

$$\rho_{l} = 0.00344 \ge \rho_{l,\min} = 0.0025 \text{ (o.k)} \qquad \underline{ACI 318-14 (11.6.2(a))}$$

$$s_{l,\max} = \text{smallest of} \begin{cases} 3 \times h \\ 18 \text{ in.} \\ l_{w} / 3 \end{cases} = \text{smallest of} \begin{cases} 3 \times 10 \\ 18 \text{ in.} \\ 18 / 3 \end{cases} = \text{smallest of} \begin{cases} 30 \text{ in.} \\ 18 \text{ in.} \\ 72 \text{ in.} \end{cases} = 18 \text{ in.} \qquad \underline{ACI 318-14 (11.7.2.1)} \end{cases}$$

 $s_{l, provided} = 18 \text{ in.} \le s_{l, \text{max}} = 18 \text{ in.} (\text{o.k})$

CONCRETE SOFTWARE SOLUTIONS

2. Neutral Axis Depth Determination

$$M_{base} = 35 \times 54 + 32 \times 43.5 + 26 \times 33 + 18 \times 22.5 + 10 \times 12 = 4,670$$
 kip-ft

The load factor for strength-level wind force = 1.0

$$\begin{split} M_{u,bese} &= 1.0 \times 4,670 = 4,670 \text{ kip-ft} \\ N_u &= 0.9 \times N_D = 0.9 \times (30 + 50 + 50 + 50) = 207 \text{ kips} \\ \beta_1 &= 0.85 - \frac{0.05 \times (f_c' - 4000)}{1000} = 0.85 - \frac{0.05 \times (4000 - 4000)}{1000} = 0.85 \\ \omega &= \rho_l \frac{f_y}{f_c'} = 0.00344 \times \frac{60}{4} = 0.0516 \\ \alpha &= \frac{N_u}{h \times l_w \times f_c'} = \frac{207}{10 \times 216 \times 4} = 0.0240 \\ c &= \left(\frac{\alpha + \omega}{0.85 \beta_1 + 2\omega}\right) l_w = \left(\frac{0.0240 + 0.0516}{0.85 \times 0.85 + 2 \times 0.0516}\right) \times 216 = 19.8 \text{ in.} \\ \text{Assume the effective flexural depth } (d) \text{ is approximately equal to } 0.8l_w = 173 \text{ in.} \\ \underline{ACI 318-14 (I1.5.4.2)} \\ \end{array}$$

c = 19.8 in. $\ll d = 173$ in. \rightarrow Tension controlled section

$$\therefore \phi = 0.90$$

ACI 318-14 (Table 21.2.2)

3. Moment Capacity Check

$$A_{st} = A_{v,vertical} \frac{l_w}{s_{l,provided}} = 2 \times 0.31 \times \frac{216}{18} = 7.44 \text{ in.}^4$$
$$T = A_{st} \times f_y \left(\frac{l_w - c}{l_w}\right) = 7.44 \times 60 \times \left(\frac{216 - 19.8}{216}\right) = 405 \text{ kips}$$

Taking into account the applied axial force and summing force moments about the compression force (C), the moment capacity can be computed as follows:

$$M_{n} = T\left(\frac{l_{w}}{2}\right) + N_{u}\left(\frac{l_{w} - c}{2}\right) = 405\left(\frac{216}{2}\right) + 207\left(\frac{216 - 19.8}{2}\right) = 64,000 \text{ kips-in.} = 5,340 \text{ kips-ft}$$

$$\phi M_n = 0.9 \times 5,340 = 4,800$$
 kips-ft > $M_u = 4,670$ kips-ft

Since ϕM_n is greater than M_u , the wall has adequate flexural strength.

To further confirm the moment capacity is adequate with detailed consideration for the axial compression, an interaction diagram using <u>spColumn</u> can be created easily as shown below for the wall section. The location of the neutral axis, maximum tensile strain, and the phi factor can all be also verified from the <u>spColumn</u> model results output parameters. As can be seen from the interaction diagram a comprehensive view of the wall behavior for any combination of axial force and applied moment.

For a factored axial and moment of 207 kips and 4670 kip-ft the interaction diagram shows a capacity factor of 1.139 ($\phi M_n = 5,320$ kip-ft for $\phi P_n = P_u$), see Figures 12 and 13.

4. Shear Capacity Check

 $V_u = 35 + 32 + 26 + 18 + 10 = 121$ kips

$$V_{c} = \text{lesser of} \begin{cases} 3.3 \times \lambda \times \sqrt{f_{c}'} \times h \times d + \frac{N_{u} \times d}{4 \times l_{w}} & \text{(d)} \\ \\ 0.6 \times \lambda \times \sqrt{f_{c}'} + \frac{l_{w} \left(1.25 \times \lambda \times \sqrt{f_{c}'} + 0.2 \frac{N_{u}}{l_{w} \times h}\right)}{\frac{M_{u}}{V_{u}} - \frac{l_{w}}{2}} \end{bmatrix} \times h \times d & \text{(e)} \end{cases}$$

ACI 318-14 (Table 11.5.4.6)

$$V_{c} = \text{lesser of} \begin{cases} 3.3 \times 1.0 \times \sqrt{4,000} \times 10 \times 173 + \frac{207,000 \times 173}{4 \times 216} \\ \\ 0.6 \times 1.0 \times \sqrt{4,000} + \frac{216 \times \left(1.25 \times 1.0 \times \sqrt{4,000} + 0.2\frac{207,000}{216 \times 10}\right)}{\frac{3,580}{121} - \frac{216}{2}} \end{bmatrix} \times 10 \times 173 \end{cases}$$

$$V_{c} = \text{lesser of} \begin{cases} 402 \text{ kips} \\ 214 \text{ kips} \end{cases} = 214 \text{ kips} \end{cases}$$

Where M_u/V_u ratio used in equation (e) was calculated at the critical section above the base of the wall (see Figure 1).

distance to the critical section = smaller of
$$\begin{cases} \frac{l_w}{2} \\ \frac{h_w}{2} \\ \text{one story height} \end{cases}$$
distance to the critical section = smaller of
$$\begin{cases} \frac{18}{2} = 9 \text{ ft} \\ \frac{54}{2} = 27 \text{ ft} \\ 12 \text{ ft} \end{cases} = 9 \text{ ft}$$

ACI 318-14 (11.5.4.7)

The factored moment at the ultimate section is equals to:

$$M_u = M_{u,base} - V_{u,base} \times \frac{l_w}{2} = 4,670 - 121 \times 9 = 3,580 \text{ kip-ft}$$

 $\phi V_c = \phi \times V_c = 0.75 \times 214 = 161 \text{ kips}$

Where $\phi = 0.75$ for shear

ACI 318-14 (Table 21.2.1)

 $\phi V_c = 161 \text{ kips} > V_u = 121 \text{ kips}$

Thus, it is not required to calculate the additional shear strength provided by the horizontal reinforcement (V_s)

 $0.5 \times \phi V_c = 80.5 \text{ kips} < V_u = 121 \text{ kips}$

Since $0.5\phi V_c$ is less than V_u , ρ_l shall be at least the greater of Equation 11.6.2 in the Code and 0.0025 but need not to exceed ρ_t required by Equation 11.5.4.8. and ρ_t shall be at least 0.0025. **ACI 318-14 (11.6.2)**

(Those requirements were checked in step 1).

CONCRETE SOFTWARE SOLUTIONS

5. Shear Wall Analysis and Design – spWall Software

<u>spWall</u> is a program for the analysis and design of reinforced concrete shear walls, tilt-up walls, precast walls and Insulate Concrete Form (ICF) walls. It uses a graphical interface that enables the user to easily generate complex wall models. Graphical user interface is provided for:

- Wall geometry (including any number of openings and stiffeners)
- Material properties including cracking coefficients
- Wall loads (point, line, and area loads)
- Support conditions (including translational and rotational spring supports)

spWall uses the Finite Element Method for the structural modeling, analysis, and design of slender and nonslender reinforced concrete walls subject to static loading conditions. The wall is idealized as a mesh of rectangular plate elements and straight-line stiffener elements. Walls of irregular geometry are idealized to conform to geometry with rectangular boundaries. Plate and stiffener properties can vary from one element to another but are assumed by the program to be uniform within each element.

Six degrees of freedom exist at each node: three translations and three rotations relating to the three Cartesian axes. An external load can exist in the direction of each of the degrees of freedom. Sufficient number of nodal degrees of freedom should be restrained in order to achieve stability of the model. The program assembles the global stiffness matrix and load vectors for the finite element model. Then, it solves the equilibrium equations to obtain deflections and rotations at each node. Finally, the program calculates the internal forces and internal moments in each element. At the user's option, the program can perform second order analysis. In this case, the program takes into account the effect of in-plane forces on the out-of-plane deflection with any number of openings and stiffeners.

After the Finite Element Analysis (FEA) is completed in <u>spWall</u>, the required flexural reinforcement is computed based on the selected design standard (ACI 318-14 is used in this example), and the user can specify one or two layers of shear wall reinforcement. In stiffeners and boundary elements, <u>spWall</u> calculates the required shear and torsion steel reinforcement. Shear wall concrete strength (in-plane and out-of-plane) is calculated for the applied loads and compared with the code permissible shear capacity.

For illustration and comparison purposes, the following figures provide a sample of the input modules and the FEA results obtained from an spWall model created for the reinforced concrete shear wall in this example.

99 🖿 🗁 📰 👘 🤇	spWall - Shear Wa	ill.walx			- 0	×^
E D D D Project Define Grid Select Plates	-l- Nodes Restraints Loa	P	Results Table		Display Viewports	ැබූ Settings
PROJECT	Model View (Load Case:		nesares habi	es neponei	ospidy relipoid	• ×
Design code ACI 318-14 🔹						ŵ
Unit system English * >		\bigcirc	(y ^z × ₽
		A	(в) 18 00		54.
		- 	9 00	► <u>-</u> 900		Q
	(5)					+a _a
						Ð
		10.50				Ø
		10				
	(4)-			+		
		10.50				
	(3)-	- +		 		
	Ŭ					
	g	10.50				
	54 00	2		W10		
	(2)-					
✓ DESCRIPTION		0				
Project Name Shear Wall		1050				
Project Description						
Reinforced Concrete Mechanics and Design, 7th Edition, 2016, James Wight, Pearson, Example 18-2	1-	- +		+		
		12 00				
		12				
Project Date 11/1/2022		У				
Project Time 4:00 PM (D)	0	ŧ. ŧ. —	X			
≣↓ =↑ → DISPLAY OPTIONS					FR	ONT
Load Case A - D • C > E						-
ACI 318-14			· · ·	ŧ• <mark>ta</mark> • ⊾	🗩 🔹 Units:	English 🔻

Figure 2 – spWall Interface

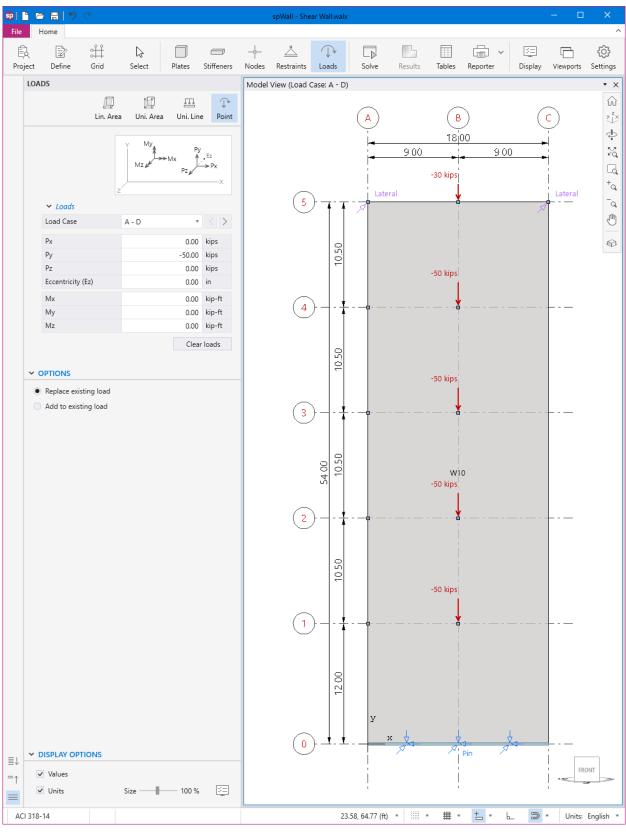


Figure 3 - Assigning Dead Loads for Shear Wall (spWall)

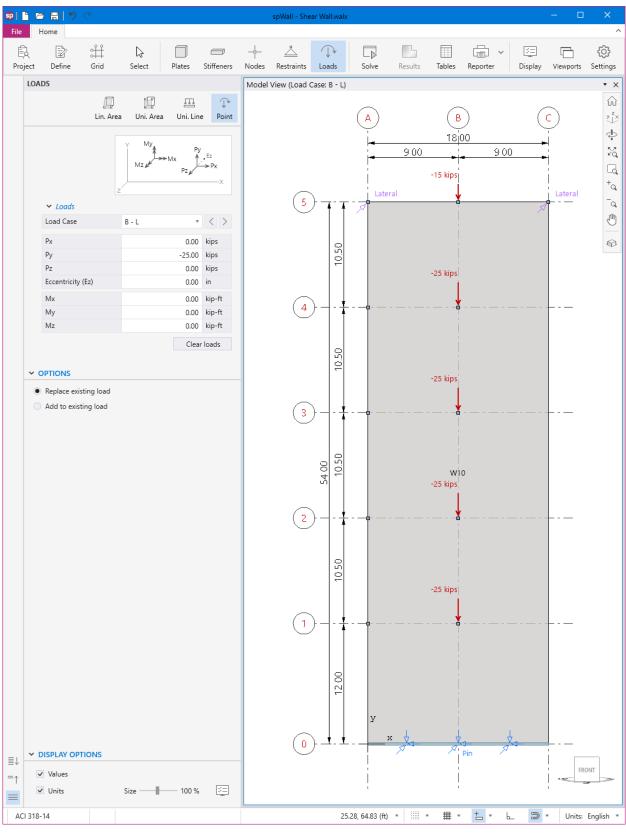


Figure 4 - Assigning Live Loads for Shear Wall (spWall)

91 🖿 🗁 🗒 🖹 🏷 😋	spWall - Shear Wall.walx		– 🗆 X
File Home			^
E E Image: Constraint of the section		F	porter Display Viewports Settings
LOADS	Model View (Load Case: C - W)		• x
			ŵ
Lin. Area Uni. Area Uni. Line Point			(c) 4
My Py Er		A) (B) L 18 00	
Mz Mx Pz Pz Px		900	900
z	(5)	Lateral	Lateral +Q
✓ Loads Load Case C - W ✓ < >			
Px 35.00 kips			
Py 0.00 kips	10.50		¥
Pz 0.00 kips Eccentricity (Ez) 0.00 in			
Mx 0.00 kip-ft		•	
My 0.00 kip-ft Mz 0.00 kip-ft			
Clear loads			
	10.50		
Replace existing load			
Add to existing load	3	□> -26-kips	
	- 0		
	54 00 10.50	W10	
	2	• → 18-kips — - —	
	20		
	10		
		•→ 10 kips- — - — - — - — - —	
	8		
	12 00		
		У	
		<u>x 4</u>	
		A Pin	
			FRONT
ACI 318-14	23.23, 6		📩 🔹 🛓 ⊃ 🔹 Units: English 🔹

Figure 5 – Assigning Wind Loads for Shear Wall (spWall)

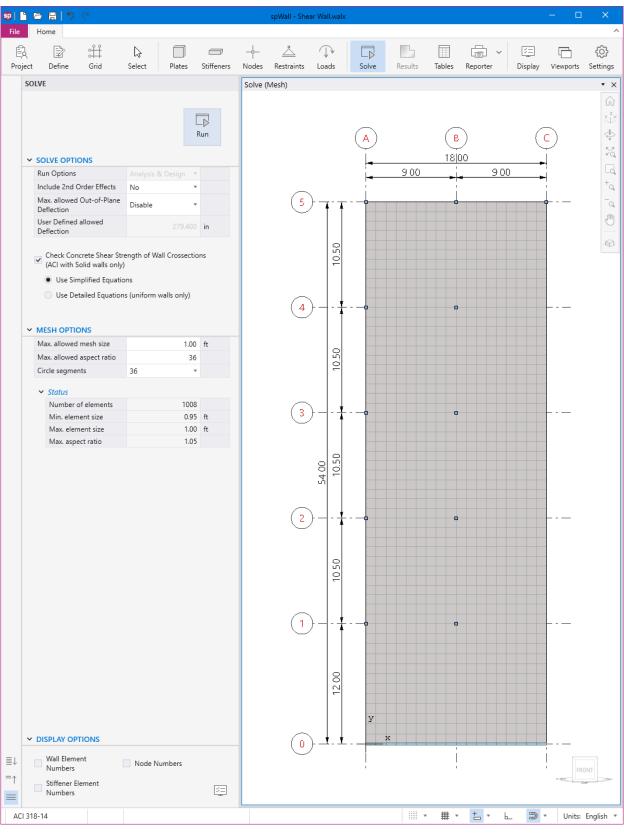


Figure 6 - Solve and Mesh Options (spWall)

			C ⁴					spWall - She	ar Wall.wal	x							- 0	×
File		Home	÷	2					\bigcirc						~	<u>1</u>	F	^ بې
Proj		Define	Grid	Select	Plates	Stiffeners		Restraints	Loads		Solve	Results	Tables	Reporte			Viewports	
	RES	ULTS					Ultima	te - Plate Int	ernal Force	es - N	lyy - 0.	9D+1.0W (k	lf)					• ×
					N_J			.924										ŵ
	>	Envelope			Diagrams	Contours		.062 .200										y ↓ ↓ ↓
	> :	Service						.338										54
		Ultimate > Displacem	ient				- 25	.476										
		✓ Plate Inter						.614										+ _Q
		> Nxx ❤ Nyy						.248 3.110										-a
			D+1.0W					5.972										Ð
		> Nxy > Mxx						8.834										
		> Myy						1.696 4.558										
		> Mxy						7.420										
								0.282		-								
							-1	03.144										
										+								
	~ 1	DISPLAY OPT	IONS															
		Elements							Y									
≣↓		 Elements Node Numl 							-	X							FR	ONT
=↑		Element Nu			308												• at	
	1.246	14								0.22	53 03 <i>"</i>	a		+	1			Frank 1
AC	I 318-	- 14								u.22,	52.03 (f	t) =	* # *	* 🗄 *	Ŀ.	3	• Units:	English *

Figure 7 – Factored Axial Forces Contour Normal to Shear Wall Cross-Section (spWall)

File Home Additional and a second a
RESULTS Service - Displacement - Dx - 1.00+0.5L+0.7W (in) • x > Envelope 0.165 0.133 • Service - Displacement 0.165 0.134 0.141 0.106 0.141 0.100 - 0.5L - 0.7W 0.106 0.141 0.100 - 0.5L - 0.7W 0.002 0.071 0.002 0.071 0.059 0.071 0.035 0.024 0.012 0.002 0.012 0.000 0.012 0.000
 > Envelope > Service > Disgrams Contours 0.165 0.133 0.141 0.130 0.118 0.106 0.094 0.082 0.071 0.059 0.071 0.059 0.047 0.059 0.047 0.059 0.047 0.035 0.044 0.024 0.012 0.000 0.000 Itimate 0.012 0.000 0.012 0.000 0.012 0.000 0.014 0.015 0.016 0.016 0.024 0.012 0.000 Itimate Itimate Itimate Itimate Itimate Itimate
VISPLAY OPTIONS Bements Undeformed Shape Bements Undeformed Shape Bements Undeformed Shape Bements Scale 208 So Scale Scale

Figure 8 – Shear Wall Lateral Displacement Contour (spWall)

	∃ 📙 🔊 Home	Ca.					spWall - She	ar Wall.walx						- 🗆	
h ject	Define	∰ Grid	↓ Select	Plates	Stiffeners	 I Nodes	 Restraints	↓ Loads	Solve	Results	Tables	Reporter	 Display	Viewports	{ز Sett
RES	SULTS					Wall Cr	oss-Sectiona	al Forces - I	Nuy - 0.9D+	1.0W (kips)					
				N1											
				Diagrams	Contours					-27:888					
	Stiffener Inter Wall Cross-Se		ces							-27:000					
	✓ Nuy 0.9D+	1.004								-27:080 -27:080					
	> Vux	1.077								=27:000 =27:000					
	> Vuz									=27:000					
	> Mux > Muy									=27:000 =27:000					
	> Muz									=27:000 =27:000					
>	Wall Concrete	e Shear Stre	ngth							-27:000					
									207:000						
									-287:888 -287:888						
									287:888						
									-287:888 -287:888						
~	DISPLAY OP	TIONS							-287:888 -287:888						
	Wall Eleme		✓ Fill Dia	orams					287:888						
			✓ Fill Dia					У	-287:888 -287:888						
			✓ Min/M	lax only					≊287:888					FR	ONT
				100 %	, vi			I						- 32	
			0.20	100 /	ليينا										

Figure 9 – Shear Wall Axial Load Diagram (spWall)

		日 り	C.					spWall - She	ar Wall.walx						- 🗆	
File Proje	ł	me	Grid	↓ Select	Plates	Stiffeners	-i- Nodes	 Restraints	↓ Loads	Solve	Results	Tables	Reporter	<u>⊻</u> Display	Viewports	ැටූ Settings
	RESUL							oss-Sectiona								• >
					I↓ Diagrams	Contours	Wall Ci	oss sections	arrorces v	ux 0.5011	.000 (kips)					í. ×
			rnal Forces ectional For	res								35:6 35:6	388 388			⊊ <mark>⊫</mark>
		Nuy										35:6	388			20
	~	Vux	1.0W									35:6 35:6	388			+
	>	Vuz										35:6	388			-
	>	Mux Muy										35:6 35:6	999			d.
		Muz										35:6	999			4
	> Wa	all Concrete	e Shear Stre	ngth								35:6	388			13
												_	121:8	99		
													121:8	88		
													121:8 121:8	88		
													121:8 121:8	88		
													121:8	88		
-		SPLAY OP					-						121:8 121:8	88		
				✓ Fill Dia	-				У				121:8	88		
U.				Show y					2	:			121:8 121:8	98 98		
î↑				✓ Min/M					+				12110			ONT
=			r Force	Size —	100 %	<u>ي</u> ت										
	318-14	1							-6	68, 56.66 (ft)	-	· # -	+ •	1 3	• Units:	English

Figure 10 – In-plane Shear Diagram (spWall)

		日 り	Ç ⁱⁱ					spWall - She	ar Wall.wab	¢					- 0	
File File Proje	ł	ome	Grid	↓ Select	Plates	Stiffeners	 Nodes	 Restraints	↓ Loads	Solve	Results	Tables	Reporter	<u>≍</u> Display	Viewports	ැබූ Settings
	RESU		Gild	Sciect	Tiddes	Sanchers				Muz - 0.9D+			Reporter	Dispidy	vicuports	• ×
					M	25										ŵ
					Diagrams	Contours										2 L
			rnal Forces ectional Forc	-ec								0.000				¢.
		Nuy														24
		Vux Vuz														
	>															+a _a
		Muy														ر ال
	~	Muz	1.0W													
	> w		e Shear Stre	ngth												¢
											_					
	Y DI	SPLAY OP	TIONS													
				✓ Fill Dia	grams											
				✓ Show v					У							
U,				✓ Min/M	ax only				—	× -4665.000					FR	ONT
÷↑					80 %	¥=			I						• ar	>
							-									

Figure 11 – Shear Wall Moment Diagram (spWall)

spWall v10.00 (TM) A Computer Program for Analysis and Design of Reinforced Concrete, Precast, and Tilt-up Walls Copyright © 1988-2022, STRUCTUREPOINT, LLC. All rights reserved

Structure Point

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spWall computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spWall program. Although STRUCTUREPOINT has endeavored to produce spWall error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spWall program. Licensed to: StructurePoint, LLC. License ID: 00000-0000004-20FC1-20FC1

Page | **2** 12/19/2022 10:51 AM

Contents

1.1. General Information	3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4	33333334
2. Definitions 2.1. Grid Lines 2.1.1. Vertical 2.1.2. Horizontal 2.2. Objects	3 3 3 3 3 3 3 3 3 3 3 3 4 4 4	33333334
2.1. Grid Lines 2.1.1. Vertical 2.1.2. Horizontal 2.2. Objects	3 3 3 3 3 3 3 3 3 3 3 4 4 4	3 3 3 3 3 3 4
2.1.1. Vertical 2.1.2. Horizontal 2.2. Objects	3 3 3 3 3 3 3 3 3 3 4 4 4	333334
2.1.2. Horizontal 2.2. Objects	3 3 3 3 3 3 3 3 4 4 4	3 3 3 3 4
2.2. Objects	3 3 3 3 3 4 4 4	3334
2.2. Objects	3 3 3 3 3 4 4 4	3334
2.2.1 Plates		3
Z.Z. I. FIDLES		3
2.3. Properties		ł
2.3.1. Concrete		ł
2.3.2. Reinforcement		
2.3.3. Plate Cracking Coefficients		ŧ
2.3.4. Plate Design Criteria		
2.4. Restraints		ł
2.4.1. Supports		ŧ
2.5. Load Case/Combo.		ł
2.5.1. Load Cases		ł
2.5.2. Load Combinations		
3. Assignments		
3.1. Nodes		
3.2. Plates		
3.3. Stiffeners		
3.4. Point Loads		
4. Results		
4.1. Envelope	5	5
4.1.1. Plate Flexure Reinforcement		
4.1.2. Wall Concrete Shear Strength		
4.1.2.1. In-Plane Shear	6	;
5. Screenshots		
5.1. Extrude 3D view		
5.2. Plates & Stiffeners ID	10)
5.3. Nodes ID		
5.4. Restraints		
5.5. Loads - Case A - D		
5.6. Loads - Case B - L		
5.7. Loads - Case C - W		

Page | **3** 12/19/2022 10:51 AM

1. Project

1.1. General Information

File Name	Shear Wall.walx
Project	Shear Wall
Code	ACI 318-14
Units	English
Date	11/1/2022
Time	4:00 PM

1.2. Solver Options

Include 2nd order effects	No
Check out-of-plane service deflections	No
Maximum permissible out-of-plane deflections	
Check concrete shear strength of wall crossection	Yes (Simplified Equations)

2. Definitions

2.1. Grid Lines

2.1.1. Vertical

Spacing	Coordinate-X	Label
ft	ft	
0.00	0.00	А
9.00	9.00	В
9.00	18.00	С

2.1.2. Horizontal

Spacing	Coordinate-Y	Label
ft	ft	
0.00	0.00	0
12.00	12.00	1
10.50	22.50	2
10.50	33.00	3
10.50	43.50	4
10.50	54.00	5

2.2. Objects

2.2.1. Plates

Label	Thickness in	Concrete	Reinforcement	Design Criteria	Cracking Coeff.	Used
W10	10.00	C4	Gr60	2C_Ct	PCC1	Yes

2.3. Properties

2.3.1. Concrete

Label	f' _c	Wc	Ec	v	Precast	Used
	ksi	pcf	ksi	-		
C4	4.0000	150.00	3834.3	0.20	No	Yes

Page | **4** 12/19/2022 10:51 AM

2.3.2. Reinforcement

Label	f _y	Es	Used	Label	fy	Es	Used
	ksi	ksi			ksi	ksi	
Gr60	60.0000	29000.0	Yes				

2.3.3. Plate Cracking Coefficients

Label	Service Cor	nbinations	Ultimate Combinations		Used
	In-plane	Out-of-plane	In-plane	Out-of-plane	
PCC1	1	0.7	1	0.35	Yes

2.3.4. Plate Design Criteria

NOTE: Bar centroid location measured from Z-ve face for Back Curtain and Z+ve face for Front Curtain

		Reinforcement Ratio			Reinforcement Location							
Label Curtains Flags	Label Curtains	is Flags	Curtains Flags	Rmin	Rmax	Rmin	Rmax	Back H.	Back V.	Front H.	Front V.	Used
	(Hor) (Ho	(Hor)	(Ver)	(Ver)	(BH) (BV)	(FH)	(FH) (FV)					
			%	%	%	%	in	in	in	in		
2C_Ct	2		0.20	8.00	0.12	8.00	1.00	1.56	1.00	1.56	Yes	

2.4. Restraints

2.4.1. Supports

	Tra	Inslations		R	otations		
Label	Dx	Dy	Dz	Rx	Ry	Rz	Used
Pin	Fixed	Fixed	Fixed	Free	Free	Free	Yes
Lateral	Free	Free	Fixed	Free	Free	Free	Yes

2.5. Load Case/Combo.

2.5.1. Load Cases

NOTE: Self weight is not included under Case A.

Case	Туре	Case Label	Load Defined?		
A	Dead	D	Yes		
В	Live	L	Yes		
С	Wind	W	Yes		

2.5.2. Load Combinations

Combo./Case Type	A Dead	B Live	C Wind	D	E	F	G	н	I	Combo Type
Combo./Label	D	L	W							
1.0D+0.5L	1.000	0.500	0.700	-	-	-	-	-	-	Ser.
0.9D+1.0W	0.900	0.000	1.000	-	-	-	-	0.00		Ult.

3. Assignments

3.1. Nodes

ID	X Coord.	Y Coord.	Rigid Support	Spring Support
	ft	ft		
N1	0.00	12.00		
N2	9.00	12.00		
N3	0.00	22.50		
N4	9.00	22.50		

Page | **5** 12/19/2022 10:51 AM

ID	X Coord.	Y Coord.	Rigid Support	Spring Support
	ft	ft		
N5	0.00	33.00		
N6	9.00	33.00		
N7	0.00	43.50		
N8	9.00	43.50		
N9	0.00	54.00	Lateral	
N10	9.00	54.00		
N11	18.00	54.00	Lateral	

3.2. Plates

ID	Label	Shape	Top Left/Center X	Top Left/Center Y	Width (B)	Height (H)/Dia. (D)
			ft	ft	ft	ft
P1	W10	Polygonal	9.00	27.00	18.00	54.00

3.3. Stiffeners

ID	Label	Direction	Start X	End X	Start Y	End Y	Length	Rigid Support
			ft	ft	ft	ft	ft	
S1	- Null -	Horizontal	0.00	18.00	0.00	0.00	18.00	Pin

3.4. Point Loads

I Onn Lou	45							
Nodes ID	Load Case	Fx	Fy	Fz	Mx	Му	Mz	Ecc
		kips	kips	kips	kip-ft	kip-ft	kip-ft	in
N1	С	10.00	0.00	0.00	0.00	0.00	0.00	0.00
N2	A	0.00	-50.00	0.00	0.00	0.00	0.00	0.00
	В	0.00	-25.00	0.00	0.00	0.00	0.00	0.00
N3	С	18.00	0.00	0.00	0.00	0.00	0.00	0.00
N4	A	0.00	-50.00	0.00	0.00	0.00	0.00	0.00
	В	0.00	-25.00	0.00	0.00	0.00	0.00	0.00
N5	С	26.00	0.00	0.00	0.00	0.00	0.00	0.00
N6	А	0.00	-50.00	0.00	0.00	0.00	0.00	0.00
	В	0.00	-25.00	0.00	0.00	0.00	0.00	0.00
N7	С	32.00	0.00	0.00	0.00	0.00	0.00	0.00
N8	А	0.00	-50.00	0.00	0.00	0.00	0.00	0.00
	В	0.00	-25.00	0.00	0.00	0.00	0.00	0.00
N9	С	35.00	0.00	0.00	0.00	0.00	0.00	0.00
N10	А	0.00	-30.00	0.00	0.00	0.00	0.00	0.00
	в	0.00	-15.00	0.00	0.00	0.00	0.00	0.00

4. Results

4.1. Envelope

4.1.1. Plate Flexure Reinforcement

Coordinate System: Global

Element	Curtains	Direction	Mu (x/y)	Nu (x/y) Ld Comb.	As (x/y)	Rho	Tie
			kip-ft/ft	klf	in²/ft	%	
[1]	2	Horizontal	0.00	25.55 0.9D+1.0W	0.478	0.40	
		Vertical	0.00	83.56 0.9D+1.0W	1.563	1.30	
2	2	Horizontal	0.00	16.59 0.9D+1.0W	0.310	0.26	
J		Vertical	0.00	67.83 0.9D+1.0W	1.269	1.06	
3	2	Horizontal	0.00	14.51 0.9D+1.0W	0.271	0.23	
		Vertical	0.00	53.61 0.9D+1.0W	1.003	0.84	
4	2	Horizontal	0.00	12.18 0.9D+1.0W	0.240	0.20	
				7			
		ements along	g the wall base				

Page | **6** 12/19/2022 10:51 AM

STRUCTUREPOINT - spWall v10.00 (TM)
Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1
E:\StructurePoint\spWall\Shear Wall.walx

5	2	Vertical	kip-ft/ft	klf		
5	2	Vertical		NII .	in²/ft	%
5	2		0.00	42.35 0.9D+1.0W	0.792	0.66
		Horizontal	0.00	10.22 0.9D+1.0W	0.240	0.20
		Vertical	0.00	32.32 0.9D+1.0W	0.604	0.50
6	2	Horizontal	0.00	8.45 0.9D+1.0W	0.240	0.20
		Vertical	0.00	23.08 0.9D+1.0W	0.432	0.36
7	2	Horizontal	0.00	6.84 0.9D+1.0W	0.240	0.20
		Vertical	0.00	14.38 0.9D+1.0W	0.269	0.22
8	2	Horizontal	0.00	5.35 0.9D+1.0W	0.240	0.20
		Vertical	0.00	6.04 0.9D+1.0W	0.144	0.12
9	2	Horizontal	0.00	2.49 0.9D+1.0W	0.240	0.20
		Vertical	0.00	-12.47 0.9D+1.0W	0.144	0.12
10	2	Horizontal	0.00	-8.20 0.9D+1.0W	0.240	0.20
		Vertical	0.00	-20.86 0.9D+1.0W	0.144	0.12
11	2	Horizontal	0.00	-10.03 0.9D+1.0W	0.240	0.20
	-	Vertical	0.00	-29.33 0.9D+1.0W	0.144	0.12
12	2	Horizontal	0.00	-11.93 0.9D+1.0W	0.240	0.20
		Vertical	0.00	-37.99 0.9D+1.0W	0.144	0.12
13	2	Horizontal	0.00	-13.94 0.9D+1.0W	0.240	0.20
		Vertical	0.00	-46.98 0.9D+1.0W	0.144	0.12
14	2	Horizontal	0.00	-16.09 0.9D+1.0W	0.240	0.20
		Vertical	0.00	-56.51 0.9D+1.0W	0.144	0.12
15	2	Horizontal	0.00	-18.43 0.9D+1.0W	0.240	0.20
		Vertical	0.00	-66.96 0.9D+1.0W	0.144	0.12
16	2	Horizontal	0.00	-21.17 0.9D+1.0W	0.240	0.20
		Vertical	0.00	-78.90 0.9D+1.0W	0.144	0.12
17	2	Horizontal	0.00	-23.49 0.9D+1.0W	0.240	0.20
		Vertical	0.00	-94.65 0.9D+1.0W	0.144	0.12
18	2	Horizontal	0.00	-34.84 0.9D+1.0W	0.240	0.20
l l		Vertical	0.00	-112.57 0.9D+1.0W	0.144	0.12

4.1.2. Wall Concrete Shear Strength

Elements along the wall base

 $\sum A_{s,vertical} = 7.52 \text{ in.}^2$

4.1.2.1. In-Plane Shear

NOTE: # - Shear force Vux exceeds half Ø Vcx

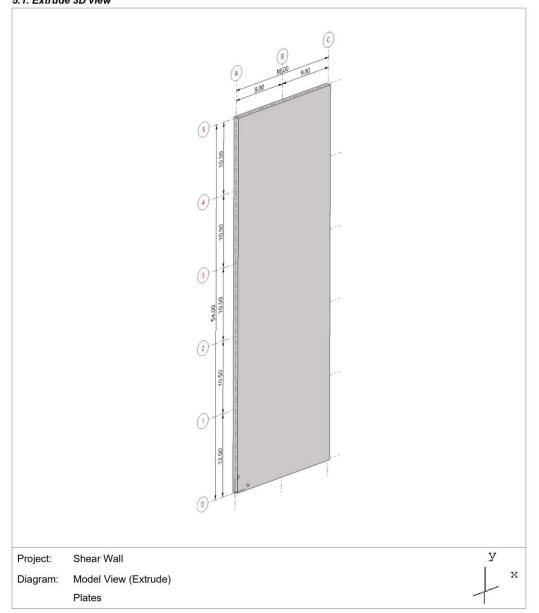
Coordinate System: Global (+) Horizontal cross-section above Y-coordinate (-) Horizontal cross-section below Y-coordinate

Cross-Se	ection	Cross-Sectional Forces				
No.	Y Coord.	Ld Comb.	Nuy	Muz	Vux	Ø Vcx
	ft		kips	kip-ft	kips	kips
1+	0.00	0.9D+1.0W	-207.00	-4665.00	121.00	163.93
2-	1.00	0.9D+1.0W	-207.00	-4544.00	121.00	163.93
2+	1.00	0.9D+1.0W	-207.00	-4544.00	121.00	163.93
3-	2.00	0.9D+1.0W	-207.00	-4423.00	121.00	163.93
3+	2.00	0.9D+1.0W	-207.00	-4423.00	121.00	163.93
4-	3.00	0.9D+1.0W	-207.00	-4302.00	121.00	163.93
4+	3.00	0.9D+1.0W	-207.00	-4302.00	121.00	163.93
5-	4.00	0.9D+1.0W	-207.00	-4181.00	121.00	163.93
5+	4.00	0.9D+1.0W	-207.00	-4181.00	121.00	163.93
6-	5.00	0.9D+1.0W	-207.00	-4060.00	121.00	163.93
6+	5.00	0.9D+1.0W	-207.00	-4060.00	121.00	163.93
7-	6.00	0.9D+1.0W	-207.00	-3939.00	121.00	163.93
7+	6.00	0.9D+1.0W	-207.00	-3939.00	121.00	163.93
8-	7.00	0.9D+1.0W	-207.00	-3818.00	121.00	163.93

Page | **7** 12/19/2022 10:51 AM

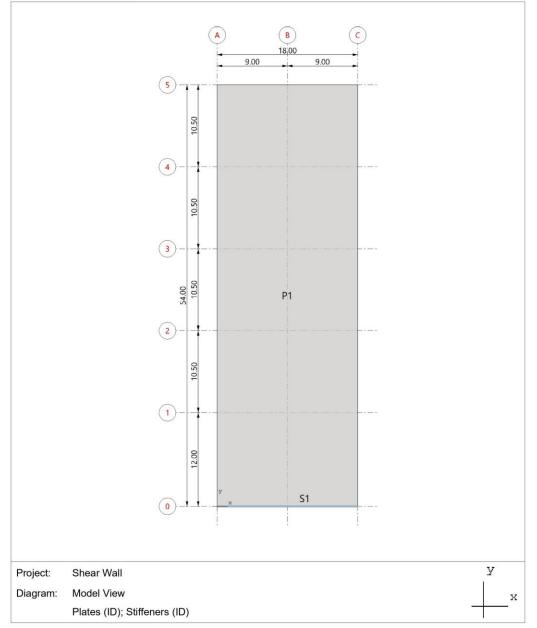
Cross-Se	ection		Cross-Sectiona	al Forces		Strength
No.	Y Coord.	Ld Comb.	Nuy	Muz	Vux	Ø Vcx
	ft		kips	kip-ft	kips	kips
8+	7.00	0.9D+1.0W	-207.00	-3818.00	121.00	163.93 #
9-	8.00	0.9D+1.0W	-207.00	-3697.00	121.00	163.93 #
9+	8.00	0.9D+1.0W	-207.00	-3697.00	121.00	163.93 #
10-	9.00	0.9D+1.0W	-207.00	-3576.00	121.00	163.93 #
10+	9.00	0.9D+1.0W	-207.00	-3576.00	121.00	163.93 #
11-		0.9D+1.0W	-207.00	-3455.00	121.00	163.93 #
11+		0.9D+1.0W	-207.00	-3455.00	121.00	163.93 #
12-		0.9D+1.0W	-207.00	-3334.00	121.00	163.93 #
12+		0.9D+1.0W	-207.00	-3334.00	121.00	163.93 #
13-		0.9D+1.0W	-207.00	-3213.00	121.00	163.93 #
13+		0.9D+1.0W	-162.00	-3213.00	111.00	163.93 #
14-		0.9D+1.0W	-162.00	-3107.05	111.00	163.93 #
14+ 15-		0.9D+1.0W	-162.00	-3107.05	111.00	163.93 # 163.93 #
15-		0.9D+1.0W 0.9D+1.0W	-162.00 -162.00	-3001.09 -3001.09	111.00 111.00	163.93 #
16-		0.9D+1.0W	-162.00	-2895.14	111.00	163.93 #
16+		0.9D+1.0W	-162.00	-2895.14	111.00	163.93 #
17-		0.9D+1.0W	-162.00	-2789.18	111.00	163.93 #
17+		0.9D+1.0W	-162.00	-2789.18	111.00	163.93 #
18-		0.9D+1.0W	-162.00	-2683.23	111.00	163.93 #
18+		0.9D+1.0W	-162.00	-2683.23	111.00	163.93 #
19-		0.9D+1.0W	-162.00	-2577.27	111.00	163.93 #
19+		0.9D+1.0W	-162.00	-2577.27	111.00	163.93 #
20-		0.9D+1.0W	-162.00	-2471.32	111.00	163.93 #
20+		0.9D+1.0W	-162.00	-2471.32	111.00	163.93 #
21-		0.9D+1.0W	-162.00	-2365.36	111.00	163.93 #
21+		0.9D+1.0W	-162.00	-2365.36	111.00	163.93 #
22-	20.59	0.9D+1.0W	-162.00	-2259.41	111.00	163.93 #
22+	20.59	0.9D+1.0W	-162.00	-2259.41	111.00	163.93 #
23-	21.55	0.9D+1.0W	-162.00	-2153.45	111.00	163.93 #
23+	21.55	0.9D+1.0W	-162.00	-2153.45	111.00	163.93 #
24-	22.50	0.9D+1.0W	-162.00	-2047.50	111.00	163.93 #
24+	22.50	0.9D+1.0W	-117.00	-2047.50	93.00	163.93 #
25-	23.45	0.9D+1.0W	-117.00	-1958.73	93.00	163.93 #
25+	23.45	0.9D+1.0W	-117.00	-1958.73	93.00	163.93 #
26-		0.9D+1.0W	-117.00	-1869.95	93.00	163.93 #
26+		0.9D+1.0W	-117.00	-1869.95	93.00	163.93 #
27-		0.9D+1.0W	-117.00	-1781.18	93.00	163.93 #
27+		0.9D+1.0W	-117.00	-1781.18	93.00	163.93 #
28-		0.9D+1.0W	-117.00	-1692.41	93.00	163.93 #
28+		0.9D+1.0W	-117.00	-1692.41	93.00	163.93 #
29-		0.9D+1.0W	-117.00	-1603.64	93.00	163.93 #
29+		0.9D+1.0W	-117.00	-1603.64	93.00	163.93 #
30-		0.9D+1.0W	-117.00	-1514.86	93.00	163.93 #
30+		0.9D+1.0W	-117.00	-1514.86	93.00	163.93 #
31-		0.9D+1.0W	-117.00	-1426.09	93.00	163.93 #
31+		0.9D+1.0W	-117.00	-1426.09	93.00	163.93 #
32- 32+		0.9D+1.0W 0.9D+1.0W	-117.00 -117.00	-1337.32 -1337.32	93.00 93.00	163.93 # 163.93 #
32+		0.9D+1.0W 0.9D+1.0W	-117.00 -117.00	-1337.32 -1248.55	93.00	163.93 # 163.93 #
33+		0.9D+1.0W	-117.00	-1248.55	93.00	163.93 #
34-		0.9D+1.0W	-117.00	-1159.77	93.00	163.93 #
34+		0.9D+1.0W	-117.00	-1159.77	93.00	163.93 #
35-		0.9D+1.0W	-117.00	-1071.00	93.00	163.93 #
00	00.00	0.00 . 1.011	117.00	1011.00	00.00	100.00 #

Page | **8** 12/19/2022 10:51 AM


Cross-Se	ction		Cross-Sectional	Forces		Strength
No.	Y Coord.	Ld Comb.	Nuy	Muz	Vux	ØVcx
	ft		kips	kip-ft	kips	kips
35+	33.00	0.9D+1.0W	-72.00	-1071.00	67.00	163.93
36-	33.95	0.9D+1.0W	-72.00	-1007.05	67.00	163.93
36+	33.95	0.9D+1.0W	-72.00	-1007.05	67.00	163.93
37-	34.91	0.9D+1.0W	-72.00	-943.09	67.00	163.93
37+	34.91	0.9D+1.0W	-72.00	-943.09	67.00	163.93
38-	35.86	0.9D+1.0W	-72.00	-879.14	67.00	163.93
38+	35.86	0.9D+1.0W	-72.00	-879.14	67.00	163.93
39-	36.82	0.9D+1.0W	-72.00	-815.18	67.00	163.93
39+	36.82	0.9D+1.0W	-72.00	-815.18	67.00	163.93
40-	37.77	0.9D+1.0W	-72.00	-751.23	67.00	163.93
40+	37.77	0.9D+1.0W	-72.00	-751.23	67.00	163.93
41-	38.73	0.9D+1.0W	-72.00	-687.27	67.00	163.93
41+	38.73	0.9D+1.0W	-72.00	-687.27	67.00	163.93
42-	39.68	0.9D+1.0W	-72.00	-623.32	67.00	163.93
42+	39.68	0.9D+1.0W	-72.00	-623.32	67.00	163.93
43-		0.9D+1.0W	-72.00	-559.36	67.00	163.93
43+		0.9D+1.0W	-72.00	-559.36	67.00	163.93
44-		0.9D+1.0W	-72.00	-495.41	67.00	163.93
44+		0.9D+1.0W	-72.00	-495.41	67.00	163.93
45-		0.9D+1.0W	-72.00	-431.45	67.00	163.93
45+		0.9D+1.0W	-72.00	-431.45	67.00	163.93
46-		0.9D+1.0W	-72.00	-367.50	67.00	163.93
46+		0.9D+1.0W	-27.00	-367.50	35.00	163.93
47-		0.9D+1.0W	-27.00	-334.09	35.00	163.93
47+		0.9D+1.0W	-27.00	-334.09	35.00	163.93
48-		0.9D+1.0W	-27.00	-300.68	35.00	163.93
48+		0.9D+1.0W	-27.00	-300.68	35.00	163.93
49-		0.9D+1.0W	-27.00	-267.27	35.00	163.93
49+		0.9D+1.0W	-27.00	-267.27	35.00	163.93
50-		0.9D+1.0W	-27.00	-233.86	35.00	163.93
50+		0.9D+1.0W	-27.00	-233.86	35.00	163.93
51-		0.9D+1.0W	-27.00	-200.45	35.00	163.93
51+		0.9D+1.0W	-27.00	-200.45	35.00	163.93
52-		0.9D+1.0W	-27.00	-167.05	35.00	163.93
52+		0.9D+1.0W	-27.00	-167.05	35.00	163.93
53-		0.9D+1.0W	-27.00	-133.64	35.00	163.93
53+		0.9D+1.0W	-27.00	-133.64	35.00	163.93
54-		0.9D+1.0W	-27.00	-100.23	35.00	163.93
54+		0.9D+1.0W	-27.00	-100.23	35.00	163.93
55- 55+		0.9D+1.0W 0.9D+1.0W	-27.00 -27.00	-66.82 -66.82	35.00 35.00	163.93 163.93
56-		0.9D+1.0W	-27.00	-00.82 -33.41	35.00	163.93
		0.9D+1.0W				
56+ 57-		0.9D+1.0W	-27.00	-33.41 0.00	35.00 35.00	163.93 163.93
57-	54.00	0.90+1.000	-27.00	0.00	35.00	103.93

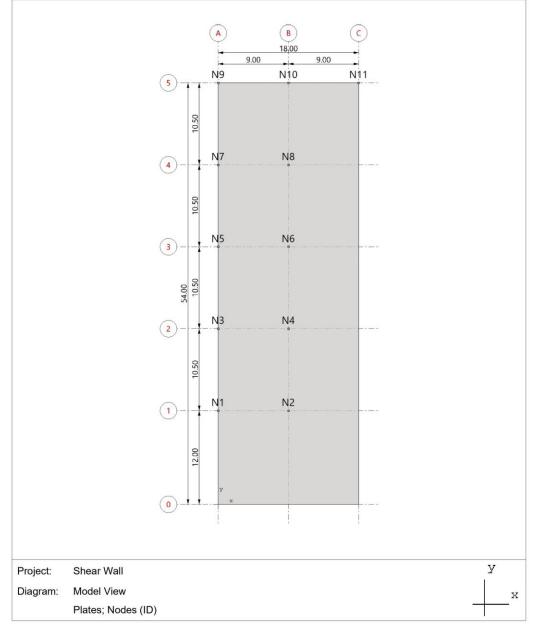
Page | **9** 12/19/2022 10:51 AM

5. Screenshots 5.1. Extrude 3D view



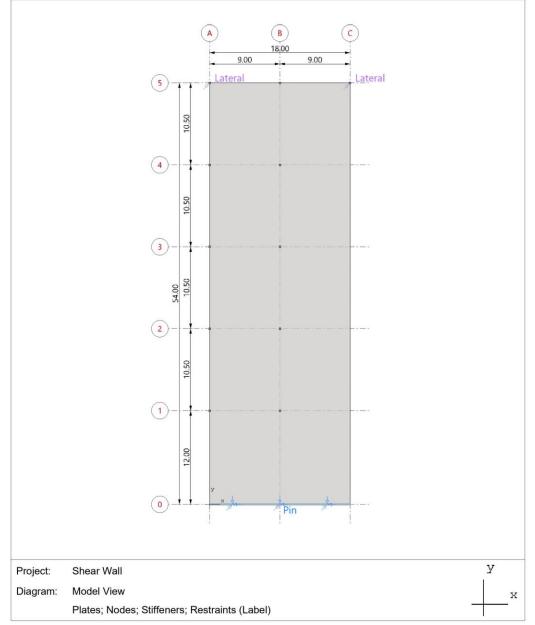
Page | **10** 12/19/2022 10:51 AM

5.2. Plates & Stiffeners ID



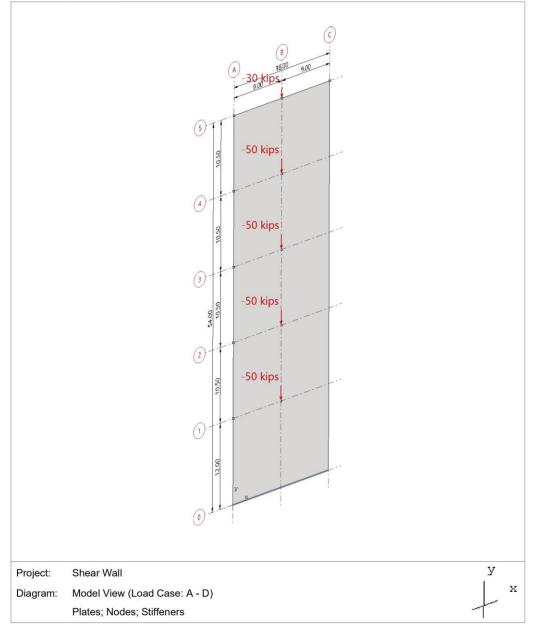
Page | **11** 12/19/2022 10:51 AM

5.3. Nodes ID



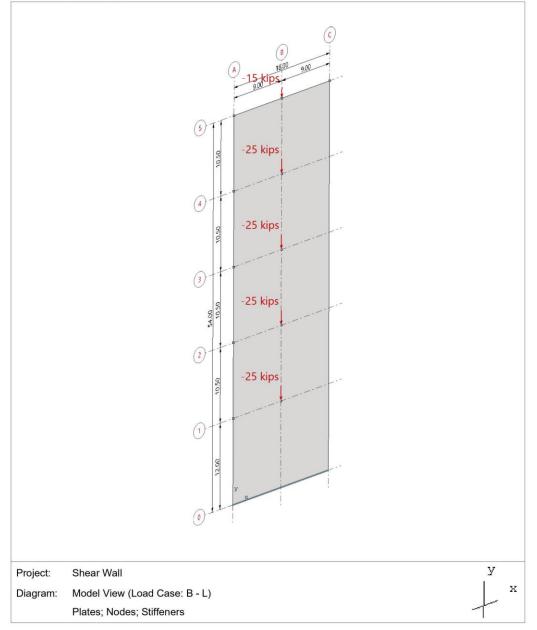
Page | **12** 12/19/2022 10:51 AM

5.4. Restraints



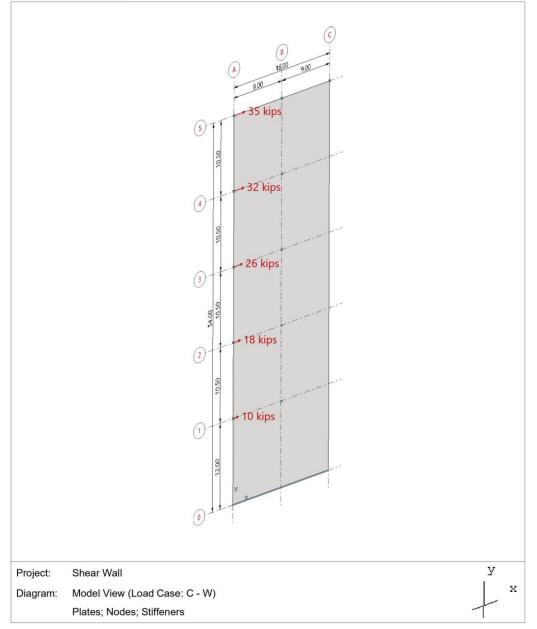
Page | **13** 12/19/2022 10:51 AM

5.5. Loads - Case A - D



Page | **14** 12/19/2022 10:51 AM

5.6. Loads - Case B - L



Page | **15** 12/19/2022 10:51 AM

5.7. Loads - Case C - W

	Table 1 – Comparison of Shear Wall Analysis and Design Results								
	Wall Cro	ss-Sectional	Forces	μV	٨				
Solution	M _u (kip-ft)	N _u (kips)	V _u (kips)	φV _c (kips)	$A_{s,vertical}$ (in. ²)	φM _n (kip-ft)			
Hand	4,670	207	121	161	7.44	4,800			
Reference	4,670	207	121	161	7.44	4,800			
<u>spWall</u>	4,665	207	121	164	7.52	4,663*			
* Minimum requ	ired capacity								

6. Design Results Comparison and Conclusions

The results of all the hand calculations and the reference used illustrated above are in precise agreement with the automated results obtained from the <u>spWall</u> FEA. It is worth noting that the minimum area of steel is governed by the minimum reinforcement ratio stipulated by the code. The same can be seen in <u>spWall</u> output for elements 8 through 18.

To calculate the wall moment capacity, the design forces in each finite element can be employed to sum force moments about the center of the wall section as follows:

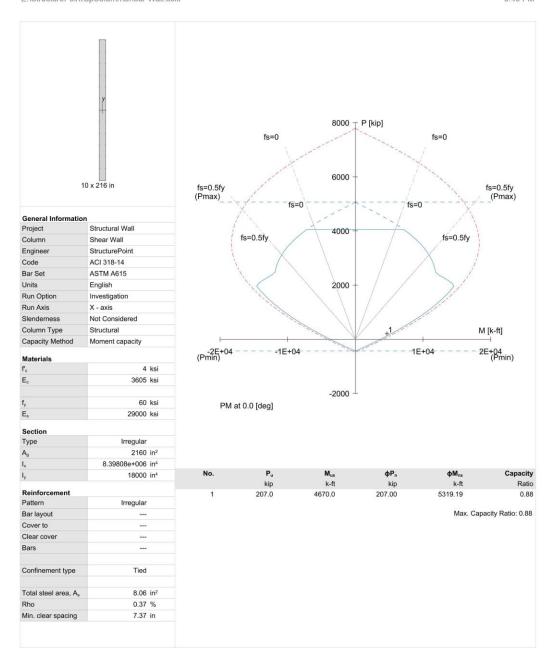
$$\begin{split} \phi M_n &= \phi \times \sum_{i=1}^{18} \left(N_{u,i} \times d_i \right) \\ &= 0.9 \times \begin{bmatrix} (83.6 \times 8.5) + (67.8 \times 7.5) + (53.6 \times 6.5) + (42.3 \times 5.5) + (32.3 \times 4.5) + (23.1 \times 3.5) + (14.4 \times 2.5) \\ &+ (6.0 \times 1.5) + (-12.5 \times 0.5) + (-20.9 \times -0.5) + (-29.3 \times -1.5) + (-38.0 \times -2.5) + (-47.0 \times -3.5) \\ &+ (-56.5 \times -4.5) + (-67.0 \times -5.5) + (-78.9 \times -6.5) + (-94.7 \times -7.5) + (-112.6 \times -8.5) \end{bmatrix} = 4,663 \text{ kip-ft}$$

7. Appendix – Commentary on Reinforcement Arrangement Impact on Wall Capacity

7.1. Discussion

In the hand calculations and the reference, a simplified procedure to calculate the nominal flexural strength was used (A. E. Cardenas et al.). In this procedure, several broad assumptions are made to avoid tedious detailed calculations:

- All steel in the tension zone yields in tension.
- All steel in the compression zone yields in compression.
- The tension force acts at mid-depth of the tension zone.
- The total compression force (sum of steel and concrete contributions) acts at mid-depth of the compression zone.


To investigate the shear wall cross section capacity using the interaction diagram method, a model generated by <u>spColumn</u> is made. This approach considers the entire wall section and employs the provisions of the Strength Design Method and Unified Design Provisions with all conditions of strength satisfying the applicable conditions of equilibrium and strain compatibility.

For illustration and comparison purposes, following figures provide a sample of the input and output of the results obtained from an <u>spColumn</u> model created for the shear wall in this example. <u>spColumn</u> calculates the values of strain at each layer of steel (in tension and compression zones) with location of the total tension and compression forces leading to the value for nominal and design strengths (axial and flexural strengths).

Page | **1** 11/2/2022 3:46 PM

Figure 12 - Shear Wall Interaction Diagram (X-Axis, In-Plane) (spColumn)

Page | **2** 11/2/2022 3:46 PM

1. General Information

File Name	E:\StructurePoint\spColumn\Shea Wall.colx		
Project	Structural Wall		
Column	Shear Wall		
Engineer	StructurePoint		
Code	ACI 318-14		
Bar Set	ASTM A615		
Units	English		
Run Option	Investigation		
Run Axis	X - axis		
Slenderness	Not Considered		
Column Type	Structural		
Capacity Method	Moment capacity		

2. Material Properties

2.1. Concrete

Туре	Standard	
f'c	4 ks	
Ec	3605 ks	
f _c	3.4 ks	
ε _u	0.003 in	
β1	0.85	

2.2. Steel

Туре	Standard			
fy	60	ksi		
Es	29000	ksi		
ε _{yt}	0.00206897	in/in		

3. Section

3.1. Shape and Properties

Туре	Irregular						
Ag	2160	in²					
l _x	8.39808e+006	in ⁴					
Ag Ix Iy rx	18000	in ⁴					
r _x	62.3538	in					
r _y	2.88675	in					
X _o	0	in					
Yo	0	in					

3.2. Solids

3.	2.	1.	S1	

Points	х	Y	Points	х	Y	Points	х	Y
	in	in		in	in		in	in
1	-5.0	-108.0	2	5.0	-108.0	3	5.0	108.0
4	-5.0	108.0						

STRUCTUREPOINT - spColumn v10.00 (TM)	Page 3
Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1	11/2/2022
E:\StructurePoint\spColumn\Shear Wall.colx	3:46 PM

4. Reinforcement

4.1. Bar Set: ASTM A615

Bar	Diameter	Area	Bar	Diameter	Area	Bar	Diameter	Area	
	in	in ²		in	in ²		in	in ²	
 #3	0.38	0.11	#4	0.50	0.20	#5	0.63	0.31	
#6	0.75	0.44	#7	0.88	0.60	#8	1.00	0.79	
#9	1.13	1.00	#10	1.27	1.27	#11	1.41	1.56	
#14	1.69	2.25	#18	2.26	4.00				

4.2. Confinement and Factors

Confinement type	Tied					
For #10 bars or less	#3 ties					
For larger bars	#4 ties					
Capacity Reduction Factors						
Axial compression, (a)	0.8					
Tension controlled φ, (b)	0.9					
Compression controlled ϕ , (c)	0.65					

4.3. Arrangement

Pattern	Irregular					
Bar layout						
Cover to						
Clear cover	1 <u></u>					
Bars						
Total steel area, A _s	8.06 in ²					
Rho	0.37 %					
Minimum clear spacing	7.37 in					

4.4. Bars Provided

Area	х	Y	Area	х	Y	Area	х	Y
in ²	in	in	in²	in	in	in ²	in	in
0.31	-4.0	107.0	0.31	-4.0	-107.0	0.31	-4.0	-89.2
0.31	-4.0	-71.3	0.31	-4.0	-53.5	0.31	-4.0	-35.7
0.31	-4.0	-17.8	0.31	-4.0	0.0	0.31	-4.0	17.8
0.31	-4.0	35.7	0.31	-4.0	53.5	0.31	-4.0	71.3
0.31	-4.0	89.2	0.31	4.0	-107.0	0.31	4.0	-89.2
0.31	4.0	-71.3	0.31	4.0	-53.5	0.31	4.0	-35.7
0.31	4.0	-17.8	0.31	4.0	0.0	0.31	4.0	17.8
0.31	4.0	35.7	0.31	4.0	53.5	0.31	4.0	71.3
0.31	4.0	89.2	0.31	4.0	107.0			

5. Factored Loads and Moments with Corresponding Capacity Ratios NOTE: Calculations are based on "Moment Capacity" Method.

No.	Demano	1	Capacit	y	Parame	Capacity		
	Pu	Mux	φPn	φM _{nx}	NA Depth	ε _t	φ	Ratio
	kip	k-ft	kip	k-ft	in			
1	207.00	4670.00	207.00	5319.19	20.73	0.02811	0.900	0.88

Figure 13 – Load & Moment Capacities Output from spColumn

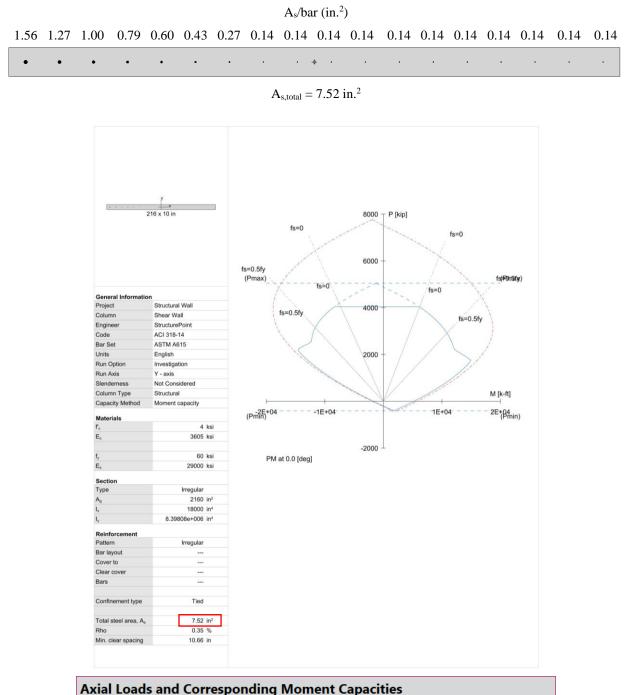

Using <u>spColumn</u>, calculate the expected wall capacity based on various reinforcement distributions obtained from the FEA results from <u>spWall</u>. Three reinforcement distributions are evaluated below.

Table 2 - Comparative capacity calculations (using spColumn) based on FEA suggested reinforcement distribution										
$\label{eq:result} Reinforcement Distribution \qquad c, in. \qquad \phi M_n, kip-ft$										
Reference	20.73	5,319 > 4,800* (110.8%)								
Non-Uniform	22.46	6,803 > 4,800 [*] (141.7%)								
Uniform	20.58	5,049 > 4,800* (105.2%)								
Suggested	22.46	6,726 > 4,800* (140.1%)								
* Wall flexural capacity calculated using simplified reference method										

Wall Capacity - Non-Uniform Reinforcement from FEA

Using the method of solution in <u>spColumn</u> where one section is used the finite element analysis model can be investigated as one section and not as individual finite elements as calculated by <u>spWall</u>.

Axia	Axial Loads and Corresponding Moment Capacities											
No	φPn		φMny NA Depth dt		dt Depth	εt	ф					
		kip k-ft		in	in in							
1		207.0	6803.19	22.460	210.000	0.02505	0.900					
2		207.0	-3351.57	15.571	210.000	0.03746	0.900					

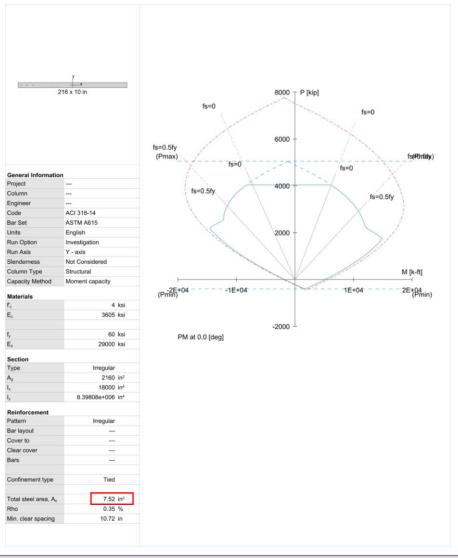
Wall Capacity - Uniform Reinforcement from FEA

Taking the total area of non-uniform reinforcement obtained from FEA and redistributing it in a uniform bar pattern to represent a reinforcement arrangement very comparable to the reference example distribution, the wall capacity can be calculated and is expected to be very similar to the results obtained from the reinforcement configuration used by the reference. A /bar (in 2)

								$A_{\rm S}/0a$	n (m.)							
0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42
	•		•	•	•	•	•	• -		•		•	•	•	•	•	

$A_{s,total} = 7.52 \text{ in.}^2$								
	<u>ў х</u> 216 х 10 іп	5=0.5fy fs=0 fs=0 6000 fs=0						
		fs=0 fs=0						
General Informatio		\wedge \wedge \wedge \wedge						
Project	Structural Wall	4000						
Column	Shear Wall StructurePoint	fs=0.5fy						
Engineer Code	ACI 318-14							
Jode Bar Set	ACT 318-14 ASTM A615							
Jnits	English	2000 -						
Run Option	Investigation	2000 -						
tun Axis	Y - axis							
lenderness	Not Considered							
Column Type	Structural	M [k-ft]						
Capacity Method	Moment capacity	H H H H H H H H H H H H H H H H H H H						
	mornoni ouprony	(Pmin)						
Materials		(Pmin) (Pmin) (Pmin)						
c	4 ksi							
¢.	3605 ksi							
	00 kel	-2000 ⊥						
y Es	60 ksi 29000 ksi	PM at 0.0 [deg]						
-	29000 KSI							
Section								
Гуре	Irregular							
h g	2160 in ²							
k.	18000 in4							
y.	8.39808e+006 in4							
Reinforcement								
Pattern	Irregular							
Bar layout								
Cover to								
Clear cover								
Bars	-							
	Tied							
Confinement type								
Confinement type	7 50 1 5							
Total steel area, A _s	7.52 in ² 0.35 %							

Axia	Axial Loads and Corresponding Moment Capacities											
No		φPn	φMny	NA Depth	dt Depth	εt	ф					
		kip	k-ft	in	in							
1		207.0	5048.82	20.576	210.000	0.02762	0.900					
2		207.0	-5048.82	20.576	210.000	0.02762	0.900					


Wall Capacity - Suggested Reinforcement

Taking the total area of non-uniform reinforcement obtained from FEA and redistributing it in a banded approach where the suggested reinforcement is averaged over the first 3 elements and the following 4 elements resulting in the suggested bar pattern below to represent a practical reinforcement arrangement, a new wall capacity can be calculated.

A _s /bar	$(in.^2)$
n _s / uai	(111.)

•	•	•	•	•	•	•	·	• + ו	•	•	•	•	•	•	•	•
							A _s ,	$_{,total} = 7.52$ in	.2							

Axial Loads and Corresponding Moment Capacities										
No	φPn		φMny	NA Depth	dt Depth	٤t	ф			
		kip	k-ft	in	in					
1		207.0	6725.99	22.460	210.000	0.02505	0.900			
2		207.0	-3410.15	16.356	210.000	0.03552	0.900			

7.2. Conclusions and Observations

As can be seen from the three options above the engineers can evaluate several options when arriving at the reinforcing bar arrangement from an FEA model. The following conclusions and observations can be used to better understand designing and investigating shear walls using <u>spWall</u>:

- In finite element analysis, selecting mesh size has a crucial impact on the results accuracy (as an example the amount and distribution of reinforcement). The mesh size should be optimized in a way that changing the element size has slight effect on the results obtained. However, the optimum element size is dependent on multiple parameters in the model which makes it difficult to find a generalized procedure to select the optimum size. <u>Multiple studies</u> conducted by StructurePoint showed that the element length should not be greater than 10% of the total wall length and a coarser mesh should be used with caution and engineering judgement.
- 2. <u>spWall</u> calculates the required area of steel for each element along the section. This area of steel is selected in a way that it should be enough to satisfy the strength requirements under a specific sets of extreme design forces. This approach will lead to placing most of the reinforcement at wall section ends as was shown in this example leading to the highest possible flexural capacity that can be achieved for the section with the same amount of steel. In practice, having a uniform distribution of reinforcement along the wall section is more common and the flexural capacity of the concrete wall is usually calculated based on it.
- 3. Concrete Shear walls can be analyzed and designed using simplified structural analysis approaches as the one used in this example. However, as the level of complexity of the wall increases, analyzing and designing shear walls using hand solution become more challenging and less effective. Computer software utilizing FEA (e.g. <u>spWall</u>) is an efficient solution to analyze and design concrete shear walls regardless of the level of complexity. <u>spWall</u> selects the minimum required area of steel with the optimum reinforcement distribution for the wall section in which the highest bending capacity of the wall section is achieved. <u>spColumn</u> software can be also utilized to obtain the wall interaction diagram to help better understand the behavior of the section selected.