Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method (ACI 318-19)

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method (ACI 318-19)

Evaluate slenderness effect for columns in a sway frame multistory reinforced concrete building by designing the first story exterior column. The clear height of the first story is $13 \mathrm{ft}-4 \mathrm{in}$., and is $10 \mathrm{ft}-4 \mathrm{in}$. for all of the other stories. Lateral load effects on the building are governed by wind forces. Compare the calculated results with exact values from spColumn engineering software program from StructurePoint.

Figure 1 - Reinforced Concrete Column Cross-Section

Contents

1. Factored Axial Loads and Bending Moments 2
1.1. Service loads 2
1.2. Load Combinations - Factored Loads 2
2. Slenderness Effects and Sway or Nonsway Frame Designation 3
3. Determine Slenderness Effects 4
4. Moment Magnification at Ends of Compression Member5
5. Moment Magnification along Length of Compression Member 11
6. Column Design 16
6.1. c, a, and strains in the reinforcement 16
6.2. Forces in the concrete and steel 17
6.3. ϕP_{n} and ϕM_{n} 17
7. Column Interaction Diagram - spColumn Software 19
8. Summary and Comparison of Design Results 35
9. Conclusions \& Observations 37

Code

Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19)

References

- Notes on ACI 318-11 Building Code Requirements for Structural Concrete, Twelfth Edition, 2013 Portland Cement Association, Example 11-2
- spColumn Engineering Software Program Manual v10.00, STRUCTUREPOINT, 2021
- "Slender Concrete Column Design in Sway Frames - Moment Magnification Method (ACI 318-19)" Design Example, STRUCTUREPOINT, 2022
- "Slenderness Effects for Columns in Non-Sway Frame - Moment Magnification Method (ACI 318-19)" Design Example, STRUCTUREPOINT, 2022

Design Data

$f_{c}{ }^{\prime}=6,000 \mathrm{psi}$ for columns in the bottom two stories
$=4,000 \mathrm{psi}$ elsewhere
$f_{y}=60,000 \mathrm{psi}$
Slab thickness $=7$ in.
Exterior Columns $=22$ in. x 22 in.
Interior Columns $=24$ in. $x 24 \mathrm{in}$.
Beams $=24$ in. $x 20$ in. $x 24 \mathrm{ft}$
Superimposed dead load $=30 \mathrm{psf}$
Roof live load $=30 \mathrm{psf}$
Floor live load $=50 \mathrm{psf}$
Wind loads computed according to ASCE 7-10
Total building loads in the first story from structural analysis:
D $=17,895 \mathrm{kip}$
$\mathrm{L}=1,991 \mathrm{kip}$
$\mathrm{L}_{\mathrm{r}}=270$ kip
$\mathrm{W}=0 \mathrm{kip}$, wind loads in the story cause compression in some columns and tension in others and thus would cancel out.

1. Factored Axial Loads and Bending Moments

1.1. Service loads

Table 1 - Exterior column service loads				
Load Case	Axial Load, kip		Bending Moment, ft-kip	
	Top			
Dead, D	622.4	34.8	Bottom	
Live, L	73.9	15.4	17.6	
Roof Live, L_{r}	8.6	0.0	7.7	
Wind, W (N-S)	-48.3	17.1	0.0	
Wind, W (S-N)	48.3	-17.1	138.0	

1.2. Load Combinations - Factored Loads

ASCE 7-10 (2.3.2)

Table 2 - Exterior column factored loads									
ASCE 7-10 Reference	No.	Load Combination	Axial Load, kip	Bending Moment, ft-kip		$\begin{aligned} & \mathrm{M}_{\text {Top,ns }} \\ & \mathrm{ft-kip} \end{aligned}$	$\begin{gathered} \mathrm{M}_{\text {Botom,ns }} \\ \mathrm{ft-kip} \end{gathered}$	$\begin{aligned} & \mathrm{M}_{\text {Top,s }} \\ & \mathrm{ft} \text {-kip } \end{aligned}$	$\begin{aligned} & \mathrm{M}_{\text {Botom,s }} \\ & \text { ft-kip } \end{aligned}$
				Top	Bottom				
2.3.2-1	1	1.4D	871.4	48.7	24.6	48.7	24.6	---	---
2.3.2-2	2	$1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{~L}_{\mathrm{r}}$	869.4	66.4	33.4	66.4	33.4	---	---
2.3.2-3	3	$1.2 \mathrm{D}+0.5 \mathrm{~L}+1.6 \mathrm{~L}_{\mathrm{r}}$	797.6	49.5	25.0	49.5	25.0	---	---
	4	$1.2 \mathrm{D}+1.6 \mathrm{~L}_{\mathrm{r}}+0.8 \mathrm{~W}$	722.0	55.4	131.5	41.8	21.1	13.7	110.4
	5	$1.2 \mathrm{D}+1.6 \mathrm{~L}_{\mathrm{r}}-0.8 \mathrm{~W}$	799.3	28.1	-89.3	41.8	21.1	-13.7	-110.4
2.3.2-4	6	$1.2 \mathrm{D}+0.5 \mathrm{~L}+0.5 \mathrm{~L}_{\mathrm{r}}+1.6 \mathrm{~W}$	710.9	76.8	245.8	49.5	25.0	27.4	220.8
	7	$1.2 \mathrm{D}+0.5 \mathrm{~L}+0.5 \mathrm{~L}_{\mathrm{r}}-1.6 \mathrm{~W}$	865.4	22.1	-195.8	49.5	25.0	-27.4	-220.8
2.3.2-6	8	$0.9 \mathrm{D}+1.6 \mathrm{~W}$	482.9	58.7	236.6	31.3	15.8	27.4	220.8
	9	0.9D-1.6W	637.4	4.0	-205.0	31.3	15.8	-27.4	-220.8

2. Slenderness Effects and Sway or Nonsway Frame Designation

Columns and stories in structures are considered as non-sway frames if the increase in column end moments due to second-order effects does not exceed 5% of the first-order end moments, or the stability index for the story (Q) does not exceed 0.05 .

ACI 318-19 (6.6.4.3)
$\sum P_{u}$ is the total vertical load in the first story corresponding to the lateral loading case for which $\sum P_{u}$ is greatest (without the wind loads, which would cause compression in some columns and tension in others and thus would cancel out).

ACI 318-19 (6.6.4.4.1 and R6.6.4.3)
$V_{u s}$ is the factored horizontal story shear in the first story corresponding to the wind loads, and Δ_{o} is the first-order relative deflection between the top and bottom of the first story due to V_{u}.

ACI 318-19 (6.6.4.4.1 and R6.6.4.3)
From Table 2, load combinations (2.3.2-4 No. 5 and 6) provide the greatest value of $\sum P_{u}$.

$$
\Sigma P_{u}=1.2 \times D+0.5 \times L+0.5 \times L_{r}=1.2 \times 17,895+0.5 \times 1,991+0.5 \times 270=22,605 \mathrm{kip}
$$

$\underline{A S C E ~ 7-10(2.3 .2-4)}$
$V_{u s}=1.6 \times V_{s}=1.6 \times 302.6=484.2 \mathrm{kip}$
ASCE 7-10 (2.3.2-6)
$\Delta_{o}=1.6 \times \Delta=1.6 \times(0.28-0)=0.45 \mathrm{in}$.
$Q=\frac{\Sigma P_{u} \times \Delta_{o}}{V_{u s} \times l_{c}}=\frac{22,605 \times 0.45}{484.2 \times(15 \times 12-20 / 2)}=0.12>0.05$
ACI 318-19 (Eq. 6.6.4.4.1)

Thus, the frame at the first story level is considered sway.

CONCRETE SOFTWARE SOLUTIONS
3. Determine Slenderness Effects
$I_{\text {column }}=0.7 \times \frac{c^{4}}{12}=0.7 \times \frac{22^{4}}{12}=13,665 \mathrm{in} .^{4}$
ACI 318-19 (Table 6.6.3.1.1(a))
$E_{c}=57,000 \times \sqrt{f_{c}^{\prime}}=57,000 \times \sqrt{6000}=4,415 \mathrm{ksi}$
ACI 318-19 (19.2.2.1.b)

For the column below level 2:
$\frac{E_{c} \times I_{\text {column }}}{l_{c}}=\frac{4,415 \times 13,665}{15 \times 12-20 / 2}=355 \times 10^{3}$ in.kip

For the column above level 2:
$\frac{E_{c} \times I_{\text {column }}}{l_{c}}=\frac{4,415 \times 13,665}{12 \times 12}=419 \times 10^{3}$ in.kip
For beams framing into the columns:
$\frac{E_{b} \times I_{\text {beam }}}{l_{b}}=\frac{3,605 \times 5,600}{24 \times 12}=70 \times 10^{3}$ in.kip
Where:
$E_{b}=57,000 \times \sqrt{f_{c}^{\prime}}=57,000 \times \sqrt{4000}=3,605 \mathrm{ksi}$
ACI 318-19 (19.2.2.1.b)
$I_{\text {beam }}=0.35 \times \frac{b \times h^{3}}{12}=0.35 \times \frac{24 \times 20^{3}}{12}=5,600$ in. ${ }^{4}$
ACI 318-19 (Table 6.6.3.1.1(a))
$\Psi_{A}=\frac{\left(\sum \frac{E I}{l_{c}}\right)_{\text {columns }}}{\left(\sum \frac{E I}{l}\right)_{\text {beams }}}=\frac{355+419}{70}=11.040$
ACI 318-19 (Figure R6.2.5.1)
$\Psi_{B}=0.0$ (Column essentially fixed at base)
Using Figure R6.2.5.1 from ACI 318-19 $\rightarrow k=1.693$ as shown in the figure below for the exterior columns with one beam framing into them in the directions of analysis.

Figure 2 - Effective Length Factor (k) Calculations for Exterior Columns with One Beam Framing into them in the Direction of Analysis (Sway Frame)
$\frac{k \times l_{u}}{r}=\frac{1.693 \times 13.333}{6.35}=42.65>22 \rightarrow$ Consider Slenderness
ACI 318-19 (6.2.5.1a)

Where:
$r=$ radius of gyration $=(a) \sqrt{\frac{I_{g}}{A_{g}}}$ or \quad (b) $0.3 \times c_{1}$
ACI 318-19 (6.2.5.2)
$r=\sqrt{\frac{I_{g}}{A_{g}}}=\sqrt{\frac{c_{1}^{2}}{12}}=\sqrt{\frac{22^{2}}{12}}=6.35 \mathrm{in}$.

4. Moment Magnification at Ends of Compression Member

A detailed calculation for load combination 4 (gravity plus wind) is shown below to illustrate the procedure. Table 3 summarizes the magnified moment computations for the exterior columns.
$M_{2}=M_{2 n s}+\delta_{s} M_{2 s}$
$\underline{\text { ACI 318-19 (6.6.4.6.1b) }}$

Where:
$\underline{\text { ACI 318-19 (6.6.4.6.2) }}$

$$
\delta_{s}=\text { moment magnifier }=\left\{\begin{array}{l}
\text { (a) } \frac{1}{1-Q} \\
\text { (b) } \frac{1}{1-\frac{\Sigma P_{u}}{0.75 \Sigma P_{c}}} \\
\text { (c) Second-order elastic analysis }
\end{array}\right\}
$$

ACI 318-19 (6.6.4.6.2(b)) will be used for comparison purposes with results obtained from spColumn model. However, (a) and (c) can also be used to calculate the moment magnifier.
$\sum P_{u}$ is the summation of all the factored vertical loads in the first story, and $\sum P_{c}$ is the summation of the critical buckling load for all sway-resisting columns in the first story.

$$
P_{c}=\frac{\pi^{2}(E I)_{e f f}}{\left(k l_{u}\right)^{2}}
$$

ACI 318-19 (6.6.4.4.2)

Where:

$$
(E I)_{e f f}=\left\{\begin{array}{l}
\text { (a) } \frac{0.4 E_{c} I_{g}}{1+\beta_{d s}} \\
\text { (b) } \frac{0.2 E_{c} I_{g}+E_{s} I_{s e}}{1+\beta_{d s}} \\
\text { (c) } \frac{E_{c} I}{1+\beta_{d s}}
\end{array}\right\}
$$

ACI 318-19 (6.6.4.4.4)

There are three options for calculating the effective flexural stiffness of slender concrete columns $(E I)_{\text {eff }}$. The second equation provides accurate representation of the reinforcement in the section and will be used in this example and is also used by the solver in spColumn. Further comparison of the available options is provided in "Effective Flexural Stiffness for Critical Buckling Load of Concrete Columns" technical note.
$I_{\text {column }}=\frac{c^{4}}{12}=\frac{22^{4}}{12}=19,521 \mathrm{in} .{ }^{4}$
ACI 318-19 (Table 6.6.3.1.1(a))
$E_{c}=57,000 \times \sqrt{f_{c}^{\prime}}=57,000 \times \sqrt{6000}=4,415 \mathrm{ksi}$
ACI 318-19 (19.2.2.1.b)
$\beta_{d s}$ is the ratio of maximum factored sustained shear within a story to the maximum factored shear in that story associated with the same load combination. The maximum factored sustained shear in this example is equal to zero leading to $\beta_{d s}=0$.
$\underline{\text { ACI 318-19 (6.6.3.1.1) }}$
For exterior columns with one beam framing into them in the direction of analysis (12 columns):
With 8-\#8 reinforcement equally distributed on all sides and 22 in. x 22 in. column section $\rightarrow I_{\text {se }}=352.6$ in. ${ }^{4}$.
$(E I)_{e f f}=\frac{0.2 E_{c} I_{g}+E_{s} I_{s e}}{1+\beta_{d s}}$
ACI 318-19 (6.6.4.4.4(b))
$(E I)_{e f f}=\frac{0.2 \times 4,415 \times 19,521+29,000 \times 352.6}{1+0}=27.5 \times 10^{6} \mathrm{kip}-\mathrm{in}^{2}{ }^{2}$
$k=1.693$ (calculated previously).

$$
P_{c 1}=\frac{\pi^{2} \times 27.5 \times 10^{6}}{(1.693 \times 13.333)^{2}}=3,694.04 \mathrm{kip}
$$

For exterior columns with two beams framing into them in the direction of analysis (4 columns):
$\Psi_{A}=\frac{\left(\sum \frac{E I}{l_{c}}\right)_{\text {columns }}}{\left(\sum \frac{E I}{l}\right)_{\text {beams }}}=\frac{355+419}{70+70}=5.520$
ACI 318-19 (Figure R6.2.5.1)
$\Psi_{B}=0.0$ (Column essentially fixed at base)
ACI 318-19 (Figure R6.2.5.1)

Using Figure R6.2.5.1 from ACI 318-19 $\rightarrow k=1.527$ as shown in the figure below for the exterior columns with two beams framing into them in the directions of analysis.

Figure 3 - Effective Length Factor (k) Calculations for Exterior Columns with Two Beams Framing into them in the Direction of Analysis

$$
P_{c 2}=\frac{\pi^{2} \times 27.5 \times 10^{6}}{(1.527 \times 13.333 \times 12)^{2}}=4,540.86 \mathrm{kip}
$$

CONCRETE SOFTWARE SOLUTIONS

For interior columns (8 columns):
$I_{\text {column }}=0.7 \times \frac{c^{4}}{12}=0.7 \times \frac{24^{4}}{12}=19,354 \mathrm{in} .{ }^{4}$
ACI 318-19 (Table 6.6.3.1.1(a))
$E_{c}=57,000 \times \sqrt{f_{c}^{\prime}}=57,000 \times \sqrt{6000}=4,415 \mathrm{ksi}$
ACI 318-19 (19.2.2.1.b)

For the column below level 2 :
$\frac{E_{c} \times I_{\text {column }}}{l_{c}}=\frac{4,415 \times 19,354}{15-20 / 2}=503 \times 10^{3}$ in.kip
For the column above level 2:
$\frac{E_{c} \times I_{\text {column }}}{l_{c}}=\frac{4,415 \times 19,354}{12}=593 \times 10^{3}$ in.kip

For beams framing into the columns:
$\frac{E_{b} \times I_{\text {beam }}}{l_{b}}=\frac{3,605 \times 5,600}{24}=70 \times 10^{3}$ in.kip
Where:
$E_{b}=57,000 \times \sqrt{f_{c}^{\prime}}=57,000 \times \sqrt{4000}=3,605 \mathrm{ksi}$
ACI 318-19 (19.2.2.1.b)
$I_{\text {beam }}=0.35 \times \frac{b \times h^{4}}{12}=0.35 \times \frac{24 \times 20^{4}}{12}=5,600$ in. ${ }^{4}$
ACI 318-19 (Table 6.6.3.1.1(a))
$\Psi_{A}=\frac{\left(\sum \frac{E I}{l_{c}}\right)_{\text {columns }}}{\left(\sum \frac{E I}{l}\right)_{\text {beams }}}=\frac{503+593}{70+70}=7.818$
$\underline{\text { ACI 318-19 (Figure R6.2.5.1) }}$
$\Psi_{B}=0.0$ (Column essentially fixed at base)
Using Figure R6.2.5.1 from ACI 318-19 $\rightarrow k=1.614$ as shown in the figure below for the interior columns.

Figure 4 - Effective Length Factor (k) Calculations for Interior Columns
With 8-\#8 reinforcement equally distributed on all sides and $24 \mathrm{in} . \times 24 \mathrm{in}$. column section $\rightarrow I_{s e}=439.1 \mathrm{in} .{ }^{4}$.
$(E I)_{e f f}=\frac{0.2 E_{c} I_{g}+E_{s} I_{s e}}{1+\beta_{d s}}$
ACI 318-19 (6.6.4.4.4(b))
$(E I)_{e f f}=\frac{0.2 \times 4,415 \times 27,648+29,000 \times 439.1}{1+0}=37.1 \times 10^{6} \mathrm{kip}-\mathrm{in} .^{2}$
$P_{c 3}=\frac{\pi^{2} \times 37.1 \times 10^{6}}{(1.614 \times 13.333 \times 12)^{2}}=5,497.82 \mathrm{kip}$
$\Sigma P_{c}=n_{1} \times P_{c 1}+n_{2} \times P_{c 2}+n_{3} \times P_{c 3}$
$\Sigma P_{c}=12 \times 3,694.04+4 \times 4,540.86+8 \times 5,497.82=106,474.52 \mathrm{kip}$

For load combination 4:
$\Sigma P_{u}=1.2 \times D+1.6 \times L_{r}=1.2 \times 17,895+1.6 \times 270=21,906.00 \mathrm{kip}$
$\underline{A S C E ~ 7-10 ~(2.3 .2-3) ~}$
$\delta_{s}=\frac{1}{1-\frac{\Sigma P_{u}}{0.75 \times \Sigma P_{c}}}$
$\underline{\text { ACI 318-19 (6.6.4.6.2(b)) }}$
(1318-19 (6.6.4.6.1)
$\delta_{s} M_{\text {Botom }, s}=1.378 \times 110.40=152.13 \mathrm{ft}$. kip
$M_{\text {Botoom } _ \text {2ud }}=M_{\text {Bototom }, \text { ss }}+\delta_{s} M_{\text {Botoom }, s}=21.10+152.13=173.23 \mathrm{ft} . \mathrm{kip}$
ACI 318-19 (6.6.4.6.1)

$P_{u}=722.0 \mathrm{kip}$
A summary of the moment magnification factors and magnified moments for the exterior column for all load combinations using both equation options ACI 318-19 (6.6.4.4.4(a)) and (6.6.4.4.4(b)) to calculate $(E)_{\text {eff }}$ is provided in the table below for illustration and comparison purposes. Note: The designation of M_{I} and M_{2} is made based on the second-order (magnified) moments and not based on the first-order (unmagnified) moments.

Table 3- Factored Axial loads and Magnified Moments for Exterior Column								
No.	Load Combination	$\begin{gathered} \text { Axial Load, } \\ \text { kip } \\ \hline \end{gathered}$	Using ACI 6.6.4.4.4(a)			Using ACI 6.6.4.4.4(b)		
			$\delta_{\text {s }}$	M_{1}, ft-kip	M_{2}, ft-kip	$\delta_{\text {s }}$	M_{1}, ft-kip	M_{2}, ft-kip
1	1.4D	871.4	---	24.6	48.7	---	24.6	48.7
2	$1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{~L}_{\mathrm{r}}$	869.4	---	33.4	66.4	---	33.4	66.4
3	$1.2 \mathrm{D}+0.5 \mathrm{~L}+1.6 \mathrm{~L}_{r}$	797.6	---	25.0	49.5	---	25.0	49.5
4	$1.2 \mathrm{D}+1.6 \mathrm{~L}_{\mathrm{r}}+0.8 \mathrm{~W}$	722.0	1.27	59.2	161.6	1.38	60.7	173.2
5	$1.2 \mathrm{D}+1.6 \mathrm{~L}_{\mathrm{r}}-0.8 \mathrm{~W}$	799.3	1.27	24.4	-119.4	1.38	22.9	-131.0
6	$1.2 \mathrm{D}+0.5 \mathrm{~L}+0.5 \mathrm{~L}_{\mathrm{r}}+1.6 \mathrm{~W}$	710.9	1.28	84.7	308.5	1.39	87.7	332.9
7	$1.2 \mathrm{D}+0.5 \mathrm{~L}+0.5 \mathrm{~L}_{\mathrm{r}}-1.6 \mathrm{~W}$	865.4	1.28	14.3	-258.5	1.39	11.3	-282.9
8	$0.9 \mathrm{D}+1.6 \mathrm{~W}$	482.9	1.19	63.8	277.9	1.25	65.6	292.4
9	0.9D-1.6W	637.4	1.19	-1.2	-246.3	1.25	-3.0	-260.8

5. Moment Magnification along Length of Compression Member

In sway frames, second-order effects shall be considered along the length of columns. It shall be permitted to account for these effects using $\boldsymbol{A C I}$ 318-19(6.6.4.5) (Nonsway frame procedure), where C_{m} is calculated using M_{l} and M_{2} from $\underline{\text { ACI 318-19 (6.6.4.6.1) }}$ as follows:

ACI 318-19 (6.6.4.6.4)
$M_{c 2}=\delta M_{2}$
ACI 318-19 (6.6.4.5.1)

Where:
$M_{2}=$ the second-order factored moment.
$\delta=$ magnification factor $=\frac{C_{m}}{1-\frac{P_{u}}{0.75 P_{c}}} \geq 1.0$
ACI 318-19 (6.6.4.5.2)
$P_{c}=\frac{\pi^{2}(E I)_{e f f}}{\left(k l_{u}\right)^{2}}$
$\underline{\text { ACI 318-19 (6.6.4.4.2) }}$

Where:

$$
(E I)_{e f f}=\left\{\begin{array}{l}
\text { (a) } \frac{0.4 E_{c} I_{g}}{1+\beta_{d n s}} \\
\text { (b) } \frac{0.2 E_{c} I_{g}+E_{s} I_{s e}}{1+\beta_{d n s}} \\
\text { (c) } \frac{E_{c} I}{1+\beta_{d n s}}
\end{array}\right\}
$$

ACI 318-19 (6.6.4.4.4)

There are three options for calculating the effective flexural stiffness of slender concrete columns $(E I)_{\text {eff. }}$. The second equation provides accurate representation of the reinforcement in the section and will be used in this example and is also used by the solver in spColumn. Further comparison of the available options is provided in "Effective Flexural Stiffness for Critical Buckling Load of Concrete Columns" technical note.
$I_{\text {column }}=\frac{c^{4}}{12}=\frac{22^{4}}{12}=19,521 \mathrm{in} .{ }^{4}$
ACI 318-19 (Table 6.6.3.1.1(a))
$E_{c}=57,000 \times \sqrt{f_{c}^{\prime \prime}}=57,000 \times \sqrt{6000}=4,415 \mathrm{ksi}$
$\beta_{d n s}$ is the ratio of maximum factored sustained axial load to maximum factored axial load associated with the same load combination.
$\underline{\text { ACI 318-19 (6.6.4.4.4) }}$
For load combination 4:

$$
P_{u, \text { sustained }}=1.2 \times 622.4=746.9 \text { kip }
$$

$P_{u}=1.2 \times 622.4+1.6 \times 8.6+0.8 \times-48.3=722$ kip
$\beta_{\text {dns }}=\frac{P_{u, \text { sustained }}}{P_{u}}=\frac{746.9}{722}=1.03>1.00 \rightarrow \therefore \beta_{\text {dns }}=1.0$
$\Psi_{A}=\frac{\left(\sum \frac{E I}{l_{c}}\right)_{\text {columns }}}{\left(\sum \frac{E I}{l}\right)_{\text {beams }}}=\frac{355+419}{70}=11.040$ (Calculated previously)
ACI 318-19 (Figure R6.2.5.1)
$\Psi_{B}=0.0$ (Column essentially fixed at base)
ACI 318-19 (Figure R6.2.5.1)

Using Figure R6.2.5.1(a) from ACI 318-19 $\rightarrow k=0.690$ as shown in the figure below for the exterior column.

Figure 5 - Effective Length Factor (k) Calculations for Exterior Column (Nonsway)

With 8-\#8 reinforcement equally distributed on all sides and $22 \mathrm{in} . \mathrm{x} 22 \mathrm{in}$. column section $\rightarrow I_{s e}=352.6 \mathrm{in} .{ }^{4}$.
$(E I)_{e f f}=\frac{0.2 E_{c} I_{g}+E_{s} I_{s e}}{1+\beta_{d n s}}$
ACI 318-19 (6.6.4.4.4(b))
$(E I)_{e f f}=\frac{0.2 \times 4,415 \times 19,521+29,000 \times 352.6}{1+1}=13.7 \times 10^{6} \mathrm{kip}-\mathrm{in} .^{2}$

\title{

}
$P_{c}=\frac{\pi^{2} \times 13.7 \times 10^{6}}{(0.690 \times 13.333 \times 12)^{2}}=11,119.57 \mathrm{kip}$
For load combination 4:
$P_{u}=1.2 \times 622.4+1.6 \times 8.6+0.8 \times-48.3=722$ kip
$\underline{A S C E ~ 7-10 ~(2.3 .2-3) ~}$
$C_{m}=0.6+0.4 \frac{M_{1}}{M_{2}}$
ACI 318-19 (6.6.4.5.3a)
$M_{2}=M_{2 _2^{n d}}=173.23 \mathrm{ft}$.kip (as concluded from section 4)
$\underline{\text { ACI 318-19 (6.6.4.6.4) }}$
$M_{1}=M_{1-2^{n d}}=60.68 \mathrm{ft} . \mathrm{kip}($ as concluded from section 4)
ACI 318-19 (6.6.4.6.4)
Since the column is bent in double curvature, M_{1} / M_{2} is positive.
ACI 318-19 (6.6.4.5.3)

$$
C_{m}=0.6-0.4\left(\frac{60.68}{173.23}\right)=0.460
$$

$\delta=\frac{C_{m}}{1-\frac{P_{u}}{0.75 P_{c}}} \geq 1.0$
ACI 318-19 (6.6.4.5.2)
$\delta=\frac{0.460}{1-\frac{722}{0.75 \times 11,119.57}}=0.503<1.00 \rightarrow \delta=1.00$
$M_{\text {min }}=P_{u}(0.6+0.03 h)$
ACI 318-19 (6.6.4.5.4)

Where $P_{u}=722$ kip, and $h=$ the section dimension in the direction being considered $=22 \mathrm{in}$.
$M_{\min }=722\left(\frac{0.6+0.03 \times 22}{12}\right)=75.81 \mathrm{ft} . \mathrm{kip}$
$M_{1}=60.68 \mathrm{ft} . \mathrm{kip}<M_{\min }=75.81 \mathrm{ft} . \mathrm{kip} \rightarrow M_{1}=75.81 \mathrm{ft} . \mathrm{kip}$
ACI 318-19 (6.6.4.5.4)
$M_{c 1}=\delta M_{1}$
$\underline{\text { ACI 318-19 (6.6.4.5.1) }}$
$M_{c 1}=1.00 \times 75.81=75.81 \mathrm{ft} . \mathrm{kip}$
$M_{2}=173.23 \mathrm{ft} . \mathrm{kip}>M_{2, \text { min }}=75.81 \mathrm{ft} . \mathrm{kip} \rightarrow M_{2}=173.23 \mathrm{ft} . \mathrm{kip}$
$\underline{\text { ACI 318-19 (6.6.4.5.4) }}$
$M_{c 2}=\delta M_{2}$
$\underline{\text { ACI 318-19 (6.6.4.5.1) }}$
$M_{c 2}=1.00 \times 173.23=173.23 \mathrm{ft}$. kip
$M_{c 1}$ and $M_{c 2}$ will be considered separately to ensure proper comparison of resulting magnified moments against negative and positive moment capacities of unsymmetrical sections as can be seen in the following figure.

Figure 6 - Column Interaction Diagram for Unsymmetrical Section

A summary of the moment magnification factors and magnified moments for the exterior column for all load combinations using both equation options ACI 318-19 (6.6.4.4.4(a)) and (6.6.4.4.4(b)) to calculate $(E I)_{\text {eff }}$ is provided in the table below for illustration and comparison purposes.

Table 4 - Factored Axial loads and Magnified Moments along Exterior Column Length								
	Load Combination	Axial Load, kip	Using ACI 6.6.4.4.4(a)			Using ACI 6.6.4.4.4(b)		
No.			δ	$\begin{aligned} & \mathrm{M}_{\mathrm{cl},}, \\ & \text { ft-kip } \end{aligned}$	$\begin{aligned} & \mathrm{M}_{\mathrm{c} 2}, \\ & \mathrm{ft} \text {,kip } \end{aligned}$	δ	$\begin{aligned} & \mathrm{M}_{\mathrm{cl}}, \\ & \mathrm{ft}-\mathrm{kip} \end{aligned}$	$\begin{aligned} & \mathrm{M}_{\mathrm{c} 2}, \\ & \mathrm{ft}-\mathrm{kip} \end{aligned}$
1	1.4D	871.4	1.00	91.5	91.5	1.00	91.5	91.5
2	$1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{~L}_{\mathrm{r}}$	869.4	1.00	91.3	91.3	1.00	91.3	91.3
3	$1.2 \mathrm{D}+0.5 \mathrm{~L}+1.6 \mathrm{~L}_{\mathrm{r}}$	797.6	1.00	83.7	83.7	1.00	83.7	83.7
4	$1.2 \mathrm{D}+1.6 \mathrm{~L}_{\mathrm{r}}+0.8 \mathrm{~W}$	722.0	1.00	75.8	161.6	1.00	75.8	173.2
5	$1.2 \mathrm{D}+1.6 \mathrm{~L}_{\mathrm{r}}-0.8 \mathrm{~W}$	799.3	1.00	83.9	-119.4	1.00	83.9	-131.0
6	$1.2 \mathrm{D}+0.5 \mathrm{~L}+0.5 \mathrm{~L}_{\mathrm{r}}+1.6 \mathrm{~W}$	710.9	1.00	84.7	308.5	1.00	87.7	333.0
7	$1.2 \mathrm{D}+0.5 \mathrm{~L}+0.5 \mathrm{~L}_{\mathrm{r}}-1.6 \mathrm{~W}$	865.4	1.00	90.9	-258.5	1.00	90.9	-283.0
8	$0.9 \mathrm{D}+1.6 \mathrm{~W}$	482.9	1.00	63.8	277.9	1.00	65.6	292.4
9	$0.9 \mathrm{D}-1.6 \mathrm{~W}$	637.4	1.00	66.9	-246.3	1.00	66.9	-260.8

For column design ACI 318 requires the second-order moment to first-order moment ratios should not exceed 1.40. If this value is exceeded, the column design needs to be revised.

ACI 318-19 (6.2.5.3)

Table 5 - Second-Order Moment to First-Order Moment Ratios						
No.	Load Combination		Using ACI 6.6.4.4.4(a)		Using ACI 6.6.4.4.4(b)	
		$\mathrm{M}_{\mathrm{c} 1} / \mathrm{M}_{1(1 \mathrm{st})}$		$\mathrm{M}_{\mathrm{c} 2} / \mathrm{M}_{2(1 \mathrm{st})}$	$\mathrm{M}_{\mathrm{c} 1} / \mathrm{M}_{1(1 \mathrm{st})}$	
1	$\mathrm{M}_{\mathrm{c} 2} / \mathrm{M}_{2(1 \mathrm{st})}$					
1	1.4 D	1.00^{*}	1.00^{*}	1.00^{*}	1.00^{*}	
2	$1.2 \mathrm{D}+1.6 \mathrm{~L}+0.5 \mathrm{~L}_{\mathrm{r}}$	1.00^{*}	1.00^{*}	1.00^{*}	1.00^{*}	
3	$1.2 \mathrm{D}+0.5 \mathrm{~L}+1.6 \mathrm{~L}_{\mathrm{r}}$	1.00^{*}	1.00^{*}	1.00^{*}	1.00^{*}	
4	$1.2 \mathrm{D}+1.6 \mathrm{~L}_{\mathrm{r}}+0.8 \mathrm{~W}$	1.00^{*}	1.23	1.00^{*}	1.32	
5	$1.2 \mathrm{D}+1.6 \mathrm{~L}_{\mathrm{r}}-0.8 \mathrm{~W}$	1.00^{*}	1.34	1.00^{*}	$1.40<1.47$	
6	$1.2 \mathrm{D}+0.5 \mathrm{~L}+0.5 \mathrm{~L}_{\mathrm{r}}+1.6 \mathrm{~W}$	1.10	1.26	1.14	1.36	
7	$1.2 \mathrm{D}+0.5 \mathrm{~L}+0.5 \mathrm{~L}_{\mathrm{r}}-1.6 \mathrm{~W}$	1.00^{*}	1.32	1.00^{*}	$1.40<1.45$	
8	$0.9 \mathrm{D}+1.6 \mathrm{~W}$	1.09	1.18	1.12	1.24	
9	$0.9 \mathrm{D}-1.6 \mathrm{~W}$	1.00^{*}	1.20	1.00^{*}	1.27	

* Cutoff value of $M_{\text {min }}$ is applied to $M_{1(I s t)}$ and $M_{2(1 s t)}$ in order to avoid unduly large ratios in cases where $M_{1(1 s t)}$ and $M_{2(I s t)}$ moments are smaller than $M_{\text {min }}$.

6. Column Design

Based on the factored axial loads and magnified moments considering slenderness effects, the capacity of the assumed column section (22 in . x 22 in . with $8-\# 8$ bars distributed all sides equal) will be checked and confirmed to finalize the design. A column interaction diagram will be generated using strain compatibility analysis, the detailed procedure to develop column interaction diagram can be found in "Interaction Diagram - Tied Reinforced Concrete Column Design Strength (ACI 318-19)" example.

The axial compression capacity ϕP_{n} for all load combinations will be set equals to P_{u}, then the moment capacity ϕM_{n} associated to ϕP_{n} will be compared with the magnified applied moment M_{u}. The design check for load combination \#4 is shown below for illustration. The rest of the checks for the other load combinations are shown in the following Table.

$\underline{\text { Figure } 7 \text { - Strains, Forces, and Moment Arms (Load Combination 4) }}$
The following procedure is used to determine the nominal moment capacity by setting the design axial load capacity, ϕP_{n}, equal to the applied axial load, P_{u} and iterating on the location of the neutral axis.

6.1. c, a, and strains in the reinforcement

Try $c=12.75 \mathrm{in}$.

Where c is the distance from the fiber of maximum compressive strain to the neutral axis.
$\underline{\text { ACI 318-19 (22.2.2.4.2) }}$
$a=\beta_{1} \times c=0.75 \times 12.75=9.563 \mathrm{in}$.
$\underline{\text { ACI 318-19 (22.2.2.4.1) }}$

Where:
$\beta_{1}=0.85-\frac{0.05 \times\left(f_{c}^{\prime}-4000\right)}{1000}=0.85-\frac{0.05 \times(6000-4000)}{1000}=0.75$
ACI 318-19 (Table 22.2.2.4.3)
$\varepsilon_{c u}=0.003$
ACI 318-19 (22.2.2.1)
$\varepsilon_{y}=\frac{f_{y}}{E_{s}}=\frac{60}{29,000}=0.00207$
$\varepsilon_{s}=\left(d_{1}-c\right) \times \frac{0.003}{c}=(19.625-12.75) \times \frac{0.003}{12.75}=0.00162($ Tension $)<\varepsilon_{y}$
\therefore tension reinforcement has not yielded
$\therefore \phi=0.65$
ACI 318-19 (Table 21.2.2)
$\varepsilon_{s 1}^{\prime}=\left(c-d_{2}\right) \times \frac{0.003}{c}=(12.75-2.375) \times \frac{0.003}{12.75}=0.00244($ Compression $)>\varepsilon_{y}$
$\varepsilon_{s 2}^{\prime}=\left(c-\frac{h}{2}\right) \times \frac{0.003}{c}=(12.75-11) \times \frac{0.003}{12.75}=0.00041($ Compression $)<\varepsilon_{y}$
6.2. Forces in the concrete and steel
$C_{c}=0.85 \times f_{c}^{\prime} \times a \times b=0.85 \times 6,000 \times 9.563 \times 22=1073 \mathrm{kip}$
ACI 318-19 (22.2.2.4.1)
$f_{s}=\varepsilon_{s} \times E_{s}=0.00162 \times 29,000,000=46,907 \mathrm{psi}$
$\mathrm{T}_{s}=f_{y} \times A_{s 1}=46,912 \times(3 \times 0.79)=111.2 \mathrm{kip}$

Since $\varepsilon_{s 1}^{\prime}>\varepsilon_{y} \rightarrow$ compression reinforcement has yielded
$\therefore f_{s 1}^{\prime}=f_{y}=60,000 \mathrm{psi}$
Since $\varepsilon_{s 2}^{\prime}<\varepsilon_{y} \rightarrow$ compression reinforcement has not yielded

$$
\therefore f_{s 2}^{\prime}=\varepsilon_{s 2}^{\prime} \times E_{s}=0.00041 \times 29,000,000=11,944 \mathrm{psi}
$$

The area of the reinforcement in this layer has been included in the area ($a b$) used to compute C_{c}. As a result, it is necessary to subtract $0.85 f_{c}$ ' from f_{s} ' before computing C_{s} :
$\mathrm{C}_{s 1}=\left(f_{s 1}^{\prime}-0.85 f_{c}^{\prime}\right) \times A_{s 1}^{\prime}=(60,000-0.85 \times 6,000) \times(3 \times 0.79)=130.1 \mathrm{kip}$
$\mathrm{C}_{s 2}=\left(f_{s 2}^{\prime}-0.85 f_{c}^{\prime}\right) \times A_{s 2}^{\prime}=(11,941-0.85 \times 6,000) \times(2 \times 0.79)=18.9 \mathrm{kip}$
6.3. ϕP_{n} and $\phi M_{\underline{n}}$
$P_{n}=C_{c}+C_{s 1}+C_{s 2}-T_{s}=1,073+130.1+18.9-111.2=1,110.8 \mathrm{kip}$
$\phi P_{n}=0.65 \times 1,111=722.0 \mathrm{kip}=P_{u}$
The assumption that $\mathrm{c}=12.75 \mathrm{in}$. is correct.
$M_{n}=C_{c} \times\left(\frac{h}{2}-\frac{a}{2}\right)+C_{s 1} \times\left(\frac{h}{2}-d_{2}\right)+C_{s 2} \times\left(\frac{h}{2}-\frac{h}{2}\right)+T_{s} \times\left(d_{1}-\frac{h}{2}\right)$
$M_{n}=1,073 \times\left(\frac{22}{2}-\frac{9.563}{2}\right)+130.1 \times\left(\frac{22}{2}-2.375\right)+18.9 \times\left(\frac{22}{2}-\frac{22}{2}\right)+111.2 \times\left(19.625-\frac{22}{2}\right)=729.44 \mathrm{kip} . \mathrm{ft}$
$\phi M_{n}=0.65 \times 729=474.14$ kip. $\mathrm{ft}<M_{u}=M_{c 2}=173.2$ kip.ft

Table 6 - Exterior Column Axial and Moment Capacities							
No.	P_{u}, kip	$\mathrm{M}_{\mathrm{u}}=\mathrm{M}_{2(2 \mathrm{nd})}$, ft-kip	c, in.	$\varepsilon_{\mathrm{t}}=\varepsilon_{\mathrm{s}}$	ϕ	$\phi \mathrm{P}_{\mathrm{n}}$, kip	$\phi \mathrm{M}_{\mathrm{n}}$, kip.ft
1	871.4	91.5	14.85	0.00097	0.65	871.4	459.4
2	869.4	91.3	14.82	0.00097	0.65	869.4	459.7
3	797.6	83.7	13.75	0.00128	0.65	797.6	468.2
4	722.0	173.2	12.75	0.00162	0.65	722.0	474.1
5	799.3	-131.0	13.78	0.00127	0.65	799.3	468.0
6	710.9	333.0	12.61	0.00167	0.65	710.9	474.9
7	865.4	-283.0	14.76	0.00099	0.65	865.4	460.2
8	482.9	292.4	7.41	0.00495	0.89	482.9	552.9
9	637.4	-260.8	11.68	0.00204	0.65	637.4	478.8

Therefore, since $\phi M_{n}>M_{u}$ for all $\phi P_{n}=P_{u}$, use 22×22 in. column with 8-\#8 bars.
\qquad
7. Column Interaction Diagram - spColumn Software
spColumn is a StructurePoint software program that performs the analysis and design of reinforced concrete sections subjected to axial force combined with uniaxial or biaxial bending. Using the provisions of the Strength Design Method and Unified Design Provisions, slenderness considerations are used for moment magnification due to second order effect (P-Delta) for sway and non-sway frames.

For this column section, investigation mode is used, service loads are defined, and slenderness effects are considered using ACI 318-19 provisions. The model input parameters, results, and report (for load combination \#4) are shown below.

Figure 8 - spColumn Interface

Figure 9 - spColumn Model Editor

Figure 10 - Defining Slenderness - Load Combination \#4 (spColumn)

Figure 11 - Defining Columns Above / Below (spColumn)

Figure 12 - Defining Beams in X-Direction (spColumn)

Structure Point

CONCRETE SOFTWARE SOLUTIONS

Figure 13 - Defining Loads / Modes (spColumn)

Structure Point

CONCRETE SOFTWARE SOLUTIONS

Figure 14 - Defining Load Combination \#4 (spColumn)

Figure 15 - Column Section Interaction Diagram about the X-Axis - Design Check for Load Combination \#4 (spColumn)

[^0]CONCRETE SOFTWARE SOLUTIONS
STRUCTUREPOINT - spColumn v10.00 (TM)
Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1 810:11 AM

Contents

1. General Information .. 3
2. Material Properties... 3
2.1. Concrete... 3
2.2. Steel ... 3
3. Section.. 3
3.1. Shape and Properties.. 3
3.2. Section Figure .. 4
4. Reinforcement ... 4

4.2. Confinement and Factors ... 4
4.3. Arrangement.. 4
5. Loading .. 5
5.1. Load Cases ... 5
5.2. Load Combinations ... 5
5.3. Service Loads.. 5
6. Slenderness... 5
6.1. Sway Criteria ... 5
6.2. Columns .. 5
6.3. X - Beams... 5
7. Moment Magnification... 6

7.2. Effective Length Factors... 6

8. Factored Moments.. 6
8.1. X - axis .. 6
9. Control Points ... 6
10. Factored Loads and Moments with Corresponding Capacity Ratios.. 7
11. Diagrams ... 8
11.1. PM at $\theta=0$ [deg] ... 8

List of Figures

Figure 1: Column section.. 4

CONCRETE SOFTWARE SOLUTIONS
E.IStructurePointlspColumn\Slendemess Column - LC \#4.colx

1. General Information

File Name	E:IStructurePo...ISlendemess Column-LC \#4.colx
Project	Slenderness
Column	Exterior
Engineer	SP
Code	ACI 318-19
Bar Set	ASTM A615
Units	English
Run Option	Investigation
Run Axis	X-axis
Slendemess	Considered
Column Type	Structural
Capacity Method	Moment capacity

2. Material Properties

2.1. Concrete

Type	Standard
f_{c}	6 ksi
E_{0}	4415.21 ksi
f_{c}	5.1 ksi
ε_{u}	$0.003 \mathrm{in} / \mathrm{in}$
β_{1}	0.75

2.2. Steel

Type	Standard
f_{y}	60 ksi
E_{s}	29000 ksi
$\varepsilon_{\text {ty }}$	$0.00206897 \mathrm{in} / \mathrm{in}$

3. Section

3.1. Shape and Properties

Type	Rectangular
Width	22 in
Depth	22 in
A_{o}	484 in 2
I_{x}	19521.3 in 4
I_{y}	$19521.3 \mathrm{in}^{4}$
r_{x}	6.35085 in
r_{y}	6.35085 in
X_{0}	0 in
Y_{o}	0 in

3.2. Section Figure

Figure 1: Column section
4. Reinforcement
4.1. Bar Set: ASTM A615

Bar	Diameter in	Area in 2	Bar	Diameter in	Area in 2	Bar	Diameter in	Area in 2
$\# 3$	0.38	0.11	$\# 4$	0.50	0.20	0.31		
$\# 6$	0.75	0.44	$\# 7$	0.88	0.60	\#5	0.63	\#8
$\# 9$	1.13	1.00	$\# 10$	1.27	1.27	\#11	1.00	
$\# 14$	1.69	2.25	$\# 18$	2.26	4.00	0.79		

4.2. Confinement and Factors

Confinement type	Tied
For \#10 bars or less	\#3 ties
For larger bars	\#4 ties
Capacity Reduction Factors	
Axial compression, (a)	0.8
Tension controlled ϕ, (b)	0.9
Compression controlled ϕ, (c)	0.65

4.3. Arrangement

Pattern	All sides equal
Bar layout	Rectangular
Cover to	Transverse bars
Clear cover	1.5 in
Bars	$8 \# 8$

Total steel area, A_{s}	$6.32 \mathrm{in}^{2}$
Rho	1.31%
Minimum clear spacing	7.63 in

5. Loading

5.1. Load Cases

Case	Type	Sustained Load $\%$
A	Dead	100
B	Live	0
C	Wind	0
D	EQ	0
E	Snow	0

5.2. Load Combinations

Combination	Dead	Live	Wind	EQ	Snow
U1	1.200	0.000	0.800	0.000	1.600

5.3. Service Loads

No.	Load Case	Axial Load kip	Mx @ Top k-ft	Mx @ Bottom k-ft	My @ Top k-ft	My @ Bottom k-ft
		Dead	622.40	34.80	17.60	0.00
1	Live	73.90	15.40	7.70	0.00	0.00
1	Wind	-48.30	17.10	138.00	0.00	0.00
1	EQ	0.00	0.00	0.00	0.00	0.00
1	Snow	8.60	0.00	0.00	0.00	0.00
1						

6. Slenderness
6.1. Sway Criteria 6. X-Axis $2^{\text {nd }}$ order effects along length
$\Sigma \mathrm{P}_{\mathrm{e}}$
$\Sigma \mathrm{P}_{\mathrm{u}}$

6.2. Columns

Column	Axis	Height ft	Width in	Depth/Dia. in	\mathbf{I} in 4	$\mathbf{f}_{\mathbf{c}}$ ksi	$\mathbf{E}_{\mathbf{c}}$ ksi
Design	\mathbf{X}	13.333	22	22	19521.3	6	4415.21
Above	X	12	22	22	19521.3	6	4415.21
Below	X	(no column specified...)					

6.3. X-Beams

Beam	Length	Width	Depth	1	$\mathrm{f}_{\text {c }}$	E
	ft	in	in	in ${ }^{4}$	ksi	ksi
Above Left	24	24	20	16000	4	3605
Above Right	(no beam specified...)					
Below Left	Rigid beam					
Below Right	Rigid beam					

$\begin{array}{ll}\text { Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1 } & 8 / 10 / 2022 \\ \text { E:1StructurePointlsp ColumnISlendemess Column-LC \#4.colx }\end{array}$
7. Moment Magnification

7.1. General Parameters

Factors	Code defaults
Stiffness reduction factor, ϕ_{κ}	0.75
Cracked section coefficients, cl(beams)	0.35
Cracked section coefficients, cl(columns)	0.7
$0.2 \mathrm{E}_{\mathrm{c}} \mathrm{I}_{\mathrm{g}}+\mathrm{E}_{\mathrm{s}} \mathrm{I}_{\text {se }}$	(X-axis)
Minimum eccentricity, $\mathrm{e}_{\mathrm{x} \text { min }}$	$2.75 \mathrm{e}+007 \mathrm{kip}^{\mathrm{kin}}{ }^{2}$

7.2. Effective Length Factors

| Axis | $\boldsymbol{\Psi}_{\text {top }}$ | $\boldsymbol{\Psi}_{\text {bottom }}$ | \mathbf{k} (Nonsway) | $\mathbf{k l}_{\mathbf{l}} / \mathbf{r}$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| X | 11.040 | 0.000 | 0.690 | 42.65 |

7.3. Magnification Factors: \boldsymbol{X} - axis

Load Combo	At Ends					Along Length					
	$\sum \mathbf{P}_{u}$	$\mathbf{P}_{\text {c }}$	$\sum \mathbf{P}$ c	$\boldsymbol{\beta}_{\text {ds }}$	δ_{5}	$\mathbf{P u}_{u}$	$k^{\prime} I_{u} / \mathbf{r}$	$\mathbf{P}_{\text {c }}$	$\boldsymbol{\beta}_{\text {dns }}$	C ${ }_{\text {m }}$	б
	kip	kip	kip			kip		kip			
1 U 1	21906.20	3694.49	106486.42	0.000	1.378	722.00	(N/A)	11126.81	1.000	0.460	1.000

8. Factored Moments

NOTE: Each loading combination includes the following cases:
Top - At column top
Bot - At column bottom

8.1. X-axis

9. Control Points

About Point	P	X-Moment	Y-Moment	NA Depth	$\mathrm{d}_{\text {t }}$ Depth	$\varepsilon_{\text {t }}$	¢
	kip	k-ft	k-ft	in	in		
X @ Max compression	1830.0	0.00	0.00	63.24	19.63	-0.00207	0.65000
X @ Allowable comp.	1464.0	262.54	0.00	23.99	19.63	-0.00055	0.65000
$\mathrm{X} @ \mathrm{f}_{\mathrm{s}}=0.0$	1192.0	386.45	0.00	19.63	19.63	0.00000	0.65000
$\mathrm{X} @ \mathrm{f}_{5}=0.5 \mathrm{f}_{\mathrm{y}}$	858.6	461.68	0.00	14.59	19.63	0.00103	0.65000
X @ Balanced point	632.2	478.99	0.00	11.61	19.63	0.00207	0.65000
X @ Tension control	476.1	554.68	0.00	7.30	19.63	0.00507	0.90000
X @ Pure bending	0.0	268.27	0.00	2.60	19.63	0.01962	0.90000
X @ Max tension	-341.3	0.00	0.00	0.00	19.63	9.99999	0.90000
-X @ Max compression	1830.0	0.00	0.00	63.24	19.63	-0.00207	0.65000
-X @ Allowable comp.	1464.0	-262.54	0.00	23.99	19.63	-0.00055	0.65000
-X @ $\mathrm{f}_{\mathrm{s}}=0.0$	1192.0	-386.45	0.00	19.63	19.63	0.00000	0.65000
-X @ $\mathrm{f}_{\mathrm{s}}=0.5 \mathrm{f}_{\mathrm{y}}$	858.6	-461.68	0.00	14.59	19.63	0.00103	0.65000
-X @ Balanced point	632.2	-478.99	0.00	11.61	19.63	0.00207	0.65000
-X @ Tension control	476.1	-554.68	0.00	7.30	19.63	0.00507	0.90000
-X @ Pure bending	0.0	-268.27	0.00	2.60	19.63	0.01962	0.90000
-X @ Max tension	-341.3	0.00	0.00	0.00	19.63	9.99999	0.90000

CONCRETE SOFTWARE SOLUTIONS
$\begin{array}{lr}\text { STRUCTUREPOINT - spColumn v10.00 (TM) } & \text { Page | } 7 \\ \text { Licensed to: StructurePoint, LLC. License ID: } 00000-0000000-4-20 \text { FC1-20FC1 } & 8 / 10 / 2022\end{array}$
$\begin{array}{ll}\text { Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1 } & 8 / 10 / 2022 \\ \text { E:IStructurePointlspColumnISlendemess Column-LC \#4.colx } & 10: 11 \mathrm{AM}\end{array}$
10. Factored Loads and Moments with Corresponding Capacity Ratios

NOTE: Calculations are based on "Moment Capacity" Method
Each loading combination includes the following cases:
Top - At column top
Bot - At column bottom

11. Diagrams
11.1. $P M$ at $\theta=0$ [deg]

CONCRETE SOFTWARE SOLUTIONS
8. Summary and Comparison of Design Results

Table 7 - Factored Axial loads and Magnified Moments at Column Ends Comparison										
No.	P_{u}, kip		k_{s}		$\delta_{\text {s }}$		$\mathrm{M}_{1(2 \mathrm{nd})}$, ft-kip		$\mathrm{M}_{2(2 \mathrm{nd})}$, ft -kip	
	Hand	spColumn								
1	871.4	871.4	1.693	1.693	1.46	1.46	24.6	24.6	48.7	48.7
2	869.4	869.4	1.693	1.693	1.45	1.45	33.4	33.4	66.4	66.4
3	797.6	797.6	1.693	1.693	1.40	1.40	25.0	25.0	49.5	49.5
4	722.0	722.0	1.693	1.693	1.38	1.38	60.7	60.6	173.2	173.3
5	799.3	799.3	1.693	1.693	1.38	1.38	22.9	22.9	-131.0	-131.0
6	710.9	710.9	1.693	1.693	1.39	1.40	87.7	87.6	332.9	332.9
7	865.4	865.4	1.693	1.693	1.39	1.40	11.3	11.3	-282.9	-283.0
8	482.9	482.9	1.693	1.693	1.25	1.25	65.6	65.6	292.4	292.4
9	637.4	637.4	1.693	1.693	1.25	1.25	-3.0	-3.0	-260.8	-260.7

Table 8 - Magnified Moments along Column Length to First-Order Moment Ratios Comparison												
	k_{ns}		δ		M_{cl}, ft-kip		$\mathrm{M}_{\mathrm{c} 2}$, ft-kip		$\mathrm{M}_{\mathrm{cl}} / \mathrm{M}_{1(1 \mathrm{st})}$		$\mathrm{M}_{\mathrm{c} 2} / \mathrm{M}_{2(1 \mathrm{st})}$	
No.	Hand	spColumn										
1	0.690	0.690	1.00	1.00	91.5	91.5	91.5	91.5	1.00	1.00	1.00	1.00
2	0.690	0.690	1.00	1.00	91.3	91.3	91.3	91.3	1.00	1.00	1.00	1.00
3	0.690	0.690	1.00	1.00	83.7	83.7	83.7	83.7	1.00	1.00	1.00	1.00
4	0.690	0.690	1.00	1.00	75.8	75.8	173.2	173.3	1.00	1.00	1.32	1.32
5	0.690	0.690	1.00	1.00	83.9	83.9	-131.0	-131.0	1.00	1.00	1.47	1.47
6	0.690	0.690	1.00	1.00	87.7	87.6	333.0	332.9	1.14	1.14	1.36	1.36
7	0.690	0.690	1.00	1.00	90.9	90.9	-283.0	-283.0	1.00	1.00	1.45	1.45
8	0.690	0.690	1.00	1.00	65.6	65.6	292.4	292.4	1.12	1.12	1.24	1.24
9	0.690	0.690	1.00	1.00	66.9	66.9	-260.8	260.7	1.00	1.00	1.27	1.27

Table 9 - Design Parameters Comparison										
No.	c, in.		$\varepsilon_{\mathrm{t}}=\varepsilon_{\mathrm{s}}$		ϕ		$\phi \mathrm{P}_{\mathrm{n}}$, kip		$\phi \mathrm{M}_{\mathrm{n}}$, ft-kip	
	Hand	spColumn								
1	14.85	14.85	0.00097	0.00097	0.65	0.65	871.4	871.4	459.4	459.4
2	14.82	14.82	0.00097	0.00097	0.65	0.65	869.4	869.4	459.7	459.7
3	13.75	13.75	0.00128	0.00128	0.65	0.65	797.6	797.6	468.2	468.2
4	12.75	12.75	0.00162	0.00162	0.65	0.65	722.0	722.0	474.1	474.1
5	13.78	13.78	0.00127	0.00127	0.65	0.65	799.3	799.3	468.0	468.0
6	12.61	12.61	0.00167	0.00167	0.65	0.65	710.9	710.9	474.9	474.9
7	14.76	14.76	0.00099	0.00099	0.65	0.65	865.4	865.4	460.2	460.2
8	7.41	7.41	0.00495	0.00495	0.89	0.89	482.9	482.9	552.9	552.9
9	11.68	11.68	0.00204	0.00204	0.65	0.65	637.4	637.4	478.8	478.8

In all of the hand calculations illustrated above, the results are in precise agreement with the automated exact results obtained from the spColumn program.

9. Conclusions \& Observations

The analysis of the reinforced concrete section performed by spColumn conforms to the provisions of the Strength Design Method and Unified Design Provisions with all conditions of strength satisfying the applicable conditions of equilibrium and strain compatibility and includes slenderness effects using moment magnification method for sway and nonsway frames.

ACI 318 provides multiple options for calculating values of $k,(E I)_{\text {eff, }} \delta_{\mathrm{s}}$, and δ leading to variability in the determination of the adequacy of a column section. Engineers must exercise judgment in selecting suitable options to match their design condition. The spColumn program utilizes the exact methods whenever possible and allows user to override the calculated values with direct input based on their engineering judgment wherever it is permissible.

In load combinations 5 and $7, M_{u}$ including second-order effects exceeds $1.4 M_{u}$ due to first-order effects (see Table 5). This indicates that in this building, the weight of the structure is high in proportion to its lateral stiffness leading to excessive $P \Delta$ effect (secondary moments are more than 25 percent of the primary moments). The $P \Delta$ effects will eventually introduce singularities into the solution to the equations of equilibrium, indicating physical structural instability. It was concluded in the literature that the probability of stability failure increases rapidly when the stability index Q exceeds 0.2 , which is equivalent to a secondary-to-primary moment ratio of 1.25 . The maximum value of the stability coefficient θ (according to ASCE/SEI 7) which is close to stability coefficient Q (according to ACI 318) is 0.25 . The value 0.25 is equivalent to a secondary-to-primary moment ratio of 1.33 . Hence, the upper limit of 1.4 on the secondary-to-primary moment ratio was selected by the ACI 318 .

ACI 318 provides three equation options to calculate the effective stiffness modulus $(E I)_{\text {eff }}$ as was discussed previously in this document. Equation 6.6.4.4.4(b) is more accurate than equation 6.6.4.4(a) but is more difficult to use because $I_{s e}$ is not known until reinforcement is chosen. spColumn uses equation 6.6.4.4.4(b) since an iterative procedure is used to select the optimum reinforcement configuration.

As can be seen in Table 5 of this example, exploring the impact of other code permissible equation options provides the engineer added flexibility in decision making regarding design. For load combinations 5 and 7 resolving the stability concern may be viable through a frame analysis providing values for $\mathrm{V}_{\text {us }}$ and Δ_{o} to calculate magnification factor δ_{s} and may allow the proposed design to be acceptable. Creating a complete model with detailed lateral loads and load combinations to account for second order effects may not be warranted for all cases of slender column design nor is it disadvantageous to have a higher margin of safety when it comes to column slenderness and frame stability considerations.

[^0]: Structure Point
 Licensee stated below acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthemore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to
 the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is
 not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, not and cannot be certifled infalible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, the use of the spColumn program. Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1

