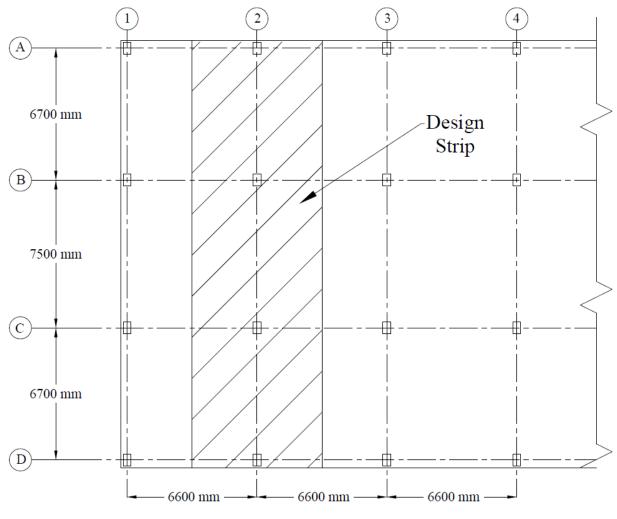


Two-Way Flat Plate Concrete Floor System Analysis and Design (CAC Design Handbook)



Two-Way Flat Plate Concrete Floor System Analysis and Design (CAC Design Handbook)

The concrete floor slab system shown below is for an intermediate floor to be designed considering partition weight $= 1 \text{ kN/m}^2$, and unfactored live load $= 1.9 \text{ kN/m}^2$. Flat plate concrete floor system does not use beams between columns or drop panels and it is usually suited for lightly loaded floors with short spans typically for residential and hotel buildings. The lateral loads are independently resisted by shear walls. The analysis procedure "Elastic Frame Method (EFM)" prescribed in <u>CSA A23.3-14</u> is illustrated in detail in this example (Example #1 from the CAC Design Handbook). The hand solution from EFM is also used for a detailed comparison with the Reference results using Direct Design Method (DDM) and results of the engineering software program <u>spSlab</u>. Explanation of the EFM is available in <u>StructurePoint Video Tutorials</u> page.

Contents

1.	Preliminary Member Sizing	4
2.	Two-Way Slab Analysis and Design	8
	2.1. Direct Design Method (DDM)	8
	2.1.1. Direct design method limitations	8
	2.2. Elastic Frame Method (EFM)	10
	2.2.1. Elastic frame method limitations	11
	2.2.2. Frame members of elastic frame	13
	2.2.3. Elastic frame analysis	15
	2.2.4. Design moments	17
	2.2.5. Distribution of design moments	18
	2.2.6. Flexural reinforcement requirements	19
	2.2.7. Column design moments	23
3.	Two-Way Slab Shear Strength	24
	3.1. One-Way (Beam action) Shear Strength	24
	3.2. Two-Way (Punching) Shear Strength	25
4.	Two-Way Slab Deflection Control (Serviceability Requirements)	27
5.	spSlab Software Solution	28
6.	Summary and Comparison of Two-Way Slab Design Results	52
7.	Comparison of Two-Way Slab Analysis and Design Methods	56

Code

Design of Concrete Structures (CSA A23.3-14)

Reference

CAC Concrete Design Handbook, 4th Edition, Cement Association of Canada

Notes on ACI 318-11 Building Code Requirements for Structural Concrete, Twelfth Edition, 2013 Portland Cement Association

Design Data

Floor-to-Floor Height = 3 m (provided by architectural drawings)

Superimposed Dead Load, $SDL = 1 \text{ kN/m}^2$ for framed partitions, wood studs plaster 2 sides

Live Load, $LL = 1.9 \text{ kN/m}^2$ for Residential floors

Exterior Cladding Panels Weight = 2.4 kN/m

 $f'_c = 25$ MPa (for slabs)

 $f'_{c} = 25$ MPa (for columns)

 $f'_{v} = 400 \text{ MPa}$

Column Dimensions = 400 mm x 600 mm

Solution

1. Preliminary Member Sizing

1.1 Slab minimum thickness - Deflection

CSA A23.3-14 (13.2)

Minimum member thickness and depths from CSA A23.3-14 will be used for preliminary sizing.

Using CSA A23.3-14 minimum slab thickness for two-way construction without interior beams in *Section 13.2.3*.

Exterior Panels (N-S Direction Governs):

$$h_{s,\min} = 1.1 \times \frac{l_n \left(0.6 + f_y / 1000 \right)}{30} = 1.1 \times \frac{6200 \left(0.6 + 400 / 1000 \right)}{30} = 227 \text{ mm}$$
CSA A23.3-14 (13.2.3)

But not less than 120 mm.

Where $l_n = \text{length of clear span in the long direction} = 6600 - 400 = 6200 \text{ mm}$

<u>CSA A23.3-14 (13.2.1)</u>

sislab

Interior Panels (E-W Direction Governs):

$$h_{s,\min} = \frac{l_n \left(0.6 + f_y / 1000\right)}{30} = \frac{6900 \left(0.6 + 400 / 1000\right)}{30} = 230 \text{ mm}$$

CSA A23.3-14 (13.2.3)

CSA A23.3-14 (13.2.1)

But not less than 120 mm.

Where $l_n = \text{length of clear span in the long direction} = 7500 - 600 = 6900 \text{ mm}$

Try 250 mm slab for all panels (self-weight = 5.89 kN/m^2)

1.2. Slab one way shear strength

Evaluate the average effective depth (Figure 2):

$$d_{t} = t_{slab} - c_{clear} - d_{b} - \frac{d_{b}}{2} = 250 - 25 - 16 - \frac{16}{2} = 201 \text{ mm}$$
$$d_{l} = t_{slab} - c_{clear} - \frac{d_{b}}{2} = 250 - 25 - \frac{16}{2} = 217 \text{ mm}$$
$$d_{avg} = \frac{d_{l} + d_{t}}{2} = \frac{201 + 217}{2} = 209 \text{ mm}$$

Where:

 $c_{clear} = 20 \text{ mm}$ for 15M steel bar

CSA A23.3-14 (Annex A. Table 17)

Note that the reference used 25 mm as clear cover, in this example the clear cover used is 25 mm to be consistent with reference.

 $d_b = 16 \text{ mm for } 15 \text{M steel bar}$

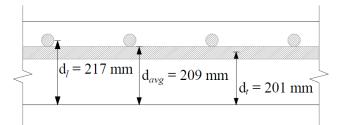


Figure 2 - Two-Way Flat Concrete Floor System

Load Combination 1:

Factored dead load,
$$w_{df} = 1.4 \times (5.89 + 1) = 9.65 \text{ kN/m}^2$$
 CSA A23.3-14 (Annex C. Table C.1 a)
Total factored load $w_f = 9.65 \text{ kN/m}^2$

Load Combination 2:

Factored dead load,	$w_{df} = 1.25 \times (5.89 + 1) = 8.61 \text{ kN/m}$	2
Factored live load,	$w_{lf} = 1.5 \times 1.9 = 2.85 \text{ kN/m}^2$	<u>CSA A23.3-14 (Annex C. Table C.1 a)</u>
Total factored load	$w_f = w_{df} + w_{lf} = 11.5 \text{ kN/m}^2$	(Controls)

Check the adequacy of slab thickness for beam action (one-way shear)

<u>CSA A23.3-14 (13.3.6)</u>

At an interior column:

The critical section for one-way shear is extending in a plane across the entire width and located at a distance, d_v from the face of support or concentrated load (see Figure 3).**CSA A23.3-14 (13.3.6.1)**Consider a 1 m. wide strip.

Tributary area for one-way shear is
$$A_{Tributary} = \left(\frac{\left[\left(\frac{7500}{2}\right) - \left(\frac{600}{2}\right) - 209\right] \times (1000)}{1000^2}\right) = 3.26 \text{ m}^2$$

$$V_f = w_f \times A_{Tributary} = 11.5 \times 3.26 = 37.49 \text{ kN}$$
$$V_c = \varphi_c \lambda \beta \sqrt{f_c} b_w d_v$$
$$CSA A23.3-14 (Eq. 11.6)$$

Where:

 $\lambda = 1 \text{ for normal weight concrete} \qquad \underbrace{CSA \ A23.3-14 \ (8.6.5)}_{\beta = 0.21 \text{ for slabs with overall thickness not greater than 350 mm} \qquad \underbrace{CSA \ A23.3-14 \ (11.3.6.2)}_{Q_{avg}}$ $d_v = \text{Max} \ (0.9d_{avg}, 0.72h) = \text{Max} \ (0.9 \times 209, 0.72 \times 250) = \text{Max} \ (188, 180) = 188 \text{ mm} \qquad \underbrace{CSA \ A23.3-14 \ (11.3.6.2)}_{Q_{avg}}$ $\sqrt{f_c} = 5 \text{ MPa} < 8 \text{ MPa} \qquad \underbrace{CSA \ A23.3-14 \ (11.3.4)}_{Q_c}$ $V_c = 0.65 \times 1 \times 0.21 \times \sqrt{25} \times 1000 \times \frac{188}{1000} = 128.3 \text{ kN} > V_f$

Slab thickness of 250 mm is adequate for one-way shear.

1.3. Slab two-way shear strength

Check the adequacy of slab thickness for punching shear (two-way shear) at an interior column (Figure 4):

Shear prerimeter: $b_0 = 2 \times (600 + 400 + 2 \times 209) = 2836 \text{ mm}$ <u>CSA A23.3-14 (13.3.3)</u>

Tributary area for two-way shear is

CSA A23.3-14 (13.3.4.1)

CSA A23.3-14 (Eq. 13.5)

CSA A23.3-14 (13.3.4.1)

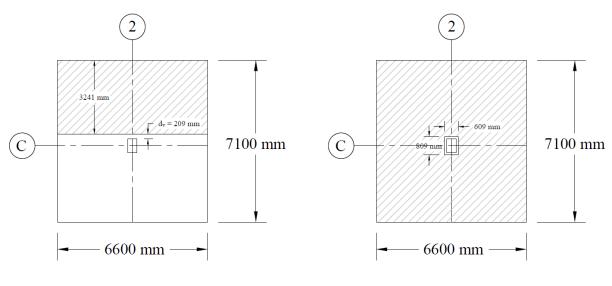
$$A_{Tributary} = \left(\frac{7.5 + 6.7}{2} \times 6.6\right) - \left(\frac{600 + 209}{1,000} \times \frac{400 + 209}{1,000}\right) = 46.86 - 0.49 = 46.37 \text{ m}^2$$

The factored resisiting shear stress, V_r shall be the smallest of :

a)
$$v_r = v_c = \left(1 + \frac{2}{\beta_c}\right) 0.19 \lambda \phi_c \sqrt{f'_c}$$

 $v_r = \left(1 + \frac{2}{1.5}\right) \times 0.19 \times 0.65 \times \sqrt{25} = 1.44 \text{ MPa}$

Where $\beta_c = \frac{600}{400} = 1.5$ (ratio of long side to short side of the column)


b) $v_r = v_c = \left(\frac{\alpha_s d}{b_o} + 0.19\right) \lambda \phi_c \sqrt{f_c}$ <u>CSA A23.3-14 (Eq. 13.6)</u>

$$v_r = \left(\frac{4 \times 209}{2836} + 0.19\right) \times 1 \times 0.65 \times \sqrt{25} = 1.58 \text{ MPa}$$

c)
$$v_r = v_c = 0.38\lambda \phi_c \sqrt{f'_c} = 0.38 \times 1 \times 0.65 \times \sqrt{25} = 1.24 \text{ MPa}$$

CSA A23.3-14 (Eq. 13.7)

$$v_{f,ave} = \frac{V_f}{b_o d} = \frac{11.5 \times \left(\frac{7.5 + 6.7}{2} \times 6.6\right)}{2836 \times 209} \times 1,000 = 0.909 \text{ MPa}$$
$$\frac{v_r}{v_{f,ave}} = \frac{1.240}{0.909} = 1.36 > 1.20 \qquad \underline{CAC \ Concrete \ D}$$

Slab thickness of 250 mm is adequate for two-way shear.

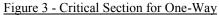


Figure 4 - Critical Section for Two-Way

CONCRETE SOFTWARE SOLUTIONS

1.4. Column axial load strength

Check the adequacy of column dimensions for axial load: Tributary area for interior column is $A_{Tributary} = (7.5 \times 6.6) = 49.5 \text{ m}^2$ $P_f = w_f \times A_{Tributary} = 11.5 \times 49.5 = 569 \text{ kN}$ $P_{r,max} = (0.2 + 0.002h)P_{ro} \le 0.80P_{ro}$ (For tied column along full length) <u>CSA A23.3-14 (Eq. 10.9)</u> $P_{ro} = \alpha_1 \phi_c f'_c (A_g - A_{st} - A_t - A_p) + \phi_s f_y A_{st} + \phi_\alpha F_y A_t - f_{pr} A_p$ $P_{ro} = 0.813 \times 0.65 \times 25 \times (600 \times 400 - 0) + 0.85 \times 420 \times 0 + 0 = 3,170,700 \text{ N} = 3170.7 \text{ kN}$ $P_{r,max} = (0.2 + 0.002 \times 600) \times 3170.7 \le 0.80 \times 3170.7$ $P_{r,max} = 4439 \le 2537$ $P_{r,max} = 2537 \text{ kN} < P_f$ $\alpha_1 = 0.85 - 0.0015f'_c = 0.85 - 0.0015 \times 25 = 0.813 > 0.67$ <u>CSA A23.3-14 (Eq. 10.1)</u>

Column dimensions of 600 mm x 400 mm are adequate for axial load.

2. Two-Way Slab Analysis and Design

CSA A23.3 states that a regular slab system may be designed using any procedure satisfying conditions of equilibrium and compatibility with the supports, provided that it is shown that the factored resistance at every section is at least equal to the effects of the factored loads and that all serviceability conditions, including specified limits on deflections, are met. <u>CSA A23.3-14 (13.5.1)</u>

CSA A23.3 permits the use of Plastic Plate Theory Method (PPTM), Theorems of Plasticity Method (TPM), Direct Design Method (DDM) and Elastic Frame Method (EFM); known as Equivalent Frame Method in the ACI; for the gravity load analysis of orthogonal frames. The following sections outline a brief description of DDM, a detailed hand solution using EFM and an automated solution using spSlab software respectively.

2.1. Direct Design Method (DDM)

Two-way slabs satisfying the limits in <u>CSA A23.3-14 (13.9)</u> are permitted to be designed in accordance with the DDM.

2.1.1. Direct design method limitations

There shall be a minimum of three continuous spans in each direction (3 spans)CSA A23.3-14 (13.9.1.2)Successive span lengths centre-to-centre of supports in each direction shall not differ by more than one- thirdof the longer span ((7500-6700)/6700 = 0.12 < 0.33)CSA A23.3-14 (13.9.1.3)

All loads shall be due to gravity only and uniformly distributed over an entire panel (Loads are uniformly distributed over the entire panel) <u>CSA A23.3-14 (13.9.1.4)</u>

 The factored live load shall not exceed twice the factored dead load (Service live-to-dead load ratio of 0.28

 < 2.0)</td>
 CSA A23.3-14 (13.9.1.4)

Since all the criteria are met, Direct Design Method can be utilized.

Detailed illustration of analysis and design of flat plate slab using DDM can be found in "<u>Two-Way Flat Plate</u> <u>Concrete Slab Floor Analysis and Design (CSA A23.3-14)</u>" example available in the <u>design examples</u> page in <u>StructurePoint</u> website. This example focuses on the analysis of flat plates using EFM.

2.1.2. Design moments

a. Calculate the total factored static moment:

$$M_o = \frac{w_f \ell_{2a} \ell_n^2}{8}$$

<u>CSA A23.3-14 (13.9.1.4)</u>

Distribute the total factored moment, Mo, in an interior and end span: CSA A23.3-14 (13.9.3.1 & 13.9.3.2)

Table 1 - Distribution of M_o along the span								
	Location	Total Design Strip Moment, M _{DES} (kN.m)						
	Exterior Negative	$0.26 \times M_o = 34.8$						
Exterior Span	Positive	$0.52 \times M_o = 69.6$						
	Interior Negative	$0.70 \times M_o = 93.68$						
Interior Span	Positive	$0.35 \times M_o = 46.8$						

b. Calculate the column strip moments.

CSA A23.3-14 (13.11.2)

 That portion of negative and positive factored moments not resisted by column strips shall be proportionately assigned to corresponding half middle strips.
 CSA A23.3-14 (13.11.3.1)

Locati	ion	Total Design Strip Moment, (kN.m)	Column Strip Moment, (kN.m)	Moment in Two Half Middle Strips, (kN.m)
	Exterior Negative*	34.8	$1.00 \times M_{DES} = 34.8$	$0.00 imes M_{DES} = 0.0$
Exterior Span	Positive	69.6	$0.6 \times M_{DES} = 41.8$	$0.4 \times M_{DES} = 27.8$
	Interior Negative*	93.68	$0.8 \times M_{DES} = 74.94$	$0.2 imes M_{DES} = 18.7$
Interior Span	Positive	46.8	$0.6 \times M_{DES} = 28.1$	$0.4 \times M_{DES} = 18.7$

Figure 5 – Sample Calculations Using DDM from "Two-Way Flat Plate Concrete Slab Floor Analysis and Design" <u>Design Example</u>

2.2. Elastic Frame Method (EFM)

EFM (also known as Equivalent Frame Method in the ACI 318) is the most comprehensive and detailed procedure provided by the CSA A23.3 for the analysis and design of two-way slab systems where these systems may, for purposes of analysis, be considered a series of plane frames acting longitudinally and transversely through the building. Each frame shall be composed of equivalent line members intersecting at member centrelines, shall follow a column line, and shall include the portion of slab bounded laterally by the centreline of the panel on each side.

Probably the most frequently used method to determine design moments in regular two-way slab systems is to consider the slab as a series of two-dimensional frames that are analyzed elastically. When using this analogy, it is essential that stiffness properties of the elements of the frame be selected to properly represent the behavior of the three-dimensional slab system.

In a typical frame analysis it is assumed that at a beam-column connection all members meeting at the joint undergo the same rotaion. For uniform gravity loading this reduced restraint is accounted for by reducing the effective stiffness of the column by either Clause 13.8.2 or Clause 13.8.3.

Each floor and roof slab with attached columns may be analyzed separately, with the far ends of the columns considered fixed. CSA A23.3-14 (13.8.1.2)

The moment of inertia of column and slab-beam elements at any cross-section outside of joints or column capitals shall be based on the gross area of concrete at that section. <u>CSA A23.3-14 (13.8.2.5)</u>

An equivalent column shall be assumed to consist of the actual columns above and below the slab-beam plus an attached torsional member transverse to the direction of the span for which moments are being determined.

CSA A23.3-14 (13.8.2.5)

2.2.1. Elastic frame method limitations

In EFM, live load shall be arranged in accordance with 13.8.4 which requires:

- slab systems to be analyzed and designed for the most demanding set of forces established by investigating the effects of live load placed in various critical patterns.
 <u>CSA A23.3-14 (13.8.4)</u>
- Complete analysis must include representative interior and exterior equivalent elastic frames in both the longitudinal and transverse directions of the floor.
 <u>CSA A23.3-14 (13.8.1.1)</u>
- Panels shall be rectangular, with a ratio of longer to shorter panel dimensions, measured center-to-center of supports, not to exceed 2.
 CSA A23.3-14 (3.1a)
- For slab systems with beams between sypports, the relative effective stiffness of beams in the two directions is not less than 0.2 or greater than 5.0.
 CSA A23.3-14 (3.1b)
- Column offsets are not greater than 20% of the span (in the direction of offset) from either axis between centerlines of successive columns.
 <u>CSA A23.3-14 (3.1c)</u>

The reinforcement is placed in an orthogonal grid.

CSA A23.3-14 (3.1d)

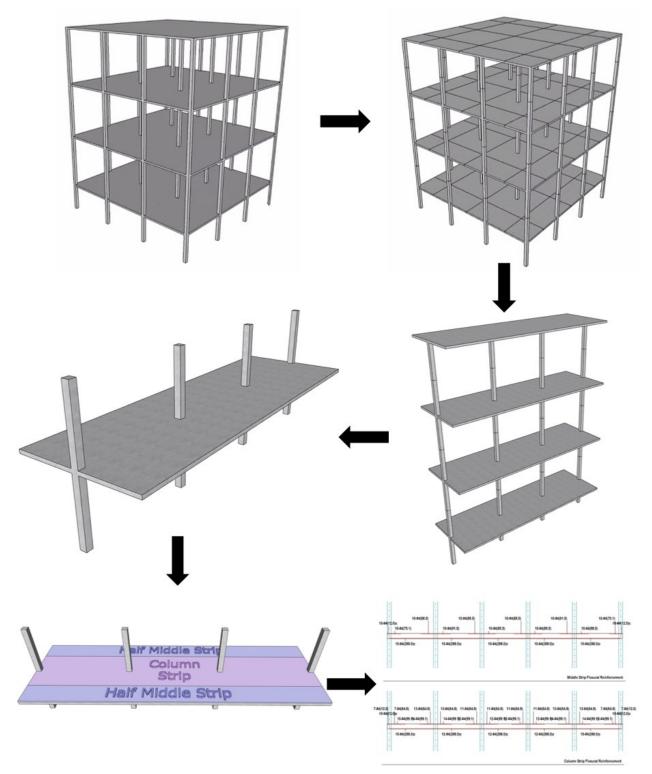


Figure 6 – Equivalent Frame Methodology

2.2.2. Frame members of elastic frame

Determine moment distribution factors and fixed-end moments for the elastic frame members. The moment distribution procedure will be used to analyze the equivalent frame. Stiffness factors k, carry over factors COF, and fixed-end moment factors FEM for the slab-beams and column members are determined using the design aids tables at <u>Appendix 20A of PCA Notes on ACI 318-11</u>. These calculations are shown below.

a. Flexural stiffness of slab-beams at both ends, K_{sb}

For Interior Span:

 $\frac{c_{N1}}{\ell}$ = 0.080 , $\frac{c_{N2}}{\ell}$ = 0.061 For $c_{F1} = c_{N2}$, stiffness factors, $k_{NF} = k_{FN} = 4.09$ PCA Notes on ACI 318-11 (Table A1) Thus, $K_{sb} = k_{NF} - \frac{E_{cs}I_s}{\rho} - \frac{E_{cs}I_s}{\rho}$ PCA Notes on ACI 318-11 (Table A1) $K_{sb} = 4.09 \times 24,986 \times \frac{8.6 \times 10^9}{7500} \times 10^{-3} = 117.2 \times 10^6 \,\mathrm{N.m}$ where, $I_s = \frac{\ell}{12}$ $\frac{00(250)^3}{12} = 8.6 \times 10^9 \text{ mm}^4$ $E_{cs} = (3300\sqrt{f_c} + 6900) \left(\frac{\gamma_c}{2300}\right)^{1.5}$ CSA A23.3-14(8.6.2.2) $E_{cs} = (3300\sqrt{25} + 6900) \left(\frac{2402.8}{2300}\right)^{1.5} = 24,986 \text{ MPa}$ Carry-over factor COF = 0.50PCA Notes on ACI 318-11 (Table A1) Fixed-end moment FEM = $0.0843w_{\ell}\ell$ PCA Notes on ACI 318-11 (Table A1) For Exterior Span: $\begin{array}{ccc} c_{N1} & 600 \\ -\ell & 0 \end{array} = 0.090 , \begin{array}{ccc} c_{N2} & 600 \\ -\ell & 0 \end{array} = 0.061 \end{array}$ For $c_{F1} = c_{N2}$, stiffness factors, $k_{NF} = k_{FN} = 4.10$ PCA Notes on ACI 318-11 (Table A1) Thus, $K_{sb} = k_{NF} - \frac{E_{cs}I_s}{\rho}$ PCA Notes on ACI 318-11 (Table A1) $K_{sb} = 4.10 \times 24,986 \times \frac{8.6 \times 10^9}{6.700} \times 10^{-3} = 131.5 \times 10^6 \,\mathrm{N.m}$ Carry-over factor COF = 0.51PCA Notes on ACI 318-11 (Table A1) Fixed-end moment FEM = $0.0843w_{\mu}\ell \ell$ PCA Notes on ACI 318-11 (Table A1)

b. Flexural stiffness of column members at both ends, K_c

Referring to <u>*Table A7, Appendix 20A, t_a = 125 mm, t_b = 125 mm, t_b = 125 mm, t*</u>

H = 3.00 m = 3000 mm, t = 250 mm, H_c = 2750 mm,
$$\frac{t_a}{t_b} = 1$$
, $\frac{H}{H_c} = 1.09$

Thus, $k_{AB} = k_{BA} = 4.99$ by interpolation.

$$K_{c} = \frac{4.99E_{cc}I_{c}}{\ell}$$

$$K_{c} = 4.99 \times 24,986 \times \frac{7.20 \times 10^{9}}{3,000} \times 10^{-3} = 299 \times 10^{6} \text{ N.m}$$
Where $I_{c} = \frac{b \times h^{3}}{12} = \frac{400(600)^{3}}{12} = 7.20 \times 10^{9} \text{ mm}^{4}$

$$E_{cc} = (3,300\sqrt{f_{c}} + 6,900) \left(\frac{\gamma_{c}}{2,300}\right)^{1.5} = 24,986 \text{ MPa}$$

$$\ell \qquad \text{m} = 3000 \text{ mm}$$

c. Torsional stiffness of torsional members, K_t

$$K_{t} = \frac{9E_{cs}C}{\ell}$$

$$K_{t} = \frac{9 \times 24,986 \times 2.30 \times 10^{9}}{6,600 \times \left(1 - \frac{600}{6,600}\right)^{3}} \times 10^{-3} = 104.3 \times 10^{6} \text{ N.m}$$
Where $C = \sum \left(1 - 0.63 \frac{x}{y}\right) \left(\frac{x^{3}y}{3}\right)$

$$C = \left(1 - 0.63 \times \frac{250}{600}\right) \left(\frac{250^{3} \times 600}{3}\right) = 2.30 \times 10^{9} \text{ mm}^{4}$$

$$c_{2} = 600 \text{ mm, and } l_{t} = 6.6 \text{ m} = 6600 \text{ mm}$$

d. Equivalent column stiffness, Kec

$$K_{ec} = \frac{\sum K_c \times \sum K_t}{\sum K_c + \sum K_t}$$
$$K_{ec} = \frac{(2 \times 299) \times (2 \times 104.3)}{(2 \times 299) + (2 \times 104.3)} \times 10^6$$

CSA A23.3-14(13.8.2.9)

CSA A23.3-14(13.8.2.8)

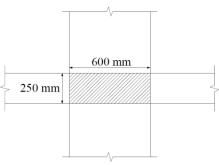


Figure 7 - Torsional Member

 $K_{ec} = 154.65 \times 10^6 \text{ N.m}$

Where $\sum K_{t}$ is for two torsional members one on each side of the column, and $\sum K_c$ is for the upper and lower columns at the slab-beam joint of an intermediate floor.

e. Slab-beam joint distribution factors, DF At exterior joint,

$$DF = \frac{131.5}{(131.5 + 154.65)} = 0.46$$

At interior joint,

$$DF_{Ext} = \frac{131.5}{131.5 + 117.2 + 154.65} = 0.33$$
$$DF_{Int} = \frac{117.2}{(131.5 + 117.2 + 154.65)} = 0.29$$

COF for slab-beam = 0.50 for Interior Span

= 0.51 for Exterior Span

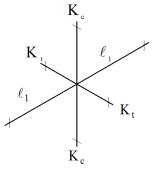
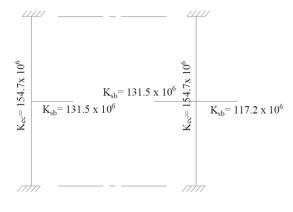



Figure 8 - Column and Edge of Slab

EXTERIOR COLUMN

INTERIOR COLUMN

Figure 9 - Slab and Column Stiffness

2.2.3. Elastic frame analysis

Determine negative and positive moments for the slab-beams using the moment distribution method. Since the unfactored live load does not exceed three-quarters of the unfactored dead load, design moments are assumed to occur at all critical sections with full factored live on all spans. CSA A23.3-14 (13.8.4.2)

$$\frac{L}{D} = \frac{1.9}{(5.89+1)} = 0.28 < \frac{3}{4}$$

a. Factored load and Fixed-End Moments (FEM's).

 $w_{df} = 1.25 \times (5.89 + 1) = 8.61 \text{ kN/m}^2$ Factored dead load,

 $w_{tf} = 1.5 \times 1.9 = 2.85 \text{ kN/m}^2$ Factored live load,

Total factored load

 $q_u = w_f = w_{df} + w_{lf} = 11.5 \text{ kN/m}^2$

FEM's for slab-beams = $m_{NF}q_{\mu}\ell$ ℓ

PCA Notes on ACI 318-11 (Table A1)

 $= 0.0840 \times 11.5 \times 6.6 \times 7.5^{2} = 358.6$ kN.m (For Interior Span)

 $= 0.0841 \times 11.5 \times 6.6 \times 6.7^{2} = 286.5$ kN.m (For Exterior Span)

b. Moment distribution. Computations are shown in Table 1. Counterclockwise rotational moments acting on the member ends are taken as positive. Positive span moments are determined from the following equation:

$$M_u$$
 (midspan) = $M_o - \frac{M_{uL} + M_{uR}}{2}$

Where M_o is the moment at the midspan for a simple beam.

When the end moments are not equal, the maximum moment in the span does not occur at the midspan, but its value is close to that midspan for this example.

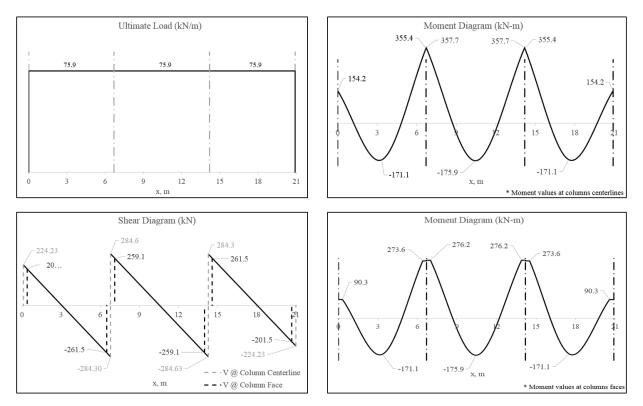
Positive moment in span 1-2:

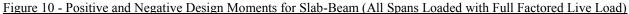
$$+M_u = (9.8 \times 4.2) \frac{5.5^2}{8} - \frac{(64.1 + 119.7)}{2} = 63.8$$
 kN.m

Positive moment span 2-3:

$$+M_u = (9.8 \times 4.2) \frac{5.5^2}{8} - \frac{(108.5 + 108.5)}{2} = 47.2 \text{ kN.m}$$

Table 1 – Moment Distribution for Elastic Frame							
	um	<i>w</i>	~	1990		1992	
(+	. 1	2		3		4	
	mn			mn		m	
Joint	1	2	2	3		4	
Member	1_2	2_1	2_3	3_2	3_4	4_3	
DF	0.460	0.330	0.290	0.290	0.330	0.460	
COF	0.510	0.510	0.500	0.500	0.510	0.510	
FEM	286.50	-286.50	358.60	-358.60	286.50	-286.50	
Dist	-131.79	-23.79	-20.91	20.91	23.79	131.79	
СО	-12.13	-67.21	10.46	-10.46	67.21	12.13	
Dist	5.58	18.73	16.46	-16.46	-18.73	-5.58	
СО	9.55	2.85	-8.23	8.23	-2.85	-9.55	
Dist	-4.39	1.78	1.56	-1.56	-1.78	4.39	
СО	0.91	-2.24	-0.78	0.78	2.24	-0.91	
Dist	-0.42	1.00	0.88	-0.88	-1.00	0.42	
СО	0.51	-0.21	-0.44	0.44	0.21	-0.51	
Dist	-0.23	0.22	0.19	-0.19	-0.22	0.23	
СО	0.11	-0.12	-0.10	0.10	0.12	-0.11	
Dist	-0.05	0.07	0.06	-0.06	-0.07	0.05	
СО	0.04	-0.03	-0.03	0.03	0.03	-0.04	
Dist	-0.02	0.02	0.02	-0.02	-0.02	0.02	
СО	0.01	-0.01	-0.01	0.01	0.01	-0.01	
Dist	0.00	0.01	0.01	-0.01	-0.01	0.00	
СО	0.01	0.00	-0.01	0.01	0.00	-0.01	
Dist	0.00	0.00	0.00	0.00	0.00	0.00	
M, kN.m	154.20	-355.40	357.70	-357.70	355.40	-154.20	
Midspan M, kN.m	171	.09	17:	5.94	17	1.09	


2.2.4. Design moments


Positive and negative factored moments for the slab system in the direction of analysis are plotted in Figure 8. The negative moments used for design are taken at the faces of supports (rectangle section or equivalent rectangle for circular or polygon sections) but not at distances greater than 0.175ℓ from the centers of supports. **CSA A23.3-14 (13.8.5.1)**

$$\frac{600}{2} = 300 \text{ mm} < 0.175 \times 6700 = 1172.5 \text{ mm} \text{ (use face of supporting location)}$$

2.2.5. Distribution of design moments

After the negative and positive moments have been determined for the slab-beam strip, the CSA code permits the distribution of the moments at critical sections to the column strips, beams (if any), and middle strips in accordance with the DDM. <u>CSA A23.3-14 (13.11.2.2)</u>

Table 2 - Distribution of factored moments								
		Slab-beam Strip	Colur	nn Strip	Middle Strip			
		Moment (kN.m)	Percent	Moment (kN.m)	Percent	Moment (kN.m)		
	Exterior Negative	90.3	100	90.3	0	0.00		
End Span	Positive	171.1	60	102.7	40	68.4		
	Interior Negative	273.6	80	218.9	20	54.7		
Interior	Negative	276.2	80	221.0	20	55.2		
Span	Positive	175.9	60	105.5	40	70.4		

Distribution of factored moments at critical sections is summarized in Table 2.

2.2.6. Flexural reinforcement requirements

a. Determine flexural reinforcement required for strip moments

The flexural reinforcement calculation for the column strip of end span – exterior negative location is provided below.

Reinforcement for the total factored negative moment transferred to the exterior columns shall be placed within a band width b_b . Temperature and shrinkage reinforcment determined as specified in clause 7.8.1 shall be provided in that section of the slab outside of the band region defined by b_b or as required by clause 13.10.9. **CSA A23.3-14 (13.10.3)**

 $M_r = 90.3 \text{ kN.m}$

Use average $d_l = 217 \text{ mm}$

In this example, jd will be assumed to be taken equal to 0.977d. The assumptions will be verified once the area of steel in finalized.

Assume $jd = 0.977 \times d = 212$ mm

Column strip width, b = 6,600/2 = 3,300 mm

Middle strip width, b = 6,600 - 3,300 = 3,300 mm

$$A_{s} = \frac{M_{f}}{\varphi_{s}f_{y}jd} = \frac{90.3}{0.85 \times 400 \times 0.977 \times 217} = 1,253 \text{ mm}^{2}$$
$$\alpha_{1} = 0.85 - 0.0015 f_{c}^{'} = 0.81 > 0.67$$

<u>CSA A23.3-14 (10.1</u>.7)

Recalculate 'a' for the actual $A_s = 1253 \text{ mm}^2 \rightarrow a = \frac{\phi_s A_s f_y}{\phi_c \alpha_1 f'_c b} = \frac{0.85 \times 1253 \times 400}{0.65 \times 0.81 \times 25 \times 3,300} = 9.78 \text{ mm}$

$$jd = d - \frac{a}{2} = 0.977d$$

Therefore, the assumption that jd equals to 0.977d is valid.

 $\therefore A_{s,req} = 1,253 \text{ mm}^2$

Reinforcement for the total factored negative moment transferred to the exterior columns shall be placed within a band width b_b . **CSA A23.3-14 (13.10.3)**

For the part of the slab inside of the band region:

Provide 7 - 15M bars (1,400 mm² > 1,253 mm²)

Temperature and shrinkage reinforcement determined as specified in clause 7.8.1 shall be provided in that section of the slab outside of the band region defined by b_b or as required by clause 13.10.9 (including middle strip and the remaining part of the column strip outside the band region). **CSA A23.3-14 (13.10.3)**

For the remaining part of the slab outside of the band region:

 $A_{s,\min} = 0.002A_g = 0.002 \times 250 \times (6,600 - 1,150) = 2,725 \text{ mm}^2$ <u>CSA A23.3-14 (7.8.1)</u>

Provide 14 - 15M bars (2,800 mm² > 2,725 mm²)

For middle strip:

 $A_{s,\min} = 0.002A_g = 0.002 \times 250 \times (3,300) = 1,650 \text{ mm}^2$ <u>CSA A23.3-14 (7.8.1)</u>

Provide 9 - 15M bars (1,800 mm² > 1,650 mm²)

For the remaining part of the column strip outside of the band region:

(14 - 15M) - (9 - 15M) = (5 - 15M)

Total Reinforcement in the column Strip:

(7 - 15M) + (5 - 15M) = (12 - 15M)

Maximum spacing:

CSA A23.3-14 (13.10.4)

- Negative reinforcement in the band defined by b_b : $1.5h_s = 375 \text{ mm} \le 250 \text{ mm}$

 $s_{max} = 250 \text{ mm} > s_{provided} = 1150/7 = 164 \text{ mm}$

- Remaining negative moment reinforcement: $3h_s = 750 \text{ mm} \le 500 \text{ mm}$

 $s_{max} = 500 \text{ mm} > s_{provided} = (6600-1150)/14 = 389 \text{ mm}$

Based on the procedure outlined above, values for all span locations are given in Table 3.

	Table 3 - Re	equired Slab	Reinfor	cement f	or Flexure [Elas	tic Frame	Method (EFM)]	
Span Location		M _r (kN.m)	b (m)	d (mm)	As Req'd for flexure (mm ²)	Min A _s (mm ²)	Reinforcement Provided	A _s Prov. for flexure (mm ²)
				End	Span			
Column	Exterior Negative	90.3	3300	217	1253	1650	12 - 15M*	2400
Strip	Positive	102.7	3300	217	1429	1650	9 - 15M	1800
_	Interior Negative	218.9	3300	217	3146	1650	16 - 15M	3200
Middle	Exterior Negative	0.0	3300	217	0	1650	9 - 15M*	1800
Strip	Positive	68.4	3300	217	943	1650	9 - 15M	1800
_	Interior Negative	54.7	3300	217	752	1650	9 - 15M	1800
				Interi	or Span			
Column	Negative	221.0	3300	217	3176	1650	16 - 15M	3200
Strip	Positive	105.5	3300	217	1497	1650	9 - 15M	1800
Middle	Negative	55.2	3300	217	759	1650	9 - 15M	1800
Strip	Positive	70.4	3300	217	971	1650	9 - 15M	1800
* the reinfo	preement is selected to	o meet CSA	423.3-14	provisio	on 13.10.3 as desc	ribed previo	ously.	

CSA A23.3-14 (3.2)

b. Calculate additional slab reinforcement at columns for moment transfer between slab and column by flexure

When gravity load, wind, earthquake, or other lateral forces cause transfer of moment between slab and column, a fraction of unbalanced moment given by γ_f shall be transferred by flexural reinforcement placed within a width b_b . <u>CSA A23.3-14 (13.10.2)</u>

Portion of the unbalanced moment transferred by flexure is $\gamma_f \times M_r$

$$\gamma_f = \frac{1}{1 + (2/3) \times \sqrt{b_1/b_2}}$$
CSA A23.3-14 (13.10.2)

Where

- $b_1 =$ Width width of the critical section for shear measured in the direction of the span for which moments are determined according to CSA A23.3-14, clause 13 (see Figure 9).
- b_2 = Width of the critical section for shear measured in the direction perpendicular to b_1 according to CSA A23.3-14, clause 13 (see Figure 9).

For Interior Column

 $b_1 = 600 + 217 = 817 \text{ mm}$

 $b_2 = 400 + 217 = 617 \text{ mm}$

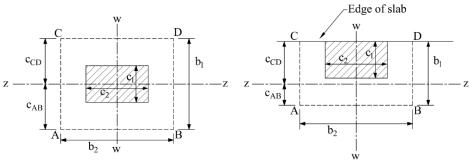
$$b_b = Effective slab width = c_2 + 3 \times h_s$$

$$b_b = 400 + 3 \times 250 = 1150 \text{ mm}$$

For Exterior Column

$$b_1 = 100 + 600 + \frac{217}{2} = 808.5 \text{ mm}$$

$$b_2 = 400 + 217 = 617 \text{ mm}$$


$$\gamma_f = \frac{1}{1 + (2/3) \times \sqrt{808.5/617}} = 0.567 \qquad \qquad \gamma_f = \frac{1}{1 + (2/3) \times \sqrt{817/617}} = 0.566$$

Repeat the same procedure in section 2.2.6.a to calculate the additional reinforcement required for the unbalanced moment as shown in the following table:

Table 4 - Additional Slab Reinforcement required for moment transfer between slab and column (EFM)									
Spar	n Location	Mu* (kN.m)	γf	γ _f M _u (kN.m)	Effective slab width, b _b (mm)	d (mm)	A _s req'd within b _b (mm ²)	A_s prov. For flexure within b_b (mm ²)	Add'l Reinf.
				En	d Span				
Column	Exterior Negative	154.2	0.567	87.5	1150	217	1247	1400	-
Strip	Interior Negative	2.3	0.566	1.3	1150	217	18	1400	-
*M _u is taken at the centerline of the support in Elastic Frame Method solution.									

Critical shear perimeter for interior column

Critical shear perimeter for exterior column

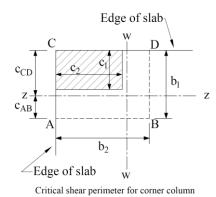


Figure 11 - Critical Shear Perimeters for Columns

2.2.7. Column design moments

The unbalanced moment from the slab-beams at the supports of the equivalent frame are distributed to the support columns above and below the slab-beam in proportion to the relative stiffness of the support columns. Detailed calculations regarding this topic (including column design for axial load and biaxial moments) can be found in "<u>Two-Way Flat Plate Concrete Slab Floor Analysis and Design (CSA A23.3-14)</u>" example available in the <u>design examples</u> page in <u>StructurePoint</u> website.

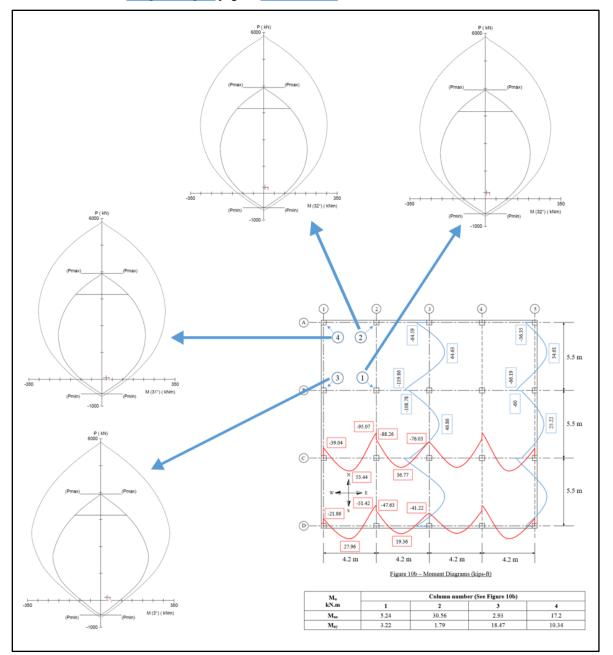


Figure 12 - Sample Calculations of Column Design from "Two-Way Flat Plate Concrete Slab Floor Analysis and Design" Design Example

Structure Point

CONCRETE SOFTWARE SOLUTIONS

CSA A23.3-14 (13.3.6)

3. Two-Way Slab Shear Strength

Shear strength of the slab in the vicinity of columns/supports includes an evaluation of one-way shear (beam action) and two-way shear (punching) in accordance with CSA A23.3-14 clause 13.

3.1. One-Way (Beam action) Shear Strength

One-way shear is critical at a distance d from the face of the column as shown in Figure 3. Figure 10 shows the factored shear forces (V_r) at the critical sections around each column. In members without shear reinforcement, the design shear capacity of the section equals to the design shear capacity of the concrete:

 $V_{r} = V_{c} + V_{s} + V_{p} = V_{c} , \quad (V_{s} = V_{p} = 0)$ Where: $V_{c} = \varphi_{c} \lambda \beta \sqrt{f_{c}} b_{w} d_{v}$ <u>CSA A23.3-14 (Eq. 11.4)</u>
<u>CSA A23.3-14 (Eq. 11.5)</u>

 $\lambda = 1$ for normal weight concrete

 $\beta = 0.21 \text{ for slabs with overall thickness not greater than 350 mm} \qquad \underline{CSA \ A23.3-14 \ (11.3.6.2)}$ $d_v = \text{Max} \ (0.9d, 0.72h) = \text{Max} \ (0.9 \times 217, 0.72 \times 250) = \text{Max} \ (195, 180) = 195 \text{ mm} \qquad \underline{CSA \ A23.3-14 \ (11.3.6.2)}$

$$\sqrt{f_c} = \sqrt{25} = 5 \text{ MPa} < 8 \text{ MPa}$$

$$CSA \ A23.3-14 \ (11.3.4)$$

$$V_c = 0.65 \times 1 \times 0.21 \times \sqrt{25} \times 6600 \times \frac{195}{1000} = 878.40 \text{ kN} > V_f$$

Because $V_r \ge V_f$ at all the critical sections, the slab has adequate one-way shear strength.

Shear forces for the figure below:

Shear Diagram (kN)

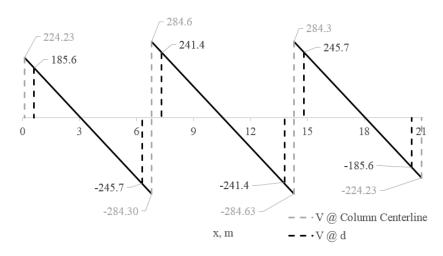


Figure 13 - One-way shear at critical sections (at distance d from the face of the supporting column)

CSA A23.3-14 (13.3.2)

3.2. Two-Way (Punching) Shear Strength

Two-way shear is critical on a rectangular section located at d/2 away from the face of the column as shown in Figure 9.

a. Exterior column:

The factored shear force (V_f) in the critical section is computed as the reaction at the centroid of the critical section minus the self-weight and any superimposed surface dead and live load acting within the critical section (d/2 away from column face).

 $V_f = 224.2 - 11.5(0.808 \times 0.617) = 218.5 \text{ kN}$

The factored unbalanced moment used for shear transfer, M_{unb} , is computed as the sum of the joint moments to the left and right. Moment of the vertical reaction with respect to the centroid of the critical section is also taken into account.

$$M_{unb} = 154.2 - 218.5 \left(\frac{808.5 - 292.6 - 600/2}{1000}\right) = 107.0 \text{ kN.m}$$

For the exterior column in Figure 9, the location of the centroidal axis z-z is:

$$c_{AB} = e = \frac{\text{moment of area of the sides about AB}}{\text{area of the sides}} = \frac{2 \times (808.5 \times 217 \times 808.5/2)}{2 \times 808.5 \times 217 + 617 \times 217} = 292.6 \text{ mm}$$

The polar moment J_c of the shear perimeter is:

$$J_{c} = 2\left(\frac{b_{1}d^{3}}{12} + \frac{db_{1}^{3}}{12} + (b_{1}d)\left(\frac{b_{1}}{2} - c_{AB}\right)^{2}\right) + b_{2}dc_{AB}^{2}$$

$$J_{c} = 2\left(\frac{808.5 \times 217^{3}}{12} + \frac{217 \times 808.5^{3}}{12} + (808.5 \times 217)\left(\frac{808.5}{2} - 292.6\right)^{2}\right) + 617 \times 217 \times (292.6)^{2} = 36.3 \times 10^{9} \text{ mm}^{4}$$

$$\gamma_{v} = 1 - \gamma_{f} = 1 - 0.567 = 0.433$$

$$\underline{CSA \ A23.3 - 14 \ (Eq.\ 13.8)}$$

The length of the critical perimeter for the exterior column:

$$b_o = 2 \times \left(600 + 100 + \frac{217}{2}\right) + (400 + 217) = 2234 \text{ mm}$$

The two-way shear stress (v_u) can then be calculated as:

$$v_{f} = \frac{V_{f}}{b_{o} \times d} + \frac{\gamma_{v} M_{unb} e}{J}$$

$$v_{f} = \frac{218.5 \times 1000}{2234 \times 217} + \frac{0.433 \times (107 \times 10^{6}) \times 292.6}{36.3 \times 10^{9}}$$

$$CSA \ A23.3-14 \ (Eq.13.9)$$

CSA A23.3-14 (13.3.4.1)

$v_f = 0.451 + 0.373 = 0.824$ MPa

The factored resisiting shear stress, V_r shall be the smallest of :

a)
$$v_r = v_c = \left(1 + \frac{2}{\beta_c}\right) 0.19 \lambda \phi_c \sqrt{f'_c} = \left(1 + \frac{2}{1}\right) 0.19 \times 0.65 \times \sqrt{25} = 1.853 \text{ MPa}$$

b) $v_r = v_c = \left(\frac{\alpha_s d}{b_o} + 0.19\right) \lambda \phi_c \sqrt{f'_c} = \left(\frac{3 \times 217}{2234} + 0.19\right) \times 1 \times 0.65 \times \sqrt{25} = 1.565 \text{ MPa}$
c) $v_r = v_c = 0.38 \lambda \phi_c \sqrt{f'_c} = 0.38 \times 1 \times 0.65 \times \sqrt{25} = 1.235 \text{ MPa}$

Since ($v_r = 1.235 \text{ MPa} \ge v_f = 0.824 \text{ MPa}$) at the critical section, the slab has adequate two-way shear strength at this joint.

b. Interior column:

$$V_f = 284.6 + 284.3 - 11.5(0.817 \times 0.617) = 563.1 \text{ kN}$$

$$M_{unb} = 357.7 - 355.4 - 568.9(0) = 2.3$$
 kN.m

For the interior column in Figure 9, the location of the centroidal axis z-z is:

$$c_{AB} = \frac{b_1}{2} = \frac{817}{2} = 408.5 \text{ mm}$$

The polar moment J_c of the shear perimeter is:

$$J_{c} = 2\left(\frac{b_{1}d^{3}}{12} + \frac{db_{1}^{3}}{12} + (b_{1}d)\left(\frac{b_{1}}{2} - c_{AB}\right)^{2}\right) + 2b_{2}dc_{AB}^{2}$$

$$J_{c} = 2\left(\frac{817 \times 217^{3}}{12} + \frac{217 \times 817^{3}}{12} + (817 \times 217)\left(\frac{817}{2} - 408.5\right)^{2}\right) + 2 \times 617 \times 217 \times (408.5)^{2} = 65.8 \times 10^{9} \text{ mm}^{4}$$

$$\gamma_{v} = 1 - \gamma_{f} = 1 - 0.566 = 0.434$$

$$\underline{CSA \ A23.3 - 14 \ (Eq.\ 13.8)}$$

The length of the critical perimeter for the interior column:

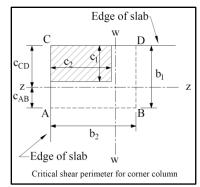
 $b_0 = 2 \times (600 + 217) + 2 \times (400 + 217) = 2868 \text{ mm}$

$$v_{f} = \frac{V_{f}}{b_{o} \times d} + \frac{\gamma_{v} M_{unb} e}{J}$$

$$v_{f} = \frac{563.1 \times 1000}{2868 \times 217} + \frac{0.434 \times (2.30 \times 10^{6}) \times 408.5}{65.8 \times 10^{9}}$$

$$v_{f} = 0.905 + 0.006 = 0.911 \text{ MPa}$$

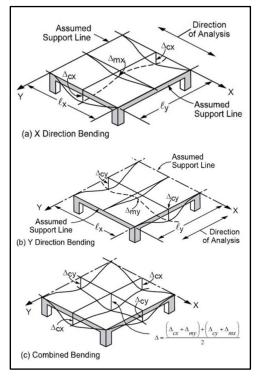
The factored resisiting shear stress, V_r shall be the smallest of :


<u>CSA A23.3-14 (13.3.4.1)</u>

a)
$$v_r = v_c = \left(1 + \frac{2}{\beta_c}\right) 0.19 \lambda \phi_c \sqrt{f'_c} = \left(1 + \frac{2}{1}\right) 0.19 \times 0.65 \times \sqrt{25} = 1.853 \text{ MPa}$$

b) $v_r = v_c = \left(\frac{\alpha_s d}{b_o} + 0.19\right) \lambda \phi_c \sqrt{f'_c} = \left(\frac{4 \times 217}{2868} + 0.19\right) \times 1 \times 0.65 \times \sqrt{25} = 1.601 \text{ MPa}$
c) $v_r = v_c = 0.38 \lambda \phi_c \sqrt{f'_c} = 0.38 \times 1 \times 0.65 \times \sqrt{25} = 1.235 \text{ MPa}$

Since ($v_r = 1.235 \text{ MPa} \ge v_f = 0.911 \text{ MPa}$) at the critical section, the slab has adequate two-way shear strength at this joint.


c. Corner column:

In this example, interior equivalent elastic frame strip was selected where it only have exterior and interior supports (no corner supports are included in this strip). Detailed calculations for two-way (punching) shear check around corner supports can be found in "Two-Way Flat Plate Concrete Slab Floor Analysis and Design (CSA A23.3-14)" example available in the <u>design examples</u> page in <u>StructurePoint</u> website.

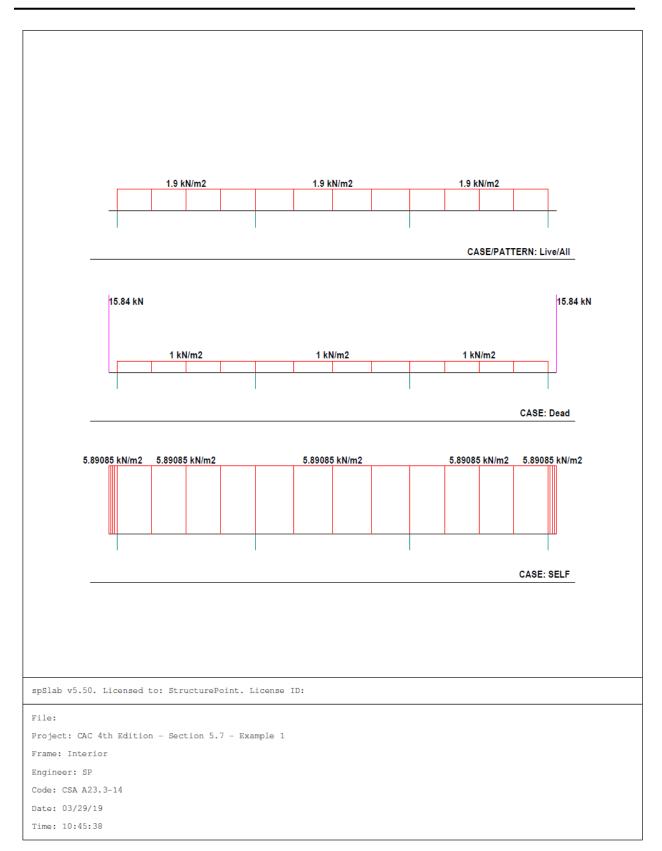
4. Two-Way Slab Deflection Control (Serviceability Requirements)

Since the slab thickness was selected based on the minimum slab thickness equations in CSA A23.3-14, the deflection calculations are not required. Detailed calculations of immediate and time-dependent deflections can be found in "<u>Two-Way Flat Plate</u> <u>Concrete Slab Floor Analysis and Design (CSA A23.3-14)</u>" example available in the <u>design examples</u> page in <u>StructurePoint</u> website.

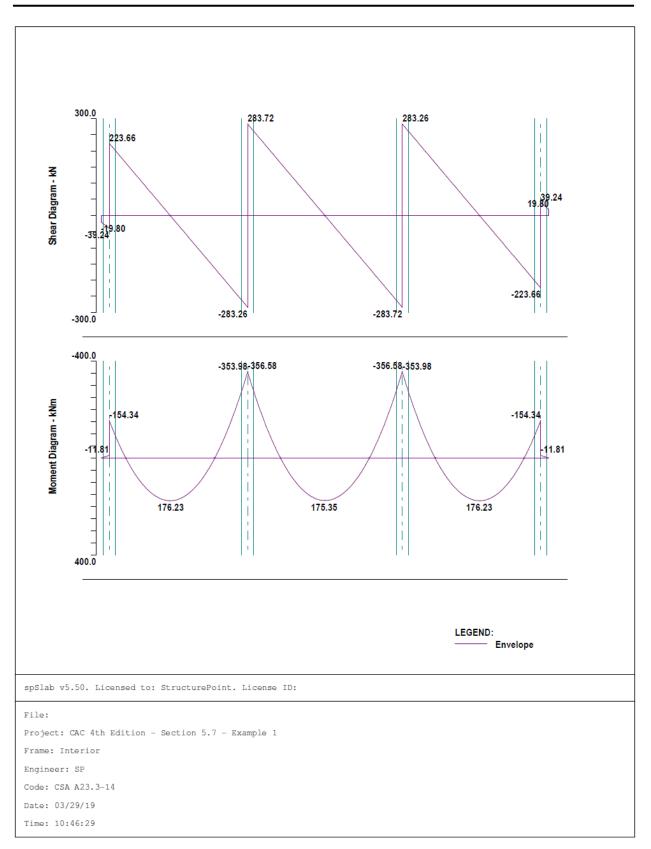
5. spSlab Software Solution

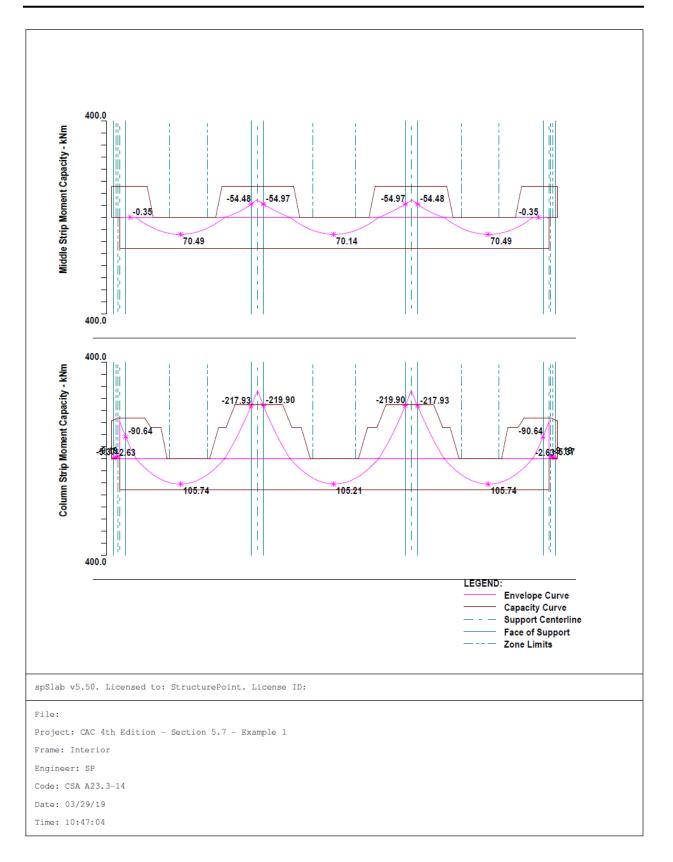
<u>spSlab</u> program utilizes the Elastic (Equivalent) Frame Method described and illustrated in details here for modeling, analysis and design of two-way concrete floor slab systems. <u>spSlab</u> uses the exact geometry and boundary conditions provided as input to perform an elastic stiffness (matrix) analysis of the equivalent frame taking into account the torsional stiffness of the slabs framing into the column. It also takes into account the complications introduced by a large number of parameters such as vertical and torsional stiffness of transverse beams, the stiffening effect of drop panels, column capitals, and effective contribution of columns above and below the floor slab using the of equivalent column concept.

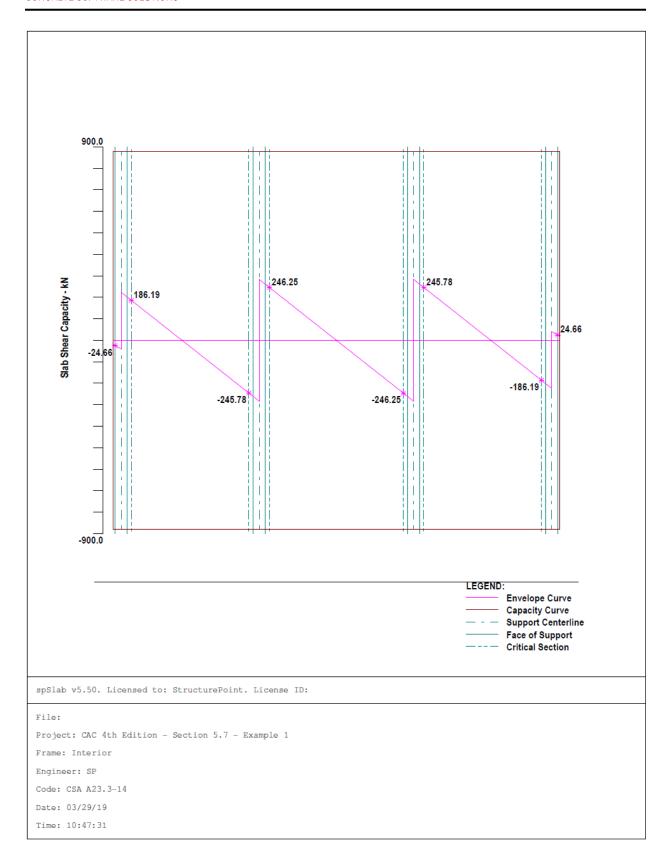
<u>spSlab</u> Program models the equivalent elastic frame as a design strip. The design strip is, then, separated by <u>spSlab</u> into column and middle strips. The program calculates the internal forces (Shear Force & Bending Moment), moment and shear capacity vs. demand diagrams for column and middle strips, instantaneous and long-term deflection results, and required flexural reinforcement for column and middle strips. The graphical and text results are provided below for both input and output of the <u>spSlab</u> model.

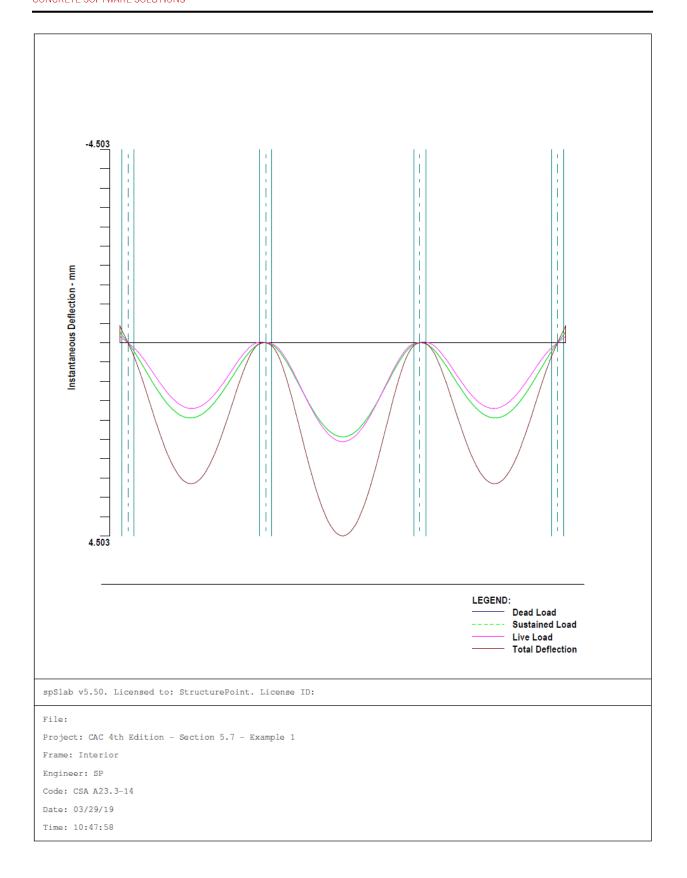


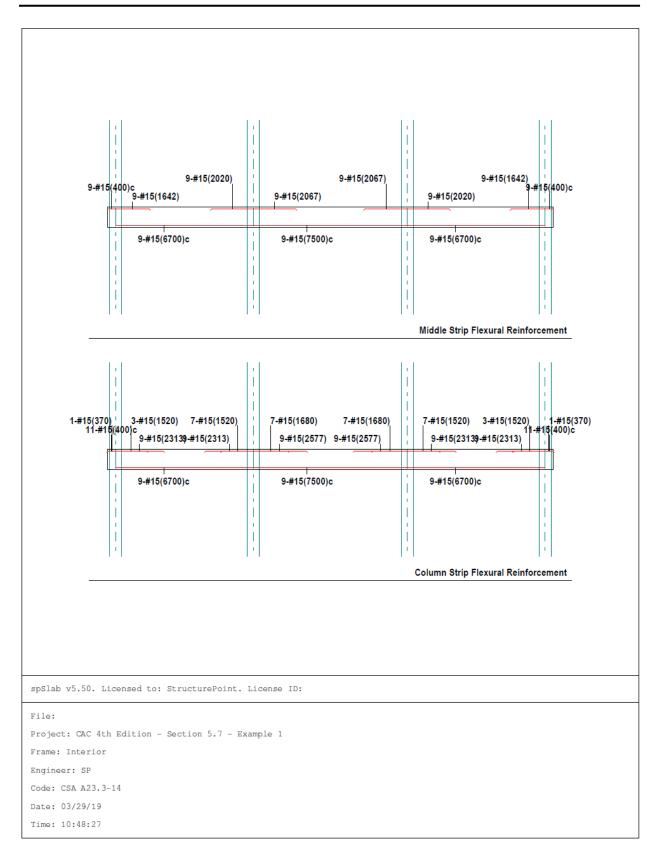
spSlab v5.50. Licensed to: StructurePoint. License ID:
File: Project: CAC 4th Edition - Section 5.7 - Example 1
Frame: Interior
Engineer: SP
Code: CSA A23.3-14
Date: 03/29/19

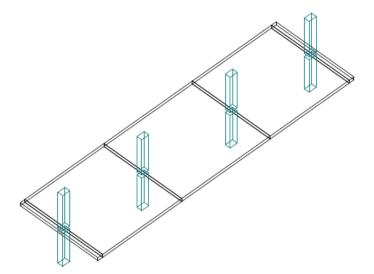












spSlab v5.50 A Computer Program for Analysis, Design, and Investigation of Reinforced Concrete Beams, One-way and Two-way Slab Systems Copyright - 1988-2019, STRUCTUREPOINT, LLC. All rights reserved

Structure Point

Structure(Point Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spSlab computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spSlab program. Although STRUCTUREPOINT has endeavored to produce spSlab error free the program is not and cannot be certified infailible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spSlab program.Licensed to: StructurePoint. License ID: 00000-0000000-4-25EF2-2C6B6

Page | 2 3/29/2019 10:51 AM

Contents

1.	Input Echo	3
	1.1. General Information	3
	1.2. Solve Options	3
	1.3. Material Properties	3
	1.3.1. Concrete: Slabs / Beams	
	1.3.2. Concrete: Columns	
	1.3.3. Reinforcing Steel	
	1.4. Reinforcement Database	
	1.5. Span Data	
	1.5.1. Slabs	
	1.6. Support Data	
	1.6.1. Columns	
	1.6.2. Boundary Conditions	
	1.7. Load Data	
	1.7.1. Load Cases and Combinations	
	1.7.1. Load Cases and Combinations	
	1.7.3. Point Forces	
	1.8. Reinforcement Criteria	
	1.8.1. Slabs and Ribs	
2	1.8.2. Beams	
Ζ.	Design Results*	0
	2.1. Strip Widths and Distribution Factors	
	2.2. Top Reinforcement	6
	2.3. Top Bar Details	
	2.4. Top Bar Development Lengths	
	2.5. Band Reinforcement at Supports	8
	2.6. Bottom Reinforcement	
	2.7. Bottom Bar Details	
	2.8. Bottom Bar Development Lengths	
	2.9. Flexural Capacity	
	2.10. Slab Shear Capacity	
	2.11. Flexural Transfer of Negative Unbalanced Moment at Supports	11
	2.12. Punching Shear Around Columns	
	2.12.1. Critical Section Properties	
	2.12.2. Punching Shear Results	.12
	2.13. Integrity Reinforcement at Supports	.12
	2.14. Material TakeOff	.12
	2.14.1. Reinforcement in the Direction of Analysis	.12
3.	Deflection Results: Summary	.12
	3.1. Section Properties	.12
	3.1.1. Frame Section Properties	.12
	3.1.2. Frame Effective Section Properties	
	3.1.3. Strip Section Properties at Midspan	
	3.2. Instantaneous Deflections	
	3.2.1. Extreme Instantaneous Frame Deflections and Corresponding Locations	
	3.2.2. Extreme Instantaneous Column Strip Deflections and Corresponding Locations	
	3.2.3. Extreme Instantaneous Middle Strip Deflections and Corresponding Locations	
	3.3. Long-term Deflections	
	3.3.1. Long-term Column Strip Deflection Factors	
	3.3.2. Long-term Middle Strip Deflection Factors	
	3.3.3. Extreme Long-term Column Strip Deflections and Corresponding Locations	
	3.3.4. Extreme Long-term Middle Strip Deflections and Corresponding Locations	
	ס.ס.ד. באניפורופ בטווט־נפודו זיוועעופ סנווף בפוופטנוטרוס מווע לטודפסטוועוווע בטטמנטרוס	10

Page | 3 3/29/2019 10:51 AM

1. Input Echo

1.1. General Information

File Name	
Project	CAC 4th Edition - Section 5.7 - Example 1
Frame	Interior
Engineer	SP
Code	CSA A23.3-14
Reinforcement Database	CSA G30.18
Mode	Design
Number of supports =	4 + Left cantilever + Right cantilever
Floor System	Two-Way

1.2. Solve Options

Live load pattern ratio = 0%
Minimum free edge distance for punching shear = 5 times slab effective depth.
Circular critical section around circular supports used (if possible).
Deflections are based on cracked section properties.
In negative moment regions, Ig and Mcr DO NOT include flange/slab contribution (if available)
Long-term deflections are calculated for load duration of 60 months.
0% of live load is sustained.
Compression reinforcement calculations NOT selected.
Default incremental rebar design selected.
Combined M-V-T reinforcement design NOT selected.
User-defined slab strip widths NOT selected.
User-defined distribution factors NOT selected.
One-way shear in drop panel NOT selected.
Distribution of shear to strips NOT selected.
Beam T-section design NOT selected.
Longitudinal beam contribution in negative reinforcement design over support NOT selected.
Transverse beam contribution in negative reinforcement design over support NOT selected.

1.3. Material Properties

1.3.1. Concrete: Slabs / Beams

Wc	2402.8	kg/m³
fc	25	MPa
Ec	24986	MPa
f _r	1.5	MPa
Precast concrete	No	

1.3.2. Concrete: Columns

Wc	2402.8	kg/m³
f'c	25	MPa
Ec	24986	MPa
f _r	1.5	MPa
Precast concrete	No	

Page | 4 3/29/2019 10:51 AM

1.3.3. Reinforcing Steel

fy	400 MPa	
f _{yt}	400 MPa	
E₅	200000 MPa	
Epoxy coated bars	No	

1.4. Reinforcement Database

Size	Db	Ab	Wb	Size	Db	Ab	Wb
	mm	mm ²	kg/m		mm	mm ²	kg/m
#10	11	100	1	#15	16	200	2
#20	20	300	2	#25	25	500	4
#30	30	700	5	#35	36	1000	8
#45	44	1500	12	#55	56	2500	20

1.5. Span Data

1.5.1. Slabs

Notes:

Poelection check required for panels where code-specified Hmin for two-way construction doesn't apply due to: *i - cantilever end span (LC, RC) support condition

Span	Loc	L1	t	wL	wR	L2L	L2R	H _{min}
		m	mm	m	m	m	m	mm
1	Int	0.400	250	3.300	3.300	6.600	6.600	LC *i
2	Int	6.700	250	3.300	3.300	6.600	6.600	227
3	Int	7.500	250	3.300	3.300	6.600	6.600	230
4	Int	6.700	250	3.300	3.300	6.600	6.600	227
5	Int	0.400	250	3.300	3.300	6.600	6.600	RC *i

1.6. Support Data

1.6.1. Columns

Support	c1a	c2a	Ha	c1b	c2b	Hb	Red %
	mm	mm	m	mm	mm	m	
1	600	400	3.000	600	400	3.000	100
2	600	400	3.000	600	400	3.000	100
3	600	400	3.000	600	400	3.000	100
4	600	400	3.000	600	400	3.000	100

1.6.2. Boundary Conditions

Support	Sprir	Spring		nd
	Kz	K _z K _{ry}		Below
	kN/mm	kN-mm/rad		
1	0	0	Fixed	Fixed
2	0	0	Fixed	Fixed
3	0	0	Fixed	Fixed
4	0	0	Fixed	Fixed

1.7. Load Data

1.7.1. Load Cases and Combinations

Case	SELF	Dead	Live
Туре	DEAD	DEAD	LIVE
U1	1.250	1.250	1.500

Structure Point CONCRETE SOFTWARE SOLUTIONS

STRUCTUREPOINT - spSlab v5.50 Licensed to: StructurePoint. License ID:

1.7.2. Area Loads

Case/Patt	Span	Wa
		kN/m ²
SELF	1	5.89
	2	5.89
	3	5.89
	4	5.89
	5	5.89
Dead	2	1.00
	3	1.00
	4	1.00
Live	2	1.90
	3	1.90
	4	1.90

1.7.3. Point Forces

Case/Patt	Span	Wa	La
		kN	m
Dead	1	15.84	0.000
	5	15.84	0.400

1.8. Reinforcement Criteria

1.8.1. Slabs and Ribs

	Units	Тор	Bars	Bottom Bars		
		Min.	Max.	Min.	Max.	
Bar Size		#15	#15	#15	#15	
Bar spacing	mm	25	500	25	500	
Reinf ratio	%	0.14	5.00	0.14	5.00	
Clear Cover	mm	25		25		

There is NOT more than 300 mm of concrete below top bars.

1.8.2. Beams

	Units	Top Bars		Bottom	Bars	Stirru	ips
		Min.	Max.	Min.	Max.	Min.	Max.
Bar Size		#20	#35	#20	#35	#10	#20
Bar spacing	mm	25	457	25	457	152	457
Reinf ratio	%	0.14	5.00	0.14	5.00		
Clear Cover	mm	38		38			
Layer dist.	mm	25		25			
No. of legs						2	6
Side cover	mm					38	
1st Stirrup	mm					76	

There is NOT more than 300 mm of concrete below top bars.

Page | 5 3/29/2019 10:51 AM

Page | 6 3/29/2019 10:51 AM

2. Design Results*

*Unless otherwise noted, all results are in the direction of analysis only. Another analysis in the perpendicular direction has to be carried out for two-way slab systems.

2.1. Strip Widths and Distribution Factors

Notes:

*Used for bottom reinforcement. **Used for top reinforcement.

			Width		М	oment Fa	octor
Span	Strip	Left **	Right **	Bottom *	Left **	Right **	Bottom *
		m	m	m	m	m	m
1	Column	3.30	3.30	3.30	1.000	1.000	0.600
	Middle	3.30	3.30	3.30	0.000	0.000	0.400
2	Column	3.30	3.30	3.30	1.000	0.800	0.600
	Middle	3.30	3.30	3.30	0.000	0.200	0.400
3	Column	3.30	3.30	3.30	0.800	0.800	0.600
	Middle	3.30	3.30	3.30	0.200	0.200	0.400
4	Column	3.30	3.30	3.30	0.800	1.000	0.600
	Middle	3.30	3.30	3.30	0.200	0.000	0.400
5	Column	3.30	3.30	3.30	1.000	1.000	0.600
	Middle	3.30	3.30	3.30	0.000	0.000	0.400

2.2. Top Reinforcement

Notes: *3 - Design governed by minimum reinforcement. *5 - Number of bars governed by maximum allowable spacing.

Span Strip	Zone	Width	M _{max}	X _{max}	A _{s,min}	A _{s,max}	A _{s,req}	Spprov	Bars	
		m	kNm	m	mm ²	mm ²	mm ²	mm		
1 Column	Left	3.30	2.63	0.115	1650	16059	36	300	11-#15	*3
	Midspan	3.30	5.37	0.215	1650	16059	73	300	11-#15	*3
	Right	3.30	9.19	0.330	1650	16059	125	275	12-#15	*3 *5
Middle	Left	3.30	0.00	0.000	1650	16059	0	367	9-#15	*3
	Midspan	3.30	0.00	0.165	1650	16059	0	367	9-#15	*3
	Right	3.30	0.00	0.330	1650	16059	0	367	9-#15	*3
2 Column	Left	3.30	90.64	0.300	1650	16059	1257	275	12-#15	*3
	Midspan	3.30	0.00	3.350	0	16059	0	0		
	Right	3.30	217.93	6.400	1650	16059	3130	206	16-#15	
Middle	Left	3.30	0.35	0.523	1650	16059	5	367	9-#15	*3
	Midspan	3.30	0.00	3.350	0	16059	0	0		
	Right	3.30	54.48	6.400	1650	16059	749	367	9-#15	*3
3 Column	Left	3.30	219.90	0.300	1650	16059	3160	206	16-#15	
	Midspan	3.30	0.00	3.750	0	16059	0	0		
	Right	3.30	219.90	7.200	1650	16059	3160	206	16-#15	
Middle	Left	3.30	54.97	0.300	1650	16059	755	367	9-#15	*3
	Midspan	3.30	0.00	3.750	0	16059	0	0		
	Right	3.30	54.97	7.200	1650	16059	755	367	9-#15	*3
4 Column	Left	3.30	217.93	0.300	1650	16059	3130	206	16-#15	

Structure Point

CONCRETE SOFTWARE SOLUTIONS

Page | 7 3/29/2019 10:51 AM

Span Strip	Zone		Width	M _{max}	X _{max}	A _{s,min}	A _{s,max}	A _{s,req}	Spprov	Bars	
			m	kNm	m	mm ²	mm ²	mm ²	mm		
	Mids	ban	3.30	0.00	3.350	0	16059	0	0		
	Right		3.30	90.64	6.400	1650	16059	1257	275	12-#15	*3
Midd	le Left		3.30	54.48	0.300	1650	16059	749	367	9-#15	*3
	Mids	ban	3.30	0.00	3.350	0	16059	0	0		
	Right		3.30	0.35	6.177	1650	16059	5	367	9-#15	*3
5 Colur	mn Left		3.30	9.19	0.070	1650	16059	125	275	12-#15	*3 *5
	Mids	ban	3.30	5.37	0.186	1650	16059	73	300	11-#15	*3
	Right		3.30	2.63	0.285	1650	16059	36	300	11-#15	*3
Midd	le Left		3.30	0.00	0.070	1650	16059	0	367	9-#15	*3
	Mids	ban	3.30	0.00	0.235	1650	16059	0	367	9-#15	*3
	Right		3.30	0.00	0.400	1650	16059	0	367	9-#15	*3

2.3. Top Bar Details

NOTES: * - Bar cut-off location shall be manually checked for compliance with CSA A23.3, 11.2.13.

			Lef	t		Contin	uous		Rig	ht	
Span 3	Strip	Bars	Length	Bars	Length	Bars	Length	Bars	Length	Bars	Length
			m		m		m		m		m
1 (Column					11-#15	0.40	1-#15 *	0.37		
I	Middle					9-#15	0.40				
2 (Column	9-#15	2.31	3-#15	1.52			9-#15	2.31	7-#15 *	1.52
1	Middle	9-#15	1.64					9-#15	2.02		
3 (Column	9-#15	2.58	7-#15	1.68			9-#15	2.58	7-#15	1.68
1	Middle	9-#15	2.07					9-#15	2.07		
4 (Column	9-#15	2.31	7-#15 *	1.52			9-#15	2.31	3-#15	1.52
1	Middle	9-#15	2.02					9-#15	1.64		
5 (Column	1-#15 *	0.37			11-#15	0.40				
1	Middle					9-#15	0.40				

2.4. Top Bar Development Lengths

		Lef	t		Conti	nuous		Rig	ht	
Span Strip	Bars	DevLen	Bars	DevLen	Bars	DevLen	Bars	DevLen	Bars	DevLen
		mm		mm		mm		mm		mm
1 Column					11-#15	300.00	1-#15	300.00		
Middle					9-#15	300.00				
2 Column	9-#15	300.00	3-#15	300.00			9-#15	438.60	7-#15	438.60
Middle	9-#15	300.00					9-#15	300.00		
3 Column	9-#15	442.82	7-#15	442.82			9-#15	442.82	7-#15	442.82
Middle	9-#15	300.00					9-#15	300.00		
4 Column	9-#15	438.60	7-#15	438.60			9-#15	300.00	3-#15	300.00
Middle	9-#15	300.00					9-#15	300.00		
5 Column	1-#15	300.00			11-#15	300.00				

Page | 8 3/29/2019 10:51 AM

	Left				Contin	uous	Right			
Span Strip	Bars	DevLen	Bars	DevLen	Bars	DevLen	Bars	DevLen	Bars	DevLen
		mm		mm		mm		mm		mm
Middle					9-#15	300.00				

2.5. Band Reinforcement at Supports

NOTES:

<C> Total Strip, Banded Strip, <S> Remaining Strip

Support	Width <c></c>	Width 	Width <s></s>	A ₈ <c></c>	A₀ 	A₀ <§>	Bars <c></c>	Bars 	Bars <s></s>
	mm	mm	mm	mm ²	mm ²	mm ²			
1	3300	1150	2150	2400	1400	1000	12-#15	7-#15	5-#15
2	3300	1150	2150	3200	1400	1800	16-#15	7-#15	9-#15
3	3300	1150	2150	3200	1400	1800	16-#15	7-#15	9-#15
4	3300	1150	2150	2400	1400	1000	12-#15	7-#15	5-#15

2.6. Bottom Reinforcement

Notes: *3 - Design governed by minimum reinforcement.

Span Strip	Width	M _{max}	X _{max}	A _{s,min}	A _{s,max}	A _{s,req}	Spprov	Bars
	m	kNm	m	mm ²	mm ²	mm ²	mm	
1 Column	3.30	0.00	0.165	0	16059	0	0	
Middle	3.30	0.00	0.165	0	16059	0	0	
2 Column	3.30	105.74	2.978	1650	16059	1472	367	9-#15 *3
Middle	3.30	70.49	2.978	1650	16059	972	367	9-#15 *3
3 Column	3.30	105.21	3.713	1650	16059	1465	367	9-#15 *3
Middle	3.30	70.14	3.713	1650	16059	967	367	9-#15 *3
4 Column	3.30	105.74	3.722	1650	16059	1472	367	9-#15 *3
Middle	3.30	70.49	3.722	1650	16059	972	367	9-#15 *3
5 Column	3.30	0.00	0.235	0	16059	0	0	
Middle	3.30	0.00	0.235	0	16059	0	0	

2.7. Bottom Bar Details

		L	.ong Ba	rs	5	ihort Ba	ars
Span	Strip	Bars	Start	Length	Bars	Start	Length
			m	m		m	m
1	Column						
	Middle						
2	Column	9-#15	0.00	6.70			
	Middle	9-#15	0.00	6.70			
3	Column	9-#15	0.00	7.50			
	Middle	9-#15	0.00	7.50			
4	Column	9-#15	0.00	6.70			
	Middle	9-#15	0.00	6.70			
5	Column						
	Middle						

Page | 9 3/29/2019 10:51 AM

2.8. Bottom Bar Development Lengths

		Lon	g Bars	Sho	rt Bars
Span	Strip	Bars	DevLen	Bars	DevLen
			mm		mm
1	Column				
	Middle				
2	Column	9-#15	366.75		
	Middle	9-#15	300.00		
3	Column	9-#15	364.85		
	Middle	9-#15	300.00		
4	Column	9-#15	366.75		
	Middle	9-#15	300.00		
5	Column				
	Middle				

2.9. Flexural Capacity

				Тор					Botton	n	
Span Strip	x	A _{s,top}	ΦM _n -	M _u -	Comb Pat	Status	A _{s,bot}	ΦM _n +	Mu+	Comb Pat	Status
	m	mm ²	kNm	kNm			mm ²	kNm	kNm		
1 Column	0.000	2200	-155.90	0.00	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.030	2200	-155.90	-0.63	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.115	2257	-159.76	-2.63	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.200	2313	-163.58	-4.95	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.215	2323	-164.23	-5.37	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.330	2400	-169.43	-9.19	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.400	2400	-169.43	-11.81	U1 All		0	0.00	0.00	U1 All	
Middle	0.000	1800	-128.51	0.00	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.115	1800	-128.51	0.00	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.200	1800	-128.51	0.00	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.215	1800	-128.51	0.00	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.330	1800	-128.51	0.00	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.400	1800	-128.51	0.00	U1 All		0	0.00	0.00	U1 All	
2 Column	0.000	2400	-169.43	-155.86	U1 All		1800	128.51	0.00	U1 All	
	0.300	2400	-169.43	-90.64	U1 All	OK	1800	128.51	0.00	U1 All	OK
	1.220	2400	-169.43	0.00	U1 All	OK	1800	128.51	37.31	U1 All	OK
	1.520	1800	-128.51	0.00	U1 All	OK	1800	128.51	58.91	U1 All	OK
	2.013	1800	-128.51	0.00	U1 All	OK	1800	128.51	85.56	U1 All	OK
	2.313	0	0.00	0.00	U1 All	OK	1800	128.51	96.36	U1 All	OK
	2.435	0	0.00	0.00	U1 All	OK	1800	128.51	99.56	U1 All	OK
	2.978	0	0.00	0.00	U1 All	OK	1800	128.51	105.74	U1 All	OK
	3.350	0	0.00	0.00	U1 All	OK	1800	128.51	102.23	U1 All	OK
	4.265	0	0.00	0.00	U1 All	OK	1800	128.51	66.84	U1 All	OK
	4.387	0	0.00	0.00	U1 All	OK	1800	128.51	59.27	U1 All	OK
	4.826	1800	-128.51	0.00	U1 All	OK	1800	128.51	26.41	U1 All	OK
	5.180	1800	-128.51	-9.14	U1 All	OK	1800	128.51	0.00	U1 All	OK
	5.619	3200	-222.51	-75.92	U1 All	OK	1800	128.51	0.00	U1 All	OK
	6.400	3200	-222.51	-217.93	U1 All	OK	1800	128.51	0.00	U1 All	OK
	6.475	3200	-222.51	-233.01	U1 All		1800	128.51	0.00	U1 All	
	6.700	3200	-222.51	-279.70	U1 All		1800	128.51	0.00	U1 All	
Middle	0.000	1800	-128.51	1.52	U1 All		1800	128.51	0.00	U1 All	
	0.300	1800	-128.51	0.00	U1 All	OK	1800	128.51	0.00	U1 All	OK

Structure Point CONCRETE SOFTWARE SOLUTIONS

STRUCTUREPOINT - spSlab v5.50 Licensed to: StructurePoint. License ID:

Page | 10 3/29/2019 10:51 AM

	Top Bottom										
Span Strip	x	A _{s,top}	ΦM _n -	Тор М _и -	Comb Pat	Status	A _{s,bot}	ΦM _n +	M _u +	Comb Pat	Status
Span Ship	m	mm ²	kNm	kNm	combrut	Status	mm ²	kNm	kNm	combitat	Status
	0.523	1800	-128.51	-0.35	U1 All	ОК	1800	128.51	0.00	U1 All	ОК
	1.342	1800	-128.51	0.00	U1 All	OK	1800	128.51	31.07	U1 All	OK
	1.642	0	0.00	0.00	U1 All	OK	1800	128.51	44.36	U1 All	OK
	2.435	0	0.00	0.00	U1 All	OK	1800	128.51	66.37	U1 All	OK
	2.978	0	0.00	0.00	U1 All	OK	1800	128.51	70.49	U1 All	OK
	3.350	0	0.00	0.00	U1 All	OK	1800	128.51	68.15	U1 All	OK
	4.265	0	0.00	0.00	U1 All	OK	1800	128.51	44.56	U1 All	OK
	4.680	0	0.00	0.00	U1 All	OK	1800	128.51	25.54	U1 All	OK
	4.980	1800	-128.51	0.00	U1 All	OK	1800	128.51	8.53	U1 All	OK
	6.400	1800	-128.51	-54.48	U1 All	OK	1800	128.51	0.00	U1 All	OK
	6.700	1800	-128.51	-74.28	U1 All		1800	128.51	0.00	U1 All	
3 Column	0.000	3200	-222.51	-285.27	U1 All		1800	128.51	0.00	U1 All	
	0.240	3200	-222.51	-232.53	U1 All		1800	128.51	0.00	U1 All	
	0.300	3200	-222.51	-219.90	U1 All	OK	1800	128.51	0.00	U1 All	OK
	1.237	3200	-222.51	-50.81	U1 All	OK	1800	128.51	0.00	U1 All	OK
	1.680	1800	-128.51	0.00	U1 All	OK	1800	128.51	7.95	U1 All	OK
	2.134	1800	-128.51	0.00	U1 All	OK	1800	128.51	45.95	U1 All	OK
	2.577	0	0.00	0.00	U1 All	OK	1800	128.51	73.98	U1 All	OK
	2.715	0	0.00	0.00	U1 All	OK	1800	128.51	80.89	U1 All	OK
	3.713	0	0.00	0.00	U1 All	OK	1800	128.51	105.21	U1 All	OK
	3.750	0	0.00	0.00	U1 All	OK	1800	128.51	105.21	U1 All	OK
	4.785	0	0.00	0.00	U1 All	OK	1800	128.51	80.89	U1 All	OK
	4.923	0 1800	0.00	0.00 0.00	U1 All	OK OK	1800 1800	128.51 128.51	73.98 45.95	U1 All	OK OK
	5.366 5.820	1800	-128.51 -128.51	0.00	U1 All U1 All	OK	1800	120.51	45.95	U1 All U1 All	OK
	6.263	3200	-120.51	-50.81	U1 All	OK	1800	128.51	0.00	U1 All	OK
	7.200	3200	-222.51	-219.90	U1 All	OK	1800	128.51	0.00	U1 All	OK
	7.275	3200	-222.51	-235.73	U1 All		1800	128.51	0.00	U1 All	
	7.500	3200	-222.51	-285.27	U1 All		1800	128.51	0.00	U1 All	
Middle	0.000	1800	-128.51	-71.32	U1 All		1800	128.51	0.00	U1 All	
	0.300	1800	-128.51	-54.97	U1 All	OK	1800	128.51	0.00	U1 All	OK
	1.767	1800	-128.51	0.00	U1 All	OK	1800	128.51	10.63	U1 All	OK
	2.067	0	0.00	0.00	U1 All	OK	1800	128.51	27.27	U1 All	OK
	2.715	0	0.00	0.00	U1 All	OK	1800	128.51	53.93	U1 All	OK
	3.713	0	0.00	0.00	U1 All	OK	1800	128.51	70.14	U1 All	OK
	3.750	0	0.00	0.00	U1 All	OK	1800	128.51	70.14	U1 All	OK
	4.785	0	0.00	0.00	U1 All	OK	1800	128.51	53.93	U1 All	OK
	5.433	0	0.00	0.00	U1 All	OK	1800	128.51	27.27	U1 All	OK
	5.733	1800 1800	-128.51	0.00 -54.97	U1 All U1 All	OK OK	1800 1800	128.51 128.51	10.63	U1 All U1 All	OK OK
	7.200 7.500	1800	-128.51 -128.51	-54.97	U1 All		1800	128.51	0.00 0.00	U1 All	
	1.000	1000	120.01	11.02	0174			120.01	0.00	0174	
4 Column	0.000	3200	-222.51	-279.70	U1 All		1800	128.51	0.00	U1 All	
	0.240	3200	-222.51	-229.98	U1 All		1800	128.51	0.00	U1 All	
	0.300	3200	-222.51	-217.93	U1 All	OK	1800	128.51	0.00	U1 All	OK
	1.081	3200	-222.51	-75.92	U1 All	OK	1800	128.51	0.00	U1 All	OK
	1.520	1800	-128.51	-9.14	U1 All	OK	1800	128.51	0.00	U1 All	OK
	1.874	1800	-128.51	0.00	U1 All	OK	1800	128.51	26.41	U1 All	OK
	2.313	0	0.00	0.00	U1 All	OK	1800	128.51	59.27	U1 All	OK
	2.435	0	0.00	0.00	U1 All	OK	1800	128.51	66.84	U1 All	OK
	3.350 3.722	0	0.00 0.00	0.00 0.00	U1 Ali U1 Ali	OK OK	1800 1800	128.51 128.51	102.23 105.74	U1 All U1 All	OK OK
	4.265	0	0.00	0.00	U1 All	OK	1800	120.51	99.56	U1 All	OK
	4.200	0	0.00	0.00	VI AI	S.K.	1000	120.01	55.50		S.

Structure Point

CONCRETE SOFTWARE SOLUTIONS

STRUCTUREPOINT - spSlab v5.50 Licensed to: StructurePoint. License ID:

Page | 11 3/29/2019 10:51 AM

				Тор					Botton	n	
Span Strip	x	A _{s,top}	ΦM _n -	M _u -	Comb Pat	Status	A _{s,bot}	ΦM _n +	Mu+	Comb Pat	Status
	m	mm ²	kNm	kNm			mm ²	kNm	kNm		
	4.387	0	0.00	0.00	U1 All	OK	1800	128.51	96.36	U1 All	OK
	4.687	1800	-128.51	0.00	U1 All	OK	1800	128.51	85.56	U1 All	OK
	5.180	1800	-128.51	0.00	U1 All	OK	1800	128.51	58.91	U1 All	OK
	5.480	2400	-169.43	0.00	U1 All	OK	1800	128.51	37.31	U1 All	OK
	6.400	2400	-169.43	-90.64	U1 All	OK	1800	128.51	0.00	U1 All	OK
	6.700	2400	-169.43	-155.86	U1 All		1800	128.51	0.00	U1 All	
Middle	0.000	1800	-128.51	-74.28	U1 All		1800	128.51	0.00	U1 All	
	0.300	1800	-128.51	-54.48	U1 All	OK	1800	128.51	0.00	U1 All	OK
	1.720	1800	-128.51	0.00	U1 All	OK	1800	128.51	8.53	U1 All	OK
	2.020	0	0.00	0.00	U1 All	OK	1800	128.51	25.54	U1 All	OK
	2.435	0	0.00	0.00	U1 All	OK	1800	128.51	44.56	U1 All	OK
	3.350	0	0.00	0.00	U1 All	OK	1800	128.51	68.15	U1 All	OK
	3.722	0	0.00	0.00	U1 All	OK	1800	128.51	70.49	U1 All	OK
	4.265	0	0.00	0.00	U1 All	OK	1800	128.51	66.37	U1 All	OK
	5.058	0	0.00	0.00	U1 All	OK	1800	128.51	44.36	U1 All	OK
	5.358	1800	-128.51	0.00	U1 All	OK	1800	128.51	31.07	U1 All	OK
	6.177	1800	-128.51	-0.35	U1 All	OK	1800	128.51	0.00	U1 All	OK
	6.400	1800	-128.51	0.00	U1 All	OK	1800	128.51	0.00	U1 All	OK
	6.700	1800	-128.51	1.52	U1 All		1800	128.51	0.00	U1 All	
5 Column	0.000	2400	-169.43	-11.81	U1 All		0	0.00	0.00	U1 All	
	0.070	2400	-169.43	-9.19	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.186	2323	-164.23	-5.37	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.200	2313	-163.58	-4.95	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.285	2257	-159.76	-2.63	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.370	2200	-155.90	-0.63	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.400	2200	-155.90	0.00	U1 All	OK	0	0.00	0.00	U1 All	OK
Middle	0.000	1800	-128.51	0.00	U1 All		0	0.00	0.00	U1 All	
	0.070	1800	-128.51	0.00	U1 All	ОК	0	0.00	0.00	U1 All	ОК
	0.186	1800	-128.51	0.00	U1 All	OK	0	0.00	0.00	U1 All	ОК
	0.200	1800	-128.51	0.00	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.285	1800	-128.51	0.00	U1 All	OK	0	0.00	0.00	U1 All	OK
	0.400	1800	-128.51	0.00	U1 All	OK	0	0.00	0.00	U1 All	OK

2.10. Slab Shear Capacity

Span	b	dv	β	V _{ratio}	ΦVc	Vu	Xu	
	mm	mm			kN	kN	m	
1	6600	195	0.210	1.000	879.73	24.66	0.10	
2	6600	195	0.210	1.000	879.73	245.78	6.20	
3	6600	195	0.210	1.000	879.73	246.25	7.00	
4	6600	195	0.210	1.000	879.73	245.78	0.50	
5	6600	195	0.210	1.000	879.73	24.66	0.30	

2.11. Flexural Transfer of Negative Unbalanced Moment at Supports

		-						
Support	Width	Width-c	d	M _{unb} Comb Patt	Yr	A _{s,req}	A _{s,prov}	Add Bars
	mm	mm	mm	kNm		mm²	mm ²	
1	1150	1150	217	142.53 U1 All	0.567	1166	1400	
2	1150	1150	217	2.60 U1 All	0.566	20	1400	
3	1150	1150	217	2.60 U1 All	0.566	20	1400	
4	1150	1150	217	142.53 U1 All	0.567	1166	1400	

Page | **12** 3/29/2019 10:51 AM

2.12. Punching Shear Around Columns 2.12.1. Critical Section Properties

Support	Туре	b ₁	b ₂	b ₀	d _{avg}	CG	C _(left)	C _(right)	Ac	Jc
		mm	mm	mm	mm	mm	mm	mm	mm ²	mm ⁴
1	Rect	808.5	617.0	2234.0	217.0	115.9	515.9	292.6 4.8	478e+005	3.6328e+010
2	Rect	817.0	617.0	2868.0	217.0	0.0	408.5	408.5 6.2	236e+005	6.5799e+010
3	Rect	817.0	617.0	2868.0	217.0	0.0	408.5	408.5 6.2	236e+005	6.5799e+010
4	Rect	808.5	617.0	2234.0	217.0	-115.9	292.6	515.9 4.8	478e+005	3.6328e+010

2.12.2. Punching Shear Results

Support	Vu	Vu	Munb	Comb	Patt	٧v	Vu	ΦVc	
	kN	N/mm ²	kNm				N/mm ²	N/mm ²	
1	258.19	0.533	112.60	U1	All	0.433	0.925	1.235	
2	561.20	0.902	2.60	U1	All	0.434	0.909	1.235	
3	561.20	0.902	-2.60	U1	All	0.434	0.909	1.235	
4	258.19	0.533	-112.60	U1	All	0.433	0.925	1.235	

2.13. Integrity Reinforcement at Supports

Notes:

The sum of bottom reinforcement crossing the perimeter of the support on all sides shall not be less than the below listed values.

Support	V _{se}	A _{sb}
	kN	mm²
1	254.56	1273
2	577.31	2887
3	577.31	2887
4	254.56	1273

2.14. Material TakeOff

2.14.1. Reinforcement in the Direction of Analysis

Top Bars	476.4 kg	<=>	21.95 kg/m	<=>	3.326 kg/m ²
Bottom Bars	590.6 kg	<=>	27.22 kg/m	<=>	4.124 kg/m ²
Stirrups	0.0 kg	<=>	0.00 kg/m	<=>	0.000 kg/m ²
Total Steel	1067.0 kg	<=>	49.17 kg/m	<=>	7.450 kg/m ²
Concrete	35.8 m ³	<=>	1.65 m ³ /m	<=>	0.250 m ³ /m ²

3. Deflection Results: Summary

3.1. Section Properties

3.1.1. Frame Section Properties

Notes:

M+ve values are for positive moments (tension at bottom face). M-ve values are for negative moments (tension at top face).

		M.,ve			M. _{ve}	
Span Zone	l _g	I _{cr}	M _{cr}	۱ _g	I _{cr}	M _{cr}
	mm ⁴	mm ⁴	kNm	mm ⁴	mm ⁴	kNm
1 Left	8.5938e+009	0	103.13	8.5938e+009	1.1434e+009	-103.13
Midspan	8.5938e+009	0	103.13	8.5938e+009	1.1713e+009	-103.13
Right	8.5938e+009	0	103.13	8.5938e+009	1.1926e+009	-103.13
2 Left	8.5938e+009	1.0435e+009	103.13	8.5938e+009	1.1926e+009	-103.13
Midspan	8.5938e+009	1.0435e+009	103.13	8.5938e+009	0	-103.13
Right	8.5938e+009	1.0435e+009	103.13	8.5938e+009	1.3844e+009	-103.13
3 Left	8.5938e+009	1.0435e+009	103.13	8.5938e+009	1.3844e+009	-103.13
Midspan	8.5938e+009	1.0435e+009	103.13	8.5938e+009	0	-103.13

Page | 13 3/29/2019 10:51 AM

		M.+ve			M.ve	
Span Zone	l _g	I _{cr}	M _{cr}	۱ _g	I _{cr}	M _{cr}
	mm ⁴	mm ⁴	kNm	mm ⁴	mm ⁴	kNm
Right	8.5938e+009	1.0435e+009	103.13	8.5938e+009	1.3844e+009	-103.13
4 Left	8.5938e+009	1.0435e+009	103.13	8.5938e+009	1.3844e+009	-103.13
Midspan	8.5938e+009	1.0435e+009	103.13	8.5938e+009	0	-103.13
Right	8.5938e+009	1.0435e+009	103.13	8.5938e+009	1.1926e+009	-103.13
5 Left	8.5938e+009	0	103.13	8.5938e+009	1.1926e+009	-103.13
Midspan	8.5938e+009	0	103.13	8.5938e+009	1.1713e+009	-103.13
Right	8.5938e+009	0	103.13	8.5938e+009	1.1434e+009	-103.13

3.1.2. Frame Effective Section Properties

		Load Level						
		D	ead	Sus	tained	Dea	d+Live	
Span Zone	Weight	M _{max}	l,	M _{max}	l,	M _{max}	l,	
		kNm	mm ⁴	kNm	mm ⁴	kNm	mm ⁴	
1 Right	1.000	-9.45	8.5938e+009	-9.45	8.5938e+009	-9.45	8.5938e+009	
Span Avg			8.5938e+009		8.5938e+009		8.5938e+009	
2 Left	0.150	97.92	8.5938e+009	97.92	8.5938e+009	125.53	5.2291e+009	
Middle	0.700	105.51	8.0935e+009	105.51	8.0935e+009	135.07	4.4034e+009	
Right	0.150	-212.42	2.2093e+009	-212.42	2.2093e+009	-271.39	1.7799e+009	
Span Avg			7.2859e+009		7.2859e+009		4.1338e+009	
3 Left	0.150	-214.24	2.1884e+009	-214.24	2.1884e+009	-273.43	1.7712e+009	
Middle	0.700	105.51	8.0941e+009	105.51	8.0941e+009	134.48	4.4481e+009	
Right	0.150	-214.24	2.1884e+009	-214.24	2.1884e+009	-273.43	1.7712e+009	
Span Avg			6.3224e+009		6.3224e+009		3.645e+009	
4 Left	0.150	-212.42	2.2093e+009	-212.42	2.2093e+009	-271.39	1.7799e+009	
Middle	0.700	105.51	8.0935e+009	105.51	8.0935e+009	135.07	4.4034e+009	
Right	0.150	97.92	8.5938e+009	97.92	8.5938e+009	125.53	5.2291e+009	
Span Avg			7.2859e+009		7.2859e+009		4.1338e+009	
5 Left	1.000	-9.45	8.5938e+009	-9.45	8.5938e+009	-9.45	8.5938e+009	
Span Avg			8.5938e+009		8.5938e+009		8.5938e+009	

3.1.3. Strip Section Properties at Midspan

Notes:

Load distirubtion factor, LDL, averages moment distribution factors listed in Design Results. Ratio refers to proportion of strip to frame deflections under fix-end condtions.

	Colum	nn Strip		Middle Strip				
Span	۱ _g	LDF	Ratio	۱ _g	LDF	Ratio		
	mm⁴			mm ⁴				
1	4.29688e+009	0.800	1.600	4.29688e+009	0.200	0.400		
2	4.29688e+009	0.750	1.500	4.29688e+009	0.250	0.500		
3	4.29688e+009	0.700	1.400	4.29688e+009	0.300	0.600		
4	4.29688e+009	0.750	1.500	4.29688e+009	0.250	0.500		
5	4.29688e+009	0.800	1.600	4.29688e+009	0.200	0.400		

3.2. Instantaneous Deflections

3.2.1. Extreme Instantaneous Frame Deflections and Corresponding Locations

					Live			Total		
Span	Direction	Value	Units	Dead	Sustained	Unsustained	Total	Sustained	Dead+Live	
1	Down	Def	mm							
		Loc	m							
	Up	Def	mm	-0.25		-0.15	-0.15	-0.25	-0.40	
		Loc	m	0.000		0.000	0.000	0.000	0.000	

Structure Point CONCRETE SOFTWARE SOLUTIONS

STRUCTUREPOINT - spSlab v5.50 Licensed to: StructurePoint. License ID:

Page | 14 3/29/2019 10:51 AM

					Live			Total		
Span	Direction	Value	Units	Dead	Sustained	Unsustained	Total	Sustained	Dead+Live	
2	Down	Def	mm	1.76		1.53	1.53	1.76	3.29	
		Loc	m	3.052		3.127	3.127	3.052	3.052	
	Up	Def	mm			-0.01	-0.01		0.00	
		Loc	m			6.475	6.475		6.625	
3	Down	Def	mm	2.20		2.31	2.31	2.20	4.50	
		Loc	m	3.713		3.713	3.713	3.713	3.713	
	Up	Def	mm							
		Loc	m							
4	Down	Def	mm	1.76		1.53	1.53	1.76	3.29	
		Loc	m	3.648		3.573	3.573	3.648	3.648	
	Up	Def	mm	0.00		-0.01	-0.01	0.00	0.00	
		Loc	m	0.060		0.240	0.240	0.060	0.060	
5	Down	Def	mm							
		Loc	m							
	Up	Def	mm	-0.25		-0.15	-0.15	-0.25	-0.40	
		Loc	m	0.400		0.400	0.400	0.400	0.400	

3.2.2. Extreme Instantaneous Column Strip Deflections and Corresponding Locations

						Live		Tot	al
Span	Direction	Value	Units	Dead	Sustained	Unsustained	Total	Sustained	Dead+Live
1	Down	Def	mm						
		Loc	m						
	Up	Def	mm	-0.25		-0.15	-0.15	-0.25	-0.40
		Loc	m	0.000		0.000	0.000	0.000	0.000
2	Down	Def	mm	2.36		2.14	2.14	2.36	4.49
		Loc	m	3.127		3.201	3.201	3.127	3.127
	Up	Def	mm			0.00	0.00		0.00
		Loc	m			6.550	6.550		6.625
3	Down	Def	mm	3.06		3.18	3.18	3.06	6.24
		Loc	m	3.713		3.713	3.713	3.713	3.713
	Up	Def	mm						
		Loc	m						
4	Down	Def	mm	2.36		2.14	2.14	2.36	4.49
		Loc	m	3.573		3.499	3.499	3.573	3.573
	Up	Def	mm			0.00	0.00		0.00
		Loc	m			0.180	0.180		0.060
5	Down	Def	mm						
		Loc	m						
	Up	Def	mm	-0.25		-0.15	-0.15	-0.25	-0.40
		Loc	m	0.400		0.400	0.400	0.400	0.400

3.2.3. Extreme Instantaneous Middle Strip Deflections and Corresponding Locations

					Live			Total		
Span	Direction	Value	Units	Dead	Sustained	Unsustained	Total	Sustained	Dead+Live	
1	Down	Def	mm							
		Loc	m							
	Up	Def	mm	-0.25		-0.15	-0.15	-0.25	-0.40	
		Loc	m	0.000		0.000	0.000	0.000	0.000	
2	Down	Def	mm	1.17		0.94	0.94	1.17	2.10	
		Loc	m	2.829		2.904	2.904	2.829	2.904	
	Up	Def	mm	0.00		-0.01	-0.01	0.00	-0.01	
		Loc	m	6.625		6.400	6.400	6.625	6.550	
3	Down	Def	mm	1.34		1.43	1.43	1.34	2.77	

Structure Point CONCRETE SOFTWARE SOLUTIONS

Page | 15 3/29/2019

10:51 AM

STRUCTUREPOINT - spSlab v5.50 Licensed to: StructurePoint. License ID:

						Live		Tot	tal
Span	Direction	Value	Units	Dead	Sustained	Unsustained	Total	Sustained	Dead+Live
		Loc	m	3.713		3.713	3.713	3.713	3.713
	Up	Def	mm						
		Loc	m						
4	Down	Def	mm	1.17		0.94	0.94	1.17	2.10
		Loc	m	3.871		3.796	3.796	3.871	3.796
	Up	Def	mm	0.00		-0.01	-0.01	0.00	-0.01
		Loc	m	0.060		0.300	0.300	0.060	0.120
5	Down	Def	mm						
		Loc	m						
	Up	Def	mm	-0.25		-0.15	-0.15	-0.25	-0.40
		Loc	m	0.400		0.400	0.400	0.400	0.400

3.3. Long-term Deflections

3.3.1. Long-term Column Strip Deflection Factors

Notes: Deflection multiplier, Lambda, depends on moment sign at sustained load level and Rho' in given zone.

Rho' is assumed zero because Compression Reinforcement option is NOT selected in Solve Options.

Time dependant factor for sustained loads = 2.000

			M. ve					M.ve		
Span Zone	A _{s,top}	b	d	Rho'	Lambda	A _{s,bot}	b	d	Rho'	Lambda
	mm²	mm	mm	%		mm²	mm	mm	%	
1 Right				0.000	2.000				0.000	2.000
2 Midspan				0.000	2.000				0.000	2.000
3 Midspan				0.000	2.000				0.000	2.000
4 Midspan				0.000	2.000				0.000	2.000
5 Left				0.000	2.000				0.000	2.000

3.3.2. Long-term Middle Strip Deflection Factors

Notes:

Deflection multiplier, Lambda, depends on moment sign at sustained load level and Rho' in given zone. Rho' is assumed zero because Compression Reinforcement option is NOT selected in Solve Options.

Time dependant factor for sustained loads = 2.000

			M.ve					M.ve		
Span Zone	A _{s,top}	b	d	Rho'	Lambda	A _{s,bot}	b	d	Rho'	Lambda
	mm²	mm	mm	%		mm ²	mm	mm	%	
1 Right				0.000	2.000				0.000	2.000
2 Midspan				0.000	2.000				0.000	2.000
3 Midspan				0.000	2.000				0.000	2.000
4 Midspan				0.000	2.000				0.000	2.000
5 Left				0.000	2.000				0.000	2.000

3.3.3. Extreme Long-term Column Strip Deflections and Corresponding Locations

Notes:

Incremental deflections due to creep and shrinkage (cs) based on sustained load level values.

Incremental deflections after partitions are installed can be estimated by deflections due to:

- creep and shrinkage plus unsustained live load (cs+lu), if live load applied before partitions,

- creep and shrinkage plus live load (cs+l), if live load applied after partitions.

Total deflections consist of dead, live, and creep and shrinkage deflections.

Span	Direction	Value	Units	cs	cs+lu	cs+l	Total
1	Down	Def	mm				
		Loc	m				

CONCRETE SOFTWARE SOLUTIONS

STRUCTUREPOINT - spSlab v5.50 Licensed to: StructurePoint. License ID:

Span	Direction	Value	Units	cs	cs+lu	cs+l	Total
	Up	Def	mm	-0.50	-0.65	-0.65	-0.90
		Loc	m	0.000	0.000	0.000	0.000
2	Down	Def	mm	4.71	6.85	6.85	9.20
		Loc	m	3.127	3.127	3.127	3.127
	Up	Def	mm		0.00	0.00	
		Loc	m		6.625	6.625	
3	Down	Def	mm	6.11	9.30	9.30	12.35
		Loc	m	3.713	3.713	3.713	3.713
	Up	Def	mm				
		Loc	m				
4	Down	Def	mm	4.71	6.85	6.85	9.20
		Loc	m	3.573	3.573	3.573	3.573
	Up	Def	mm		0.00	0.00	0.00
		Loc	m		0.060	0.060	0.060
5	Down	Def	mm				
		Loc	m				
	Up	Def	mm	-0.50	-0.65	-0.65	-0.90
		Loc	m	0.400	0.400	0.400	0.400

3.3.4. Extreme Long-term Middle Strip Deflections and Corresponding Locations

Notes:

Incremental deflections due to creep and shrinkage (cs) based on sustained load level values. Incremental deflections after partitions are installed can be estimated by deflections due to: - creep and shrinkage plus unsustained live load (cs+lu), if live load applied before partitions,

creep and shrinkage plus live load (cs+l), if live load applied after partitions.
 Total deflections consist of dead, live, and creep and shrinkage deflections.

		-	-				
Span	Direction	Value	Units	cs	cs+lu	cs+l	Total
1	Down	Def	mm				
		Loc	m				
	Up	Def	mm	-0.50	-0.65	-0.65	-0.90
		Loc	m	0.000	0.000	0.000	0.000
2	Down	Def	mm	2.33	3.27	3.27	4.44
		Loc	m	2.829	2.829	2.829	2.829
	Up	Def	mm	0.00	0.00	0.00	-0.01
		Loc	m	6.625	6.625	6.625	6.625
3	Down	Def	mm	2.68	4.10	4.10	5.44
		Loc	m	3.713	3.713	3.713	3.713
	Up	Def	mm				
		Loc	m				
4	Down	Def	mm	2.33	3.27	3.27	4.44
		Loc	m	3.871	3.871	3.871	3.871
	Up	Def	mm	0.00	0.00	0.00	-0.01
		Loc	m	0.060	0.120	0.120	0.060
5	Down	Def	mm				
		Loc	m				
	Up	Def	mm	-0.50	-0.65	-0.65	-0.90
		Loc	m	0.400	0.400	0.400	0.400

Page | 16 3/29/2019 10:51 AM

	Table 5 –	Summary of Flexural Des	sign Moments	
		Reference (DDM)	Hand (EFM)	spSlab
		Exterior Span		
	Exterior Negative	93	90.3	90.6
Frame Strip	Positive	185	171.1**	176.2* (170.4)**
	Interior Negative	249	273.6	272.1
		Interior Span		
Eromo Strin	Interior Negative	296	276.2	274.9
Frame Strip	Positive	160	175.9	175.4
* Maximum p ** Positive mo	ositive moment along externed externation of the observation of the ob	erior span (not at midspan) exterior span		

6. Summary and Comparison of Two-Way Slab Design Results

For the Table 5, the negative moments are taken at the supports faces. Note that for the exterior span, the location of the maximum positive moment is not located at the mid span. the hand solution assumed that the maximum positive moment is located at the midspan for simplification. On the other hand, spSlab program provides the exact location of the maximum positive moment.

Table 6 - Summary of Reinforcement Provided							
Snon	Support	Strip	Reinforcement Provided*				
Span	Support	Sulp	Reference**	Hand	spSlab		
		b _b	7-15M	7-15M	7-15M		
	Exterior Negative	rest of Column Strip	- 14-15M	5-15M	5-15M		
	Exterior negative	Middle Strip	14-131	9-15M	9-15M		
		Total	21-15M	21-15M	21-15M		
		Column Strip		9-15M	9-15M		
Exterior Span	Positive	Middle Strip		9-15M	9-15M		
		Total	17-15M	18-15M	18-15M		
	Interior Negative	b _b		7-15M	7-15M		
		rest of Column Strip		9-15M	9-15M		
		Middle Strip		9-15M	9-15M		
		Total		25-15M	25-15M		
		bb	7-15M	7-15M	7-15M		
	Negative	rest of Column Strip	- 14-15M	9-15M	9-15M		
	Inegative	Middle Strip	14-131	9-15M	9-15M		
Interior Span		Total	21-15M	25-15M	25-15M		
		Column Strip		9-15M	9-15M		
	Positive	Middle Strip		9-15M	9-15M		
		Total	17-15M	18-15M	18-15M		

In Table 6, the reference calculated the reinforcement required and provided based on design strip taking into account the band width b_b and the rest of the design strip. On the other hand, hand and spSlab calculations considered all strips specified by the code (column strip including the band width b_b and middle strip). Reinforcement provided by the reference are based on adjusted moment values using moment redistribution that is applicable for DDM.

Table 5 and table 6 show comparison between the reference results using DDM and hand solution and spSlab results using EFM. Note that the use of DDM is limited and the reference made several simplifying assumptions to make the use of DDM valid for this calculations:

- Exclude the exterior cladding panels weight (2.4 kN/m).
- Exclude the slab projection that supports the cladding panels.
- The use of averaged reinforcement effective depth for shear calculations.
- Using the tributary method and assuming that half of the total load is transferred to the interior column.

The main reason of the slight differences between the reference results and the hand and spSlab results is the use of different analysis techniques (DDM by reference and EFM by hand and spSlab). Additionally, the reinforcement provided by the reference are based on adjusted moment values using moment redistribution that is applicable for DDM.

Table 7 - C	omparison of Moments obtained fr	om Hand (EFM) and spSlab Sol	ution
		Hand (EFM)	spSlab
	Exterior Sp	an	
	Exterior Negative*	90.3	90.6
Column Strip	Positive	102.7	107.7
	Interior Negative*	218.9	217.9
	Exterior Negative*	0.0	0
Middle Strip	Positive	68.4	70.5
	Interior Negative*	54.7	54.5
	Interior Spa	an	
Calara Stair	Interior Negative*	221.0	219.9
Column Strip	Positive	105.5	105.2
Middle Stair	Interior Negative*	55.2	55.0
Middle Strip	Positive	70.4	70.1
negative moments are ta	aken at the faces of supports		

	i able 8 - Co	mparison of I	Reinforcement		1	sian Solution		
Span Location			ent Provided lexure	Additional Reinforcement Provided for Unbalanced Moment Transfer*		Total Reinforcement Provided		
		Hand	spSlab	Hand spSlab		Hand	spSlab	
			Exterio	r Span				
	Exterior Negative	12-15M	12-15M			12-15M	12-15M	
Column Strip	Positive	9-15M	9-15M	n/a	n/a	9-15M	9-15M	
Sulp	Interior Negative	16-15M	16-15M			16-15M	16-15M	
	Exterior Negative	9-15M	9-15M	n/a	n/a	9-15M	9-15M	
Middle Strip	Positive	9-15M	9-15M	n/a	n/a	9-15M	9-15M	
Sulp	Interior Negative	9-15M	9-15M	n/a	n/a	9-15M	9-15M	
			Interio	r Span				
Column Strip	Negative	16-15M	16-15M			16-15M	16-15M	
	Positive	9-15M	9-15M	n/a	n/a	9-15M	9-15M	
Middle	Negative	9-15M	9-15M			9-15M	9-15M	
Strip	Positive	9-15M	9-15M	n/a	n/a	9-15M	9-15M	

* In the EFM, the unbalanced moment (M_{sc}, M_{unb}) at the support centerline is used to determine the value of the additional reinforcement as compared with DDM using the moments at the face of support.

Table 9 - Comparison of One-Way (Beam Action) Shear Check Results Using Hand and spSlab Solution							
Snon	Vu,	kN	φVc	, kN			
Span	Hand	spSlab	Hand	spSlab			
Exterior	245.7	245.8	878.4	879.7			
Interior	241.4	246.2	878.4	879.7			

Tabl	Table 10 - Comparison of Two-Way (Punching) Shear Check Results Using Hand and spSlab Solution											
Summant	b ₁ , mm		b ₁ , mm b ₂ , mm		b _o ,	b ₀ , mm A _c , mm ²		V _u , kN		v _u , kN/mm ²		
Support	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab
Exterior	808.5	808.5	617	617	2234	2234	484778	484778	218.5	258.2	0.45	0.53
Interior	817	817	617	617	2868	2868	622356	622356	563.1	561.2	0.90	0.90
Summant	c _{AB}	, mm	J _c , x 10	⁹ mm ⁴	γ_{v}		M _{unb} , kN.m		v _u , MPa		φv _c ,	MPa
Support	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab
Exterior	292.6	292.6	36.3	36.3	0.433	0.433	107.0	112.6	0.824	0.925	1.235	1.235
Interior	408.5	408.5	65.8	65.8	0.434	0.434	2.3	2.6	0.911	0.909	1.235	1.235

Tables 7-10 show detailed comparison between hand solution and spSlab solution. In all of the hand calculations illustrated above, the results are in close or exact agreement with the automated analysis and design results obtained from the spSlab model except for two-way shear stresses around exterior support (around 11% difference) due to the cladding effect on the small cantilever part which was considered in spSlab model and excluded from the hand calculations for simplification.

The following table shows the effect of including the cladding panels weights and slab projection in the hand solution using EFM on the two-way (punching) shear results.

Table 11 – The Effect of including the Cladding Panels Weight and Slab Projection on the Punching Shear Results								
Method of Solution	Slab Projection and Cladding Panels Weights	V _u , kips	M _{ub} , kip-ft	v _u , MPa				
II	Excluded	218.5	107	0.824				
Hand	Included	257.7	110.4	0.916				
spSlab	Included	258.2	112.6	0.925				

7. Comparison of Two-Way Slab Analysis and Design Methods

A slab system can be analyzed and designed by any procedure satisfying equilibrium and geometric compatibility. Three established methods are widely used. The requirements for two of them are described in detail in <u>CSA</u> <u>A23.3-14 Clasues (13.8 and 13.9)</u> for regular two-way slab systems. <u>CSA A23.3-14 (13.5.1)</u>

Direct Design Method (DDM) is an approximate method and is applicable to flat plate concrete floor systems that meet the stringent requirements of <u>CSA A23.3-14 (13.9.1)</u>. In many projects, however, these requirements limit the usability of the Direct Design Method significantly.

The Elastic Frame Method (EFM) has less stringent limitations compared to DDM. It requires more accurate analysis methods that, depending on the size and geometry can prove to be long, tedious, and time-consuming.

StucturePoint's <u>spSlab</u> software program solution utilizes the EFM to automate the process providing considerable time-savings in the analysis and design of two-way slab systems as compared to hand solutions using DDM or EFM.

Finite Element Method (FEM) is another method for analyzing reinforced concrete slabs, particularly useful for irregular slab systems with variable thicknesses, openings, and other features not permissible in DDM or EFM. Many reputable commercial FEM analysis software packages are available on the market today such as <u>spMats</u>. Using FEM requires critical understanding of the relationship between the actual behavior of the structure and the numerical simulation since this method is an approximate numerical method. The method is based on several assumptions and the operator has a great deal of decisions to make while setting up the model and applying loads and boundary conditions. The results obtained from FEM models should be verified to confirm their suitability for design and detailing of concrete structures.

The following table shows a general comparison between the DDM, EFM and FEM. This table covers general limitations, drawbacks, advantages, and cost-time efficiency of each method where it helps the engineer in deciding which method to use based on the project complexity, schedule, and budget.

Structure Point

CONCRETE SOFTWARE SOLUTIONS

Applicable CSA	T	Concrete Slab Analysis Method				
A23.3-14 Provision	Limitations/Applicability	DDM (Hand)	EFM (Hand//spSlab)	FEM (spMats)		
13.8.1.1 13.9.1.1	Panels shall be rectangular, with ratio of longer to shorter panel dimensions, measured center-to-center supports, not exceed 2.	Ø				
13.8.1.1 13.9.1.1	For a panel with beams between supports on all sides, slab-to-beam stiffness ratio shall be satisfied for beams in the two perpendicular directions.	Ø	Ø			
13.8.1.1 13.9.1.1	Column offset shall not exceed 20% of the span in direction of offset from either axis between centerlines of successive columns	Ø	Ø			
13.8.1.1 13.9.1.1	The reinforcement is placed in an orthogonal grid.	Ø	Ø			
13.9.1.2	Minimum of three continuous spans in each direction	Ø				
13.9.1.3	Successive span lengths measured center-to- center of supports in each direction shall not differ by more than one-third the longer span	Ø				
13.9.1.4	All loads shall be due to gravity only	Ø				
13.9.1.4	All loads shall be uniformly distributed over an entire panel (q_f)	V				
13.9.1.4	Unfactored live load shall not exceed two times the unfactored dead load	Ø				
13.10.6	Structural integrity steel detailing	V	$\mathbf{\overline{A}}$	\square		
13.10.10	Openings in slab systems	V	V	\checkmark		
8.2	Concentrated loads	Not permitted	V	\checkmark		
13.8.4.1	Live load arrangement (Load Patterning)	Not required	Required	Engineering judgment required based on modeling technique		
13.10.2*	Reinforcement for unbalanced slab moment transfer to column (M _{sc})	Moments @ support face	Moments @ support centerline	Engineering judgment required based on modeling technique		
13.8.2	Irregularities (i.e. variable thickness, non- prismatic, partial bands, mixed systems, support arrangement, etc.)	Not permitted	Engineering judgment required	Engineering judgment required		
Complexity		Low	Average	Complex to very complex		
Design time/	costs	Fast	Limited	Unpredictable/Costly		
Design Economy		Conservative (see detailed comparison with spSlab output)	Somewhat conservative	Unknown - highly dependent on modeling assumptions: 1. Linear vs. non-linear 2. Isotropic vs non-isotropic 3. Plate element choice 4. Mesh size and aspect ratio 5. Design & detailing features		
General (Drawbacks)		Very limited applications	Limited geometry	Limited guidance non-standard application (user dependent). Required significant engineering judgment		
General (Advantages)		Very limited analysis is required	Detailed analysis is required or via software (e.g. spSlab)	Unlimited applicability to handle complex situations permissible by the features of the software used (e.g. spMats) r side of a column at a specific joint		